
.

Aegis
A Project Change Supervisor

HOWTO

Peter Miller
pmiller@opensource.org.au

Howto Aegis

.

This document describes Aegis version 4.25
and was prepared 30 July 2024.

This document describing the Aegis program, and the Aegis program itself, are
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 3 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>.

Page 2 (./lib/en/howto/introductio.so) Peter Miller

Aegis Howto

1. Introduction

This manual contains a series of brief lessons or “How

To” guides for using Aegis. Each is arranged to cover

two pages, so that when the manual lies open on the

desk, the whole subject is easily visible in front of you.

When printing this manual, it is essential to print it dou-

ble sided, or the “subject at once” effect will not occur.

The table of contents will be printed last. Insert it (there

should be two pages, on one sheet of paper) before this

page.

1.1. Assumed Knowledge

Many of these sections are written for use by beginners,

so there is a fairly low lev el of assumed knowledge.

However, you may want to have The Aegis User Guide,

and The Aegis Reference Manual very close by, as all of

the material conveyed here is available in a more ex-

pended or detailed form on those manuals.

1.2. Howto Install Aegis

The description of how to build, test and install Aegis

may be found in the Reference Manual, under the head-

ing The BUILDING File, which reproduces the BUILD-
ING file included in the Aegis source distribution.

If you installed Aegis using a RedHat or Debian pack-

age, this will not be at all relevant to you, simply ignore

it.

1.3. Howto Contribute

If you would like to see other “How To” subjects, please

drop me an e-mail. Better yet, write one and e-mail it to

me.

Peter Miller (./lib/en/howto/main.ms) Page 3

Howto Aegis

2. Cheat Sheet

This page is a quick reference into the common Aegis

commands.

• Usually, “man command_name” can be used to get

more details on a particular command.

• See also the official Aegis quick reference in the User

Guide, page 88.

• The “−p name” option is used to specify the project

name.

• The “−c number” option is used to specify the change

number.

• The “−l” (or “−List”) option can often be used to

list subjects for the given command (eg. change num-

bers or projects) or simply to list rather than edit (e.g.

a file or change attributes).

2.1. Common Commands

ae_p project-name.branch-number

Set current project number for all following

Aegis commands. The ae_p command with

no arguments will ‘unset’ this forced default.

ae_c number

Set current change number for all following

Aegis commands. The ae_c command with

no arguments will ‘unset’ this forced default.

aecd [−bl]

Change directory [change to baseline].

aeb Aegis build − used by developers, reviewers

and/ or integrators.

aet Run tests − used by developers.

aed Difference of change files with baseline.

aedless
View difference files generated with aed.

ael cd
List change details.

aeca [−l]

Edit [list] change attributes.

tkaenc
Create a new change (see aenc(1) for details),

using a GUI interface. This makes it a damn

sight easier to type in the description field.

tkaeca
Edit change attributes (see aeca(1) for details),

using a GUI interface. This makes it a damn

sight easier to edit the description field.

ael ll
List all of the lists (there are a lot).

ael c List all of the changes for a project (branch).

ael cf
List all of the files in a change.

aeuconf(5)

This is a man page documenting the

˜/.aegisrc file format.

2.2. Developer Commands

Procedure: ael cd → aedb → do stuff → aeb →
aet → aed → aedless [→ aeclean] → aede

aedb[u]
Develop begin [undo].

aede[u]
Develop end [undo].

aeclean
This will remove all files in the development di-

rectory which are not in the change as new files or

copied files. This may delete files that you want,

so be careful.

The aeclean(1) command uses Aegis’ knowledge of

what is supposed to be in the change. You are meant to

tell Aegis about all source files you create in a develop-

ment directory. If you have forgotten to do this, it is

highly likely that the integration would fail in any case.

If you are importing files from elsewhere, use “aenf .”

and all of the files in the directory tree below dot (the

current directory) will be added to the change (make sure

there are no object files when you do this).

aecp
Prepares a file in the project for editing within the

change; i.e. copy file into change from baseline.

Remove symlink if necessary, etc.

aecpu
Reverse the effects of the above.

aecpu −unch
Will check all files in your change to see if any

have not been modified, and perform an aecpu on

them. This will stop an unnecessary version num-

ber increment for files that have not changed.

(And also improves test correlations.)

aem Merge out-of-date files. See the −Only-merge op-

tion of the aed(1) command.

aenf[u]
Create/ add a new file [undo].

aemv
Rename (move) files.

aerm[u]
This tells Aegis the file is to be removed from the

baseline when the change is integrated. Or aermu

to undo this before the change is finished.

Page 4 (./lib/en/howto/cheat.so) Peter Miller

Aegis Howto

2.3. Reviewer Commands

Procedure: ael cd → aecd → aedless → view

output, review source files → aerpass

Remember: the point of reviews is to find problems, not

be a rubber stamp. You are expected to fail some re-

views.

aerpass
Review pass.

aerpu
Review pass undo.

aerfail
Review fail.

2.4. Integrator Commands

Procedure: aeib → aeb → aet → aed → aeipass

There is an aeintegratq(1) script distributed with Aegis

to do this procedure automatically.

aeib[u]
Integrate begin [undo].

aeipass
Integrate pass.

aeifail
Integrate fail.

