
Aegis is Only for Software,
Isn’t It?

Peter Miller

pmiller@opensource.org.au

Aegis is a Software Configuration Management system, which provides a method for managing

concurrent development and peer review with strong auditability. These features are useful to

more environments than the development of software. This paper presents two systems being

managed with Aegis at AGSO: DNS and the Web.

Using Aegis to manage DNS provides a reliable way to add entries to the DNS tables, check the

tables, and generate the reverse maps. It is even generating some NIS+ tables. The system is peer

reviewed, so no “broken” changes are able to get into the system tables. The net result is a more

reliable service to the users.

Using Aegis to manage the AGSO Web (http://www.agso.gov.au/) models the production of scien-

tific papers. In the normal publication process an author writes a paper and it is then peer re-

viewed, the reviewers may return it with comments or approve it to the publisher. The publisher in

turn may accept it for publication or return it. A similar model is available using Aegis when pub-

lishing Web pages; the publication analogy is deliberate since the work is indeed available to the

public. The “build” step which is so central to producing software is used in the Web case to re-

solve server-side includes, to check the HTML for obvious errors, and to generate the various in-

dices. Some Aegis reports are also used, such as the one from which the “What’s New” page

(http://www.agso.gov.au/whatsnew/) is generated. The provision by Aegis of individual “sand

pits” greatly facilitates concurrent development of Web pages and improves productivity. In gen-

eral, staff hav e been happy with the Web development model in use at AGSO.

1. Aegis at a Glance

The term Configuration Management was coined many

decades ago in the engineering disciplines. It refers to

the process of managing all of the components of an en-

gineering design. In designing a car, for example, it is

important to know which version of the shock absorbers

goes with which versions of the chassis and wheel

arches.

A similar problems exists for the construction of soft-

ware, and so the term was borrowed by software engi-

neers to become Software Configuration Management.

This refers to keeping track of the various source compo-

nents of a software package, and how to assemble them

into a working program.

There is a huge similarity between assembling a soft-

ware program, and assembling a web. Source files are

processed and stitched together to form the final product,

much the same way program source files are compiled

and linked together to form the final software product.

Copyright © 1996 Peter Miller

Aegis is a software configuration management system,

and it provides controlled accesses to the source files of

a project. It can support concurrent development, and

enforces mandatory reviews. As Aegis is described

more completely elsewhere [1, 2], this paper will not

dwell too heavily on how to use Aegis, but rather how

Aegis is useful in the two case studies below.

2. DNS Management

The first case study presented here is that of using Aegis

to manage Domain Name Service (DNS) information.

This is a relatively small system, it is reasonably well

known, and if you get it wrong your network may cease

to function until you get it right again. DNS itself has

been described elsewhere [3, 4] and will not be de-

scribed in depth here.

The design of the Unix named(8), the program which

serves the DNS protocol, is intriguing, mostly because of

the almost-but-not-quite redundancy in most of the con-

figurations files. This revolves around the fact that DNS

has both forward maps which associate a domain name

Peter Miller Page 1



AUUG´96 Aegis is Only For Software, Isn´t It?

with an IP address, and re verse maps which associate an

IP address with a domain name. Naturally, if these maps

are not carefully synchronized, a variety of problems

may result. This is traditionally solved using make(1)

and some baroque awk(1) scripts. The maintainer logs

in as root, edits the forward map, runs make, and in-

forms named that it needs to re-read its input files, usu-

ally by running a shell script which sends a signal to the

server process.

But what do you do when there is more than one autho-

rized maintainer? How do they coordinate their activi-

ties when they are in 3 different buildings? How do they

make sure the configuration files are OK before they

bring the whole network to its knees?

None of these problems are particularly new or interest-

ing. They are well known to software development

teams the world over. At AGSO, we are using Aegis to

resolve them.

2.1. Concurrent Development

Aegis has the concept of a baseline which is the known-

good currently-working master source for a project.

Aegis partitions alterations to this baseline into sets of

files which must be altered simultaneously to preserve

the currently-working-ness of the baseline. These sets of

files may be as small as a single file, or as large as every

source file in the baseline.

These alterations to the baseline are known, unoriginally,

as changes, and each change is given a separate develop-

ment directory. By dev eloping each change in a separate

directory, there is no possibility than one maintainer can

accidentally blow away another’s work. At worst, if they

have a file in common, one will need to merge the

other’s work with his own. This merge is fully sup-

ported by Aegis.

The other important feature of using separate develop-

ment directories is that “half finished” changes are not

mistaken for valid input, should the DNS server be re-

booted during the development of the change. Until a

change is completed and has been reviewed, the baseline

remains unaltered.

This entire process is performed by users logged

in as themselves. Access is controlled by access control

lists based on user names, no special system user ac-

counts are required. need for users to login to a special

account to work on web pages.