2.5. Project Administrator Commands

This includes all of the commands that don’t fit the cate-

gories above.

aenc[u]
Create a new change [undo]. See aecattr(5) for

description of file format, or use tkaenc(1) instead.

aend and aerd
New dev eloper; remove dev eloper.

aenrv and aerrv
New reviewer; remover reviewer.

aeni and aeri
New integrator; remove integrator.

aena and aera
New (project) administrator; remove administra-

tor.

aepa [-l]
Edit [list] project attributes (see aepattr(5) for file

format).

aeca [-l]
Edit [list] change attributes (see aecattr(5) for file

format).

tkaeca
Edit change attributes using a GUI. This makes it

much easier to type in the description field.

Peter Miller (./lib/en/howto/main.ms) Page 5

Howto Aegis

3. How to Start Using Aegis

For the first-time user, Aegis can appear to be very

daunting. It has a huge number of configuration alterna-

tives for each project, and it is difficult to know where to

begin.

It is assumed that you already have Aegis installed. If

you do not, see the section of the Reference Manual

called The BUILDING File. This reproduces the

BUILDING file included in the Aegis source distribu-

tion.

3.1. First, Create The Project

You need to create a new project. Follow the instruc-

tions in the How to Create a New Project section, and

then return here.

3.2. Second, Use a Template Project

The very first time you use Aegis, it will be easiest if you

download one of the template projects. This gives you a

project which (almost always) works correctly the first

time “out of the box”.

• The template projects can be found on the Aegis home

page: http://aegis.sourceforge.net/

• If you are a long-time GNU Make user, you probably

want the Make-RCS template, at least to start with.

• Follow the instructions found on the web page and

you will have a working Aegis project, complete with

self tests.

• From this starting point, create changes (the tkaenc

command is good for this, as it gives you a simple

GUI) and try modifying the calculator, or adding more

programs to the project.

• The template projects is intended to be generally use-

ful. Many users have simply retained this format and

inserted their own projects into it. (Use a change to

delete the calculator and its tests.)

3.3. Second, Copy a Template Project

If this isn’t the very first time, you may wish to get more

adventurous, and try copying the relevant bits out of a

working project. Usually, when sites first try this, the

working project will be one of the template projects

from the previous section.

• Create a new project. For this exercise, you probably

want a single user project.

• Create a new change

• Copy the project config file, and and files referenced

by it, such as the new file templates and the build con-

figuration file (Makefile or Howto.cook, depending).

• Copy the sources of the existing project into the devel-

opment directory. If you have sev eral levels of direc-

tories, reproduce this, too.

• Remove files which are not primary sources (e.g. the

generated C sources of you have yacc input files).

• Using the “aenf .” command (yes, that’s a dot, mean-

ing “the current directory”) you can tell Aegis to add

all of the source files in the development directory to

the change set.

• You will probably need to modify your build method

to meet Aegis’ expectations. Rather than do this im-

mediately, change the build_command in the project

config file to read “build_command = "exit
0";” and fix it in the next change set.

• Now, build, develop end, review and integrate, as

found in the User Guide worked example. (Except, of

course, there is only one member of staff.)

• Create a second change, and copy the project configu-

ration file (called aegis.conf by default), and the build

configuration file (probably Makefile or Howto.cook)

into the change.

• This would be a good time to read the Dependency

Maintenance Tool chapter of the Aegis User Guide,

and also Recursive Make Considered Harmful (see the

author’s web site) if you haven’t already.

• Edit the build configuration, try the aeb command; it

will probably fail. Iterate until things build correctly.

• dev elop end, review and integrate as normal. Your

project is now under Aegis.

Page 6 (./lib/en/howto/main.ms) Peter Miller

Aegis Howto

4. How to Recreate Old Versions

It is possible to recreate old versions of your project.

This is done using the delta number assigned to every

completed change.

4.1. aecp

Recreating the sources is usually done to recreate a bug.

To this end, it is also usually done from within an exist-

ing change. The aecp(1) command is used to copy hist-

prical file versions into a change.

The aecp(1) command has some options which are used

to perform the source recreation:

−DELta number

This option tells aecp(1) to extract an historical ver-

sion of the files, rather than the head revision (the

one visable in the baseline). You need to know the

delta number of the change, assigned at integration

time, not the change number.

−BRanch number

If the historical version is on a different branch than

the one the current change is on, use this option.

The branch number is to the left of the "D" in ver-

sion strings.

−DELta-From-Change number

This option tells aecp(1) to extract an historical ver-

sion of the files, rather than the head revision (the

one visable in the baseline). You only need the

change number to use this option.

−DELta-Date "string"

This option tells aecp(1) to extract an historical

version of the files, rather than the head revision

(the one visable in the baseline). You only need

the date the change was integrated to use this op-

tion. It understands many forms of written

(English) dates, but try to avoid ambiguous

month numbering (it can be confused by some

European vs. American numeric formats, use

month names instead).

4.2. Finding Delta Numbers

You can find delta numbers in a number of ways:

• The “ael change-details” command will list change de-

tails. If changes are completed, their delta number will

appear at the top of the listing.

• The “ael project-history” command lists all integration

for a project, including their change numbers and delta

numbers.

• The aeannotate(1) command lists the file source, anno-

tationg each line with the developer, the date and the ver-

sion. To the right of the "D" in the version is the delta

number.

• The #{version} substitution (see aesub(5) for more in-

formation) is covered in the next section.

In addition, you may need to use the −BRanch option, if

the historical version is on a different branch than the

one the current change is on. The branch number is to

the left of the "D" in version strings.

4.3. ${version}

The build_command field in the project config file may

be given the ${version} substitution, which you may use

to embed the version string into your executables. You

could, for example, have this string printed when yoiur

program is given the −version command line option.

For example:

% aegis −version
aegis version 4.15.D012
%

Armed with this version string, you can recreate the

sources for the version being executed. The command

% aecp −change=4.15.D012 .
%

would be issued from inside a suitable change. This

form of the aecp −change option combines the

−BRanch and −DELta options into a single command

line option.

4.4. Out Of Date

Once you have recreated your sources and rebuilt your

project, and presumably fixed the bug you were hunting,

there are a couple more steps.

• The first is to remove unchanged sources. Do this with

the

% aecpu −unchanged
%

command. This removes from your change all files

which were not changed by this change. This cuts down

on the clutter and makes the next step much easier.

• The next step is to merge the files. Because you are

working with historical versions of the files, Aegis will

think they are out-of-date and want you to merge them.

Do this is the usual way (using the aem(1) command).

Remember that Aegis will stash a backup copy with a

“,B” suffix before merging.

You may find the following command

% ael cf | grep ’(’
%

useful for finding out-of-date files.

• Once Aegis thinks all the files are up-to-date you then

need to rebuild and retest before completing develop-

ment.

Peter Miller (./lib/en/howto/main.ms) Page 7

Howto Aegis

5. How to Create a New Project

Before you can do anything else with Aegis, you need a

project to do it to. The advantage of this is that each

project is administered and configured independently.

If this is your first time using Aegis, you probably want a

single-user project. You can change the number of users

later, if you ever want to add more staff to the project.

You need to select the name with some care, as changing

the project name later is tedious. Adding aliases, how-

ev er, is simple.

5.1. Single User Project

A single suer project is one where all of the different

staff roles are filled by the same person, and a number of

interlocks are disabled, as you will see in a moment.

Unfortunately, there is no Tcl/Tk GUI for this, yet,

which makes this documentation bigger then it needs to

be.

Don’t do anything yet! Read through all of the steps

first.

• You may want to read the aenpr(1) man page for more

information.

• The command “aenpr name −version −” will create

the project with no branches. This will automatically

make you (that is, the executing user) the project ad-

ministrator and the project owner. The umask is re-

membered, too.

• The root of the project directory will be in your home

directory, named after the project name. If you want

something else, use the aenpr −directory option.

• The default group at the time of execution determines

the file group of the project. Make sure the account

created for the project has the correct group. (Even if

you don’t understand this, your system administrator

should.)

• The umask at the time of execution determines the

group access to the project. Even if you usually work

with a restrictive umask, set it to the right one for the

project before running this aenpr command.

• For additional security, it is often very useful to create

a UNIX user for each project. You may need to con-

sult your system administrator for assistance with this.

It is usual to name the user and the project the same

thing, to avoid confusion. Log in as this user to exe-

cute the initial project creation commands; once com-

pleted no one will ever login to this account again.

• Add the staff to the project: the “aena your-nor-
mal-login” command adds your normal account as

a project administrator. You need this if you are using

a special project account, so that your normal self can

administer the project.

• At this point, log out of the special project account.

Ask the system administrator to permanently disable

it.

• Add the rest of the staff: the “aend your-login”

command makes you a developer, the “aenrv your-
login” command makes you a reviewer and the

“aeni your-login” command makes you an inte-

grator.

• You need to edit the project attributes next. The “aepa

−edit” command does this. You will be placed into a

text editor, and will see something similar to this:

description = "The \"example\" project";
developer_may_review = false;
developer_may_integrate = false;
reviewer_may_integrate = false;
developers_may_create_changes = false;
umask = 022;

Ignore any extra stuff, you should not change it at the

moment. To get a single user project, edit the field to

read

developer_may_review = true;
developer_may_integrate = true;
reviewer_may_integrate = true;
developers_may_create_changes = true;

Be extra careful to preserve the semicolons! You may

also want to change the description at this time, too.

Don’t forget the closing double-quote and semicolon.

• Create the first branch now. They inherit all staff and

attributes at creation time, which is why we worked on

the trunk project first. The command “aenbr name 1”

followed by followed by “aenbr name.1 0” will give

you a branch called name.1.0 for use wherever Aegis

wants a project name. (See the branching chapter of

the User Guide for more information.)

5.2. Two User Project

Everything is done as above, except you want to project

attributes to look like this:

developer_may_review = false;
developer_may_integrate = true;
reviewer_may_integrate = true;
developers_may_create_changes = true;

This says that developers can’t review their own work.

You will need to add the other person to the developer,

reviewer and integrator roles, too.

Converting a single user project to a two person project

is simply editing the project attributes to look like this

later. Remember: each branch inherited its attributes

when it was created − you need to edit the ancestor

branches’ project attributes too.

Page 8 (./lib/en/howto/new_project.so) Peter Miller

Aegis Howto

5.3. Multi User Project

Everything is done as above, except you want to project

attributes to look like this:

developer_may_review = false;
developer_may_integrate = false;
reviewer_may_integrate = false;
developers_may_create_changes = true;

This says that developers can’t review their own work,

and reviewers can’t integrate their own reviews. This en-

sures the maximum number of eyes validate each

change.

You will need to add the other staff to the appropriate de-

veloper, reviewer and integrator roles. Staff need to al-

ways be permitted all roles: it is common for junior staff,

for example, not to be authorized as reviewers.

Converting a single user project to a multi-person project

is simply editing the project attributes to look like this

later. Remember: each branch inherited its attributes

when it was created − you need to edit the ancestor

branches’ project attributes too.