2.2. Validation

When constructing software, the program is built in

some way. One traditional Unix approach is to delegate

remembering how to do this to a program such as

make(1). While make(1) can be used with Aegis, the

author prefers cook(1) as a more capable and descriptive

build tool.

The build step is used to translate the forward maps into

reverse maps. This is not done with awk(1) for a few

reasons

• The SRRF input format used by named(8) makes

for very hard to read awk scripts if you are deter-

mined to use the full input language.

• We use include files to describe our various build-

ings and other internal network structure. This

also reduces the number of opportunities for con-

flicts between changes.

As a result, we have a suite of C programs (also devel-

oped using Aegis, naturally) which perform the various

translations and filters we require.

A very important side-effect of these translations is that

they validate their input. In this we detect duplicate host

names, invalid host names, duplicate IP addresses, in-

valid IP addresses, etc. When we converted our DNS

procedures to use DNS, a number of problems were dis-

covered which had been in the system for years.

Yes, these problems could have been discovered with the

old root make system, but they were not discovered until

we decided to us a system specifically designed to be

maintained by many people, and to double check every-

thing before it went “live” and inconvenienced staff.

2.3. Derived Data

We also use the DNS data to generate some of our NIS+

tables. Obviously, the NIS+ hosts table needs to be syn-

chronized with the DNS tables, and this translation is

relatively easy.

We also invented an “ether” type, which we filter out and

don’t actually give to named(8), to record Ethernet ad-

dresses. This information is used to derive the NIS+

ethers table. This could have been managed differently,

but as it is intimately related to the IP address manage-

ment, we decided to do it here, for a sort of “one stop”

network shop.

The hinfo records are grep(1)ed to generate the NIS+

netgroup table. This is used to minimize changes to

/etc/hosts.equiv, /etc/dfs/dfstab, etc. As a new machine

is added, it receives a formula hinfo description, which

results in it being included in the appropriate net group,

and thus the appropriate network permissions.

The hinfo records are also filtered to generate the

NIS+ bootparamd map. When combined with the hosts

table and the ethers table, this is all that is required to

configure a workstation for the Solaris Install Server.

Peter Miller Page 2



AUUG´96 Aegis is Only For Software, Isn´t It?

2.4. Review

Aegis will not allow a change to finish development until

it builds cleanly. Thus, if there are any errors found dur-

ing the various filters performed by the build step, a

change may not end development.

Once a change ends development it is not immediately

installed into the baseline. It enters a “being reviewed”

state. Developers are prevented from reviewing their

own work, as an obvious conflict of interests. Some

other authorized review must do so. The access control

lists for developers and reviewers are separate, and it is

up to your individual preferences whether they overlap

or not. Once a reviewer OKs the change, it is then inte-

grated.

2.5. Integration

The integration involves making a copy of the baseline

(usually with hard links, it is faster) and applying the

change to this copy. The build is performed again on

this copy - mostly as a quick double check, though it

does not in the Web case, below.

The integrator can also serve as an editor, or a second re-

viewer if necessary. It answers the perennial “who will

watch the watchers” question.

Aegis’ notification facility, used at most transition to

send email or news articles, is also used at the end of in-

tegration to notify DNS and NIS+ to re-read the relevant

files.

2.6. Observable Results

It was long suspected that there was a fairly high rate of

change in our DNS data, but we didn’t track it too

closely, we already had more than enough to do. Aegis

tracks this activity in a very non-intrusive manner. At

present, we are averaging 3.5 DNS changes per week, a

figure not previously available.

The other thing which has changed is that there are no

unexplained changes. You no longer hear they cry “Who

the smeg did that?” echoing down the corridor. There is

never the silent anonymous untrackable duel between

two administrators undoing and redoing each others

changes.

By adding Ethernet numbers, we can detect when ma-

chines move between staff and between floors and

change names, meaning that we can detect now-vacant

IP addresses by the Ethernet address duplicate.

The most important result is stability. More is checked

than ever before, and it is discovered earlier than ever

before. Only changes which pass all our automated

checks, and also pass the scrutiny of a human DNS bof-

fin, are inflicted on users.

3. Web Management

The second case study presented is that of AGSO’s Web.

This is also managed using Aegis, though this project

has many, many more sources files. The environment

presented by Aegis is the same - though the terminology

used is more aimed at authors than system administra-

tors.

The method of Web development implemented using

Aegis is presented as an analogue of the publications of

scientific papers.

Author

writes web pages

Reviewer

performs peer review

Editor

performs editorial review

In particular, it is expected that much of the science con-

tent of our web pages will be authored by out scientists.