5.4. Warning

The /usr/local/com/aegis/state file contains pointers to

"system" projects. Pointers. Users may add their own

project pointers (to their own projects) by putting a

search path into the AEGIS_PATH environment variable.

The system part is always automatically appended by

Aegis. The default, already set by the /usr/local/lib/-

aegis/cshrc file, is $HOME/lib/aegis. Do not create this

directory, Aegis is finicky and wants to do this itself.

Where projects reside is completely flexible, be

they system projects or user projects. They are not kept

under the /usr/local/com/aegis directory, this directory

only contains pointers.

5.4.1. Creating Projects

When you create a new project, the first element of the

AEGIS_PATH is used as the place to remember the

project pointer. This means the project will not show up

in the global project list if you have set AEGIS_PATH to

include private projects.

There are two ways to make sure that you are creating a

global project. Either “unset AEGIS_PATH” immedi-

ately before using the “aenpr” command, or use the

“−library /usr/local/com/aegis” option of the aenpr

command.

5.4.2. Web Visibility

If you have a Web server, you may like to install the

Aegis web interface. You do this by copying the aeget

program from /usr/local/bin/aeget into your web server’s

cgi-bin directory. There is a aeget.instal helper script, if

you don’t know where your web server’s cgi-bin direc-

tory is.

You may prefer to use a symbolic link, as this will be

more stable across Aegis upgrades. However, this re-

quires a corresponding follow-symlinks setting in your

web server’s configuration file. (Use the aeget.instal −s

option.)

If you have a Web server, and aeget was installed, you

can use a wrapper script to set the AEGIS_PATH envi-

ronment variable, if you want it to be able to see more

projects than just the global projects.

5.5. Changing The Project Owner

Typically, when folks try Aegis for the first time, they

don’t worry about having a separate user for their

projects. However, once things are ticking along, it is

less and less attractive to toss it all and start again

cleanly. So, now you need to change the project owner

from the user who started the Aegis evaluation to the

unique project user account.

1. You need to be root to perform this procedure.

2. Create the user account. It doesn’t need to work to

login, so the password can be disabled. You proba-

bly want to arrange to have this user’s email for-

warded somewhere sensible (maybe see the Distrib-

uted Development chapter of the User Guide).

3. The owner of the project is taken from the owner of

the project directory tree, so this is what needs to be

changed. Go to the root of the project tree − the di-

rectory which appears in the “ael projects” listing.

This isn’t the trunk baseline, but the directory above

it (you will see info, history and baseline sub-direc-

tories).

4. Use the command

chown −R username .

to change the ownership of this directory, and all

files and sub-directories below it. Insert the user-

name of the account you created in step 2. (You

need the dot on the end of the command, its not mere

punctuation.)

There is no need to change the owner of any active

changes, or any other change attributes.

Peter Miller (./lib/en/howto/main.ms) Page 9

Howto Aegis

6. How to Move a Project

By "move a project", you may wish to change the

project’s name but leave the project files in the same lo-

cation, or you may wish to change a projects directory

location and leave it with the same name. This section

covers both.

There are two ways to move a project. One is from

within Aegis, and one is from outside Aegis. Each sec-

tion below covers both methods.

6.1. Relocating a Project

This section deals with moving a project’s files from one

file system location to another.

6.1.1. From within Aegis

This works best when you are moving a project from one

machine to another. It is a very good idea if there are no

active changes on any branch.

Step 1: You need to know where in the file system the

project currently resides. Take a look in the projects list

(ael p) and see the directory reported for the trunk of the

project. Ignore any active branches.

Step 2: Usually, when you remove a project, Aegis

deleted all of the project files. However the aermpr

−keep option tells Aegis to remove the project name, but

keep all of the project files.

Step 3: Move the files to their new location, you need all

of the files below the directory tree you found in step 1.

This may be a simple file move, or may involve copying

the files to tape, and then unpacking on a new machine.

Remember to make sure the file ownerships are set the

way you want (usually, this means "preserved exactly").

Step 4: Tell Aegis where the project is. To do this, use

the −dir and −keep options of the aenpr(1) command.

6.1.2. From outside Aegis

This works best of the project is staying on the same ma-

chine, or the same NFS network.

Step 1: You need to know where in the file system the

project currently resides. Take a look in the projects list

(ael p) and see the directory reported for the trunk of the

project. Ignore any active branches.

Step 2: Move the files to the new location.

Step 3: Edit the /usr/local/com/state file and edit the path

appropriately to tell Aegis where you moved the files to.

You will need to be root for this step.

6.2. Renaming a Project

This section deals with changing a project’s name with-

out moving is files.

6.2.1. From within Aegis

Step 1: You need to know where in the file system the

project currently resides. Take a look in the projects list

(ael p) and see the directory reported for the trunk of the

project. Ignore any active branches.

Step 2: Usually, when you remove a project, Aegis

deletes all of the project files. However the aermpr

−keep option tells Aegis to remove the project name, but

keep all of the project files. (The aenbru −keep com-

mand is the equivalent for branches.)

Step 3: Tell Aegis where the project is, using the new

name. To do this, use the −dir and −keep options of the

aenpr(1) command.

6.2.2. From outside Aegis

Step 1: Edit the /usr/local/com/state file and edit the

name appropriately to tell Aegis the new name of the

project. You will need to be root for this step.

6.2.3. Project Aliases

You may need some transition time for your developers.

Either before or after you rename the project, you may

want to consider adding a project alias (see aenpa(1) for

more information) so that the project has "both" names

for a while.

Page 10 (./lib/en/howto/main.ms) Peter Miller

Aegis Howto

.

Peter Miller (./lib/en/howto/main.ms) Page 11

Howto Aegis

7. Working in Teams

Aegis supports teamwork in two basic ways: local devel-

opment and distributed development. Local develop-

ment breaks down into a single machine, and networked

machines on a common LAN. By building the descrip-

tion a little at a time, this section will show how each of

these modes of development are related in the model

used by Aegis.

7.1. Local

7.1.1. Single User, Single Machine

The simplest case to understand is the single user. In

such an environment, there is a project and the user

makes changes to this project in the usual way described

in the User Guide and earlier sections of this How-To.

Even in this environment, it is often the case that a single

user will be working on more than one thing at once.

You could have a large new feature being added, and a

series of bug fixes happening in parallel during the

course of this development. Or some-one may interrupt

you with a more important feature they need to be added.

Aegis allows you to simply and rapidly create as many

or as few independent changes (and development direc-

tories) as required.

By using independent work areas, things which are not

yet completed cannot be confused with immediate bug

fixes. There is no risk of untested code "contaminating"

a bug fix, as would be the case in one large work area.

7.1.2. Multi User, Single Machine

Having multiple developers working on the same project

is very little different than having one developer. There

are simple many changes all being worked on in parallel.

Each has its own independent work area. Each is inde-

pendently validated before it may be integrated.

One significant difference with multiple developers is

that you now hav e enough people to do real code re-

views. This can make a huge difference to code quality.

7.1.3. Multi User, Multi Machine

Aegis assumes that when working on a LAN, you will

use a networked file system, of some sort. NFS is ade-

quate for this task, and commonly available. By using

NFS, there is very little difference between the single-

machine case and the multi-machine case.

There are some system administration constraints im-

posed by this, however: it is assumed that each machine

is apparently "the same", in terms of environment.

7.1.3.1. General Requirements

You need some sort of network file system (e.g. NFS,

AFS, DFS), but it needs working locks (i.e. not CODA at

present). I’ll assume the ubiquitous NFS for now.

• You need exactly the same /etc/passwd and /etc/group

file on every machine. This gives a uniform environ-

ment, with uniform security. (It also gets the UIDs

right, which NFS needs.) Keeping /etc/passwd and

/etc/group in sync across more than about 3 machines

can be time consuming and error prone if done manu-

ally − so don’t. Use NIS or similar − do sys admin

once, automatically takes effect everywhere.

• All of the machines see the same file systems with the

same path names as all the others. (Actually, you only

need worry about the ones Aegis is interested in.)

Again, you can try to keep all those /etc/fstab files in

sync manually, but you are better off using NIS (or

NIS+) and the automounter or amd.

• All of the machines need their clocks synchronized.

Otherwise tools which use time stamps (obviously

make(1), but also a few others) will get confused.

NTP or XNTP make this simple and automatic. In a

pinch, you can use rdate(1) from cron every 15 min-

utes.

• Many sites are worried about the security of NFS.

Usually, you need to take the root password away

from workstation users; once the environment is uni-

form across all of them, the need for it usually disap-

pears. It also means they can’t abuse NFS, and they

can’t run packet sniffers, either. By using netgroups

(I’m not talking about the /etc/groups file) you can

further restrict who NFS will talk to. By using NIS+

and NFSv3 you can quash the last couple of security

issues, but unless you have military contracts, it’s

rarely worth it.

Fortunately, NFS and NIS readily available, both for pro-

prietary systems and open source systems. Large sites

use these techniques successfully and securely − and

they don’t have O(nˆ2) or even O(n) sys admin issues,

they get most sys admin tasks down to O(1).

But, but, but! Many sites are very concerned about be-

ing able to work when the server(s) are down. I agree,

however I suggest sweet talking your sys admin, not

bashing NFS or NIS or Aegis. It is possible to get very

high availability from modern systems (and even ancient

PCs, using Linux or BSD).

The fact is, working in a team requires interaction. Lots

of interaction. It is an illusion that you can work inde-

pendently indefinitely. In the ultimate siege mentality,

you need a full and complete private copy of everything

in order to pull this off; but expect the other team mem-

ber to carefully inspect everything you produce this way.

Page 12 (./lib/en/howto/team_work.so) Peter Miller

Aegis Howto

7.1.3.2. Aegis-specific Requirements

There are a couple of things required, once you have the

above up and running.

• All of the Aegis distribution can be installed locally

for performance, if that’s what you need. (Except, see

the next item.) Or, you can install it all on an NFS

mounted disk, which guarantees everyone is always

running exactly the same software revision which can

sometimes be important (shortens upgrade times, too.)

• Except the ${prefix}/com/aegis directory, which must

be the one NFS disk mounted by every single machine

identically, and must be read write. I.e. unique to the

whole network (well, all machines using Aegis). This

is where the pointer to the projects are kept, and this is

where the database locks are kept. If this directory

isn’t common to every machine, the Aegis database

will quickly become corrupted.

• The project directory tree must be on an NFS disk

which all machines see, and must be the same ab-

solute path on all machines. This is so that the ab-

solute paths in ${prefix}/com/aegis/state mean some-

thing.