The peer review is expected to be, and should be, per-

formed by the scientist’s science peers. Everything else

- layout, formatting, copyright issues, structure, etc, are

the editor’s problem. Only the author may alter a change

- the peer reviewer and the editor only have the power of

veto. The file system permissions are exploited to en-

sure that there is no “back door’ to this process. Even

the editor (integrator) does not have write permissions to

the baseline. All changes to the baseline must traverse

the entire change process.

3.1. Build and Validation

The build step in the Web project is very little different

from the build step in the DNS project. We use the build

step to:

• Resolve server-side include files, so that the files

fetched by external clients are complete, and the

HTTP server can be as dumb as possible. We use

common headers and footers in common include

files to implement much of the look and feel of our

web pages.

• Perform SGML checking against the HTML 2.0

DTD. The finds all of the overt HTML errors, but

it cannot check spelling or style. We use sgmls(1)

Peter Miller Page 3



AUUG´96 Aegis is Only For Software, Isn´t It?

obtained from the network, and the standard

html.dtd also obtained from the network.

It takes longer to perform this build than in the DNS

case, because there are more source files and more in-

clude dependencies to check.

The build works out what to build from the source files

of the project. The cook(1) programs asks Aegis for a

list of files, and then generates a list of output files from

that. In this way, there is no need to add a new file to a

list in a Makefile of some sort.

3.2. File Templates

To add a new page to the Web, a user initiates a Web

change and then creates a new file via Aegis. The new

file will be created according to a pre-configured file

template. This will give them the common headers and

footers automatically, all that is required is to fill in the

text in the middle.

So that the page may be accessed, it will also be neces-

sary to copy some other file, again via Aegis, and embed

an anchor to the new page in the copied page.

Files are copied and created via Aegis so that Aegis

knows which files to transfer from your working direc-

tory into the baseline. If you don’t tell Aegis, they will

not be built, and later they will not reach the baseline.

3.3. Preview and Review

Once your Web pages build successfully, it is possible to

see what the public will see - to preview them. We do

this by running a specialized web server that “overlays”

the files in your development directory over those in the

baseline. Essentially, this is a simple search path. The

specialized web server tell you a URL to open to pre-

view your changes, and it will exist until you interrupt it,

usually with Control-C.

Reviewers may use the same technique to look at an au-

thor’s change, however reviewers are also encouraged to

look at the HTML itself.

Using this specialized web server, it can be established

exactly what the public will see when the pages finally

arrive in the Web baseline. All of the Web pages are

available in this way, as the change’s pages are seam-

lessly integrated with the baseline pages. In this way, it

is only necessary to copy the pages you actually need to

edit. All other pages are obtained from the baseline.

This often represents a large saving in working disk stor-

age.

We hav e a set of layout guidelines which are available

internally for our Web developers to read. Reviewers

(theoretically) review against these guidelines, and de-

velopers are encouraged to have a quick look at the

guidelines before completing the development of their

changes.

3.4. Integration

The integration stage is not particularly different from

the integration stage for DNS. However, some of the

more time consuming tasks, which are not of great inter-

est to developers are done at this time: mostly generating

or updating the various indexes for our Web as required

for the specific change.

3.5. Concurrent Development

Performing file copies via Aegis allows Aegis to note the

version of the file at the time it was added to the change.

This version information is used later to detect file con-

flicts, and to merge file contents.

The chances of having Web pages in common are fairly

low, howev er it happens fairly regularly. The use of sep-

arate development directories means that this can be ig-

nore for as long as the author wants to. When it is time

to complete development of a Web change, the versions

of the files are checked by Aegis. If any are out-of-date,

a 3-way merge may be performed to merge the Web

baseline updates with the edits in the change.

3.6. Results

The AGSO Web is intended to be a “publication on de-

mand” medium. As a result, any data the public can see

needs to be of publication quality already. It is then only

required for the client to print interesting material one

the client’s printer. While the HTML formatting may

leave a little to be desired at present, we believe that the

process we employ is more than capable of delivering

the quality of content that we desire.

4. Summary

Many of the processes we perform on computers involve

manipulating and assembling files in some way, many

can be managed using SCM techniques. Even where

significant manipulation (e.g. compiling software) is not

required, automated input validation helps reduce the

number of avoidable errors (much as compilers validate

against input language).

The other advantage conferred by Aegis is that privi-

leged operations are recorded, and are available for au-

diting purposes. The privilege is controlled by access

control lists, and requires active conspiracy by more than

one person to subvert. Even then, the audit record is in-

accessible. By using Aegis’ notification facilities, it is

ev en possible for highly privileged system tables to be

updated, and yet root passwords need not be disclosed.

The use of Aegis to assist in the management and avail-

ability of critical system services has been very

Peter Miller Page 4



AUUG´96 Aegis is Only For Software, Isn´t It?

successful, and will be used again.

The use of Aegis to ensure that our Web is of high qual-

ity has been equally successful, and is a model we would

happily recommend.

5. References

• Miller, P. A., “Aegis Is Only For Software, Isn’t

It?,” AUUG ’96 ACT Summer Conference Papers,

1996.

[1] Miller, P. A., “Aegis - A Project Change Supervi-

sor,” AUUG ’93 Conference Papers, 1993, p.

169-178.

[2] Miller, P. A., Aegis User Guide

http://aegis..sourceforge.net/,

[3] Mockapetris, P., “Domain Names - Concepts and

Facilities”, STD 13, RFC 1034, USC/Information

Sciences Institute, November 1987.

[4] Mockapetris, P., “Domain Names - Implementa-

tion and Specification”, STD 13, RFC 1035,

USC/Information Sciences Institute, November

1987.

Peter Miller Page 5



AUUG´96 Aegis is Only For Software, Isn´t It?

Aegis is Only for
Software, Isn’t It?

Peter Miller
pmiller@opensource.org.au

• Aegis at a Glance

• Managing DNS with Aegis

• Managing WWW with Aegis

Peter Miller Page 6



AUUG´96 Aegis is Only For Software, Isn´t It?

Aegis at a Glance

• Software Configuration
Management

Manifest control, Version control, Build
control, Change control, Quality control.

• Software development
analogue

Source
Files

Chew
on them

Finished
Product

• Aegis provides change
process and change
environment

Peter Miller Page 7



AUUG´96 Aegis is Only For Software, Isn´t It?

The Process in Too
Much Detail

new
change

aw aiting
development

develop
begin

being
developed

develop
end

being
reviewed

review
pass

aw aiting
integration

integrate
begin

being
integrated

integrate
pass

completed

new
change
undo

develop
begin
undo

develop
end
undo

develop
end
undo

integrate
begin
undo

review
fail

review
pass

undo

integrate
fail

Author

Reviewer

Editor

Peter Miller Page 8



AUUG´96 Aegis is Only For Software, Isn´t It?

Advantages of the
Process

• Access control lists

• Insulated development areas

• "Backing Out" is Easy

• All state transitions recorded

• State transition notification

Peter Miller Page 9



AUUG´96 Aegis is Only For Software, Isn´t It?

Managing DNS with
Aegis

• Users logged in as
themselves (ACL)

• No root access required

• Fully audited and reportable

• Notified of all changes

• Coordinates multiple system
admininstrators

Peter Miller Page 10



AUUG´96 Aegis is Only For Software, Isn´t It?

The DNS Build Step

Forward
map files

Chew
on them

Reverse
map files

/etc/hosts /etc/netgroup

Peter Miller Page 11



AUUG´96 Aegis is Only For Software, Isn´t It?

The DNS Integration
Step

baseline

development
directory

integrator

integrate
begin

integration
directory

integrate
pass

development
directory

• Conflicts
detected and
managed

• This is when
history is
updated

• No root
access
required for
named
notification

Peter Miller Page 12



AUUG´96 Aegis is Only For Software, Isn´t It?

Managing WWW with
Aegis

• Users logged in as
themselves (ACL)

• Fully audited and reportable

• Notified of all changes

• Coordinates multiple authors

• Peer review is well
understood

Peter Miller Page 13



AUUG´96 Aegis is Only For Software, Isn´t It?

The WWW Build Step

master/
chew

on them
export/

Development
Directory

• Server-side includes are
resolved

• Include dependencies
automatic

• HTML is checked against DTD

• Reports generated, e.g. What’s
New

• SQR compiled, etc, etc

Peter Miller Page 14



AUUG´96 Aegis is Only For Software, Isn´t It?

Directory Stacking

Baseline
TOC.html
ch1.html

Development Dir.
TOC.html

ch2.html

Combined View
TOC.html
ch1.html
ch2.html

• Only files being edited or
created are in development
directory.

• Build tool must be able to
cope with directory stack.

• "Test Server" must be able to
stack, too, so can preview.

Peter Miller Page 15



AUUG´96 Aegis is Only For Software, Isn´t It?

The WWW Integration
Step

• Integration build also
constructs the indexes and
other files not normally
interesting to developers.

• Same picture as before,
integration directory renamed
to be the baseline.

• Conflicts are detected and
managed.

• This is when history is updated.

• Server is sufficiently lightly
loaded to run from inetd, so no
notification required.

Peter Miller Page 16



AUUG´96 Aegis is Only For Software, Isn´t It?

Aegis is Only for
Software, Not!

• Access control lists, no root
required

• Audit trail, statistics and
reports

• Quality control for
Publication on Demand

• Quality control for critical
systems

// vim: set ts=8 sw=4 et :

Peter Miller Page 17