• The development directories need to be on NFS disks

ev ery machine can see. Usually, this means a com-

mon home directory disk, or a common development

directory disk. This can still be a disk local to the

workstation, but they must all be exported, and all

must appear in the automount maps. This is because

Aegis assumes that every workstation has a uniform

view of the entire system (so reviews can review your

development directory, and integrators can pick up the

new files from your development directory).

Large software shops have used these techniques without

difficulty.

7.1.4. Known Problems

There is a known problem with the HP/UX NFS clients.

If you see persistent "no locks available" error messages

when /usr/local/lib is NFS mounted, try making the

/usr/local/lib/lockfile file world writable.

chmod 666 /usr/local/lib/lockfile

There is the possibility of a denial of service attack in

this mode (which is why the default is 0600) but since

you are presently denied service anyway, it’s academic.

7.2. Distributed

The distributed functionality of Aegis is designed to be

able to operate through corporate firewalls. Corporate

firewall administrators, however, take a very dim view of

adding holes to the for proprietary protocols. Aegis, as a

result, requires none. Instead it uses existing protocols

such as e-mail, FTP and HTTP. It will even work with

"sneaker net" (hand carried media).

The other aspect of Aegis, which you have probably no-

ticed already, is that it is very keen on security. Security

of the "availability, integrity and confidentiality" kind.

Incoming change sets are subject to the same scrutiny as

a change set produced locally. It is dropped into a work

area, built and tested, before being presented for review.

Just like any local change set would be.

7.2.1. Multiple Single-User Sites

In the case of an Open Source project maintainer, this is

essential, because incoming contributions are of varying

quality, or may interact in unfortunate ways with other

received change sets. This careful integration checking

is essential. Imaging the chaos which could ensure if

change sets were unconditionally dropped into the base-

line. (Deliberate malice or sabotage, of course, also be-

ing a grim possibility.)

The careful reader will by now be squirming. "How",

they wonder, "can the maintainer examine every change

ev ery developer makes. Surely it doesn’t scale?"

Indeed, it would not. Aegis provides a mechanism for

aggregating changes into "super changes". These larger

changes can then be shipped around. (See the Branching

chapter in the User Guide for more information.)

In the reverse direction, from the maintainer out to the

developer, dev elopers in an Open Source project proba-

bly aren’t going to want to see each and every change set

made to the project. Again, they can use an aggregation

(e.g. grab the latest snapshot when each release is an-

nounced) to re-sync in larger chunks, less often. The

chances of an intersection are fairly low (otherwise

someone is duplicating effort) so the merge is usually

quite simple.

7.2.2. Multiple Multi-User Sites

Most distributed large-scale corporate operations are ac-

tually similar to Open Source projects, though they usu-

ally have more staff. There is usually a "senior" site, and

the other sites make their contributions, which are scruti-

nized carefully before being promoted to full acceptance.

Again, aggregations become essential to the system inte-

gration phase of a product. There may even be a hierar-

chy of concentrators along the way.

Junior corporate sites can sync periodically with the se-

nior site, too, rather than double handle (or worse) every

change set.

Peter Miller (./lib/en/howto/team_work.so) Page 13

Howto Aegis

7.2.3. Telecommuting

One of the most desired cases is that of telecommuting.

How do remote worker, who may never make it into the

office, develop projects using Aegis?

There are many way to do this, but the simplest is to

have a central cite ("the office") with satellite developers.

7.2.3.1. Office to Developer

The office makes available a web interface to Aegis.

From this, it is possible to download individual changes,

branch updates, or whole projects. All of this is already

present in the Aegis distribution.

However, many corporate sites are not going to want to

make all of their intimate development details to com-

prehensively available on the web. For such sites, I

would suggest either a direct "behind the firewall" dial-

in, or some virtual private networking software (which

means users can use a local ISP, and still be treated "as

if" they were behind the firewall).

If a VPN won’t fly (due to company security policies),

then selected encrypted updates could be posted "out-

side", or perhaps an procmail "change set service" could

be arranged.

7.2.3.2. Developer to Office

It is unlikely (though possible) that you would have a

web server on the developer’s machine − usually you

aren’t connected, to the office pulling changes sets back

is probably not viable.

The simplest mechanism is for the satellite developer to

configure their Aegis project so that the trunk tracks the

office version. Once a week (or more often if you get

notified something significant has happened) pull down

the latest version of "the office" as a change set and ap-

ply it. This way, the trunk tracks the official version.

The developer works in a sub-branch, with aeipass con-

figured to e-mail branch integrations (but not individual

change sets) back to the office. In this way, a work pack-

age can be encapsulated in a branch, and sent when fin-

ished. You also have the ability to manually send the

branch at any earlier state, and it still encapsulates the set

of changes you have made to date.

Page 14 (./lib/en/howto/main.ms) Peter Miller

Aegis Howto

.

Peter Miller (./lib/en/howto/main.ms) Page 15

Howto Aegis

8. How to use Aegis with Python

This section describes how to use Aegis to supervise the

development of Python programs. Some of the remarks

in this section may also be helpful to people who use

Aegis to supervise development in other non-compiled

languages.

This section is contributed courtesy of Tangible Business

Software, www.tbs.co.za. Python-specific questions

relating to this section may be sent to Pieter Nagel at

<pnagel@tbs.co.za>.

8.1. Handling Aegis search paths

8.1.1. The Aegis model vs. the Python model

Aegis’ view of a project is that it consists of a hierarchy

of project baselines. Each baseline consists of only

those files that were modified as part of that (sub)project,

plus all files that were built by the DMT (see the section

of the User Guide called The Dependency Maintenance

Tool). Aegis expects the DMT to be able to collect the

entire project into one piece by searching up this base-

line search path for all needed files.

This works fine when using statically compiled lan-

guages such as C. The build process "projects" source

files from various Aegis baselines onto one or more exe-

cutables. When these are run they do not need to search

through the Aegis search path for parts of themselves;

they are already complete.

Python programs, however, are never compiled and

linked into a single executable. One could say that a

Python program is re-linked each time it is run. This

means that the Python program will need to be able to

find its components at run-time. More importantly, it

will need to avoid importing the old versions of files

from the baseline when newer versions are present in the

development or integration directories.

8.1.2. The solution

The simplest (and only recommended) way to marry

Aegis and Python is to configure Aegis to keep all of the

project’s files visible in a the development and integra-

tion directories, at all times. That way Aegis’ search

path becomes irrelevant to Python.

Use Aegis version 3.23 or later, and set the following in

the project config file:

create_symlinks_before_build
= true;

remove_symlinks_after_integration_build
= false;

The second directive is not available in earlier versions

of Aegis.

If you keep your Python files in a subdirectory of your

project, such as src/python, you will need that directory’s

relative in your PYTHONPATH whenever Aegis executes

your code for testing, i.e. by setting

test_command="\
PYTHONPATH=$$PYTHONPATH:src/python \
python ...";

in your project configuration file (example split across

multiple lines for formatting only).

It may seem strange to you that we are not substituting

the Aegis Search_Path variable into PYTHONPATH at

all − it does at first seem to be the solution that is called

for. The reason why we don’t is very simple: it does not

work. It is worth stressing the following rule:

Never inject any absolute path of any Aegis baseline

into the Python search path.

8.1.3. Why setting PYTHONPATH to the Aegis

search path will not work

The reason why PYTHONPATH does not work as Aegis

expects is due to the way Python searches for packages.

For a full explanation of what packages are, you can see

Section 6.4 of the Python Tutorial, but the crucial point

is that a Python package consists of a directory with an

__init__.py file in which the other files in that directory

which should be treated as part of that package are

listed.

When Python imports anything from a package, Python

first searches for the __init__.py file and remembers the

absolute path of the directory where it found it. It will

thereafter search for all other parts of the package within

the same directory. Without the create_symlinks_be-

fore_build and remove_symlinks_after_integration_build

settings enabled, all the needed files are not guaranteed

to be present in one directory at all times, however; they

will most likely be spread out over the entire Aegis

search path.

The result is that if you were to try and use the approach

of setting the PYTHONPATH to the Aegis search path,

package import will mysteriously fail under (at least)

two conditions:

• Whenever you modify a file in a package without

modifying the accompanying __init__.py, Python will

find the __init__.py file in the baseline and import the

old files from there.

• Whenever you modify the __init__.py and leave some

other file in the package unmodified, Aegis will find

the __init__.py in the development/integration direc-

tory but fail to find the unmodified files there.

Page 16 (./lib/en/howto/python.so) Peter Miller

Aegis Howto

8.2. The build step

Python programs do not need to be built, compiled, or

linked before they can be run, but Aegis requires a build

step as part of the development cycle.

One perfectly valid option is to explicitly declare the

build step to be a no-op, by setting

build_command = "true";

in the project configuration file. true(1) is a Unix com-

mand which is guaranteed to always succeed.

In practice, however, there often are housekeeping

chores that can be done as part of the build process, so

you can just as well go ahead and create a Makefile,

Cook recipe, or script that performs these tasks and

make that your build step.

Here are some examples of tasks that can be performed

during the build step:

• Setting the executable flag on your main scripts.

Aegis does not store file modes, but it is often conve-

nient to have one or more of the Python source files in

your project be executable, so that one does not need

to invoke Python explicitly to run them.

• Delete unwanted Python object files (.pyc and .pyo

files). These could arise when you aerm and delete a

Python script, but forget to delete the accompanying

Python object file(s). Other files will then mysteri-

ously succeed in importing the removed scripts, where

you would expect them to fail. Your build process

could use aelcf(1) and aelpf(1) to get a list of ’al-

lowed’ scripts, and remove all Python object files

which do not correspond to any of these.

• Auto generate your packages __init__.py files.

Python wants you to declare your intent to have a di-

rectory treated as a package by creating the

__init__.py file (otherwise a stray directory with a

common name like ’string’, ’test’, ’common’ or ’foo’

could shadow like-named packages later on in the

search path). But since Aegis is, by definition, an au-

thoritative source on what is and what is not part of

your program it can just as well declare your intent for

you.

8.3. Testing

Testing under Aegis using Python is no different from

any other language, only much more fun. Python’s run-

time type checking makes it much easier to develop soft-

ware from loosely-coupled components. Such compo-

nents are much more suited to unit testing than strongly-

coupled components are.

If the testing script which Aegis invokes is part of your

project, there is one important PYTHONPATH-related

caveat: when Aegis runs the tests, it specifies them with

an absolute path. When Python runs any scripts with an

absolute path, it prepends that path to its search path, and

the danger is that the baseline directory (with the old,

unchanged versions of files) is prepended to the search

path when doing regression testing.

The solution is to use code like this to remove the test’s

absolute path from the Python path:

selfdir = os.path.abspath(sys.argv[0])
if selfdir in sys.path:

sys.path.remove(selfdir)

Instead of copying these lines into each new test file, you

may want to centralize that code in a test harness which

imports and runs the tests on Aegis’ behalf. This harness

can also serve as a central place where you can translate

test success or failure into the exit statuses Aegis ex-

pects.

The test harness must take care to import the file to be

tested without needing to add the absolute path of the file

to sys.path. Use imp.find_module and imp.find_module.

I can strongly recommend PyUnit, the Python Unit Test-

ing Framework by Steve Purcell, available from

http://pyunit.sourceforge.net. It is based

on Kent Beck and Erich Gamma’s JUnit framework for

Java, and is becoming the de-facto standard testing

framework for Python.

One bit of advice when using PyUnit: like Aegis, PyUnit

also distinguishes between test failures as opposed to test

errors, but I find it best to report PyUnit test errors as

Aegis test failures. This is to ensure that baseline tests

fail as Aegis expects them to. PyUnit will consider a test

which raises anything other than a AssertionError to be

an ’error’, but in practice baseline test failures are often

AttributeError exceptions which arise when the test in-

vokes methods not present in the old code. This is a le-

gitimate way to verify, as Aegis wants us to, that the test

does indeed invoke and test functionality which is not

present the old code.

8.4. Running your programs

Of course you will at some stage want to run the pro-

gram(s) you are developing.

The simplest approach is to have your program’s main

script be located at the top of your Python source tree

(src/python) in our example. Whenever you run that

script, Python will automatically add the directory it was

found in to the Python path, and will find all your other

files from there.

You can safely let your shell’s PA TH environment vari-

able point to that script’s location, since the shell PA TH

and the PYTHONPATH do not mutually interfere.

Just avoid the temptation to set the absolute path of that

script into your PYTHONPATH, or otherwise your

Peter Miller (./lib/en/howto/python.so) Page 17

Howto Aegis

development code and baseline code will interfere with

each other. This is not an Aegis-specific problem,

though, since there would be potential confusion on any

system, in any language, where two versions of one pro-

gram are simultaneously visible from the same search

path.

Page 18 (./lib/en/howto/main.ms) Peter Miller

Aegis Howto

.

Peter Miller (./lib/en/howto/main.ms) Page 19

Howto Aegis

9. Howto End A Branch

“OK, I give up. I do not understand the ending of

branches.”

Usually, you end development of a branch the same way

you end development of a simple change. In this exam-

ple, branch example.1.42 will be ended:

% aede −p example 1 −c 42
aegis: project "example.1": change 42:
file "fubar" in the baseline has changed
since the last ’aegis −DIFFerence’ com-
mand, you need to do a merge
%

Oops. Something went wrong. Don’t panic!

I’m going to assume, for the purposes of explanation,

that there have been changes in one of the ancestor

branches, and thus require a merge, just like file fubar,

above.

You need to bring file fubar up-to-date. How? You do it

in a change set, like everything else.

At his point you need to do 5 things: (1) create a new

change on example.1.42, (2) copy fubar into it, (3)

merge fubar with branch "example.1" (4) end develop-

ment of the change and integrate it, and (5) now you can

end example.1.42

The −GrandParent option is a special case of the

−BRanch option. You are actually doing a cross-branch

merge, just up-and-down rather than sideways.

% aem −gp fubar

%

And manually fix any conflicts... naturally.

At this point, have a look at the file listing, it will show

you something you have nev er seen before − it will show

you what it is going to set the branch’s edit_number_ori-

gin to for each file, at aeipass.

% ael cf
Type Action Edit File Name
−−−−−− −−−−−− −−−−−−− −−−−−−−−−−−
source modify 1.3 aerect/rect.c

{cross 1.2}

Now finish the change as usual... aeb, aed, aede, aer-

pass, aeib, ..., aeipass nothing special here.

One small tip: merge file files one at a time. It makes

keeping track of where you are up to much easier.

Now you can end development of the branch, because all

of the files are up-to-date.

In some cases, Aegis has detected a logical conflict

where you, the human, know there is none. Remember

that the aem command saves the old version of the file

with a ,B suffix (‘B’ for backup). If you have a file like

this, just use

% mv fubar,B fubar

%

to discard everything from the ancestor branch, and use

the current branch.

Page 20 (./lib/en/howto/main.ms) Peter Miller

Aegis Howto

.

Peter Miller (./lib/en/howto/main.ms) Page 21

Howto Aegis

10. How to Become an Aegis Developer

This section describes how to become an Aegis devel-

oper, and gives some procedures, some ideas of areas

which need work, and some general guidelines.

Please note: if these instructions have a problem, let

someone know! If you are having a problem, so is the

next guy. Please send all problem reports to Peter Miller

<pmiller@opensource.org.au>

10.1. Required Software

There are a number of pieces of software you will need

to work on Aegis.

• It will probably come as no surprise that Aegis is de-

veloped using Aegis (never trust a skinny chef) so the

first thing you need is to install Aegis and become fa-

miliar with using it. You will need Aegis 4.25 or later.

• You will need a C++ compiler. If your compiler is in-

stalled in an uncommon directory or has an uncom-

mon name, you can set the appropriate attribute by

editing the aegis.conf.d/site.conf file.

• You will need to install Cook, in order to build things.

Version 2.8 or later, preferably you should track the

latest release.

http://miller.emu.id.au/pmiller/cook/

• GNU Autoconf 2.53 or later.

http://ftp.gnu.org/pub/gnu/autoconf/

If your tools are installed in an uncommon directory

or have an uncommon name, you can set the appropri-

ate attribute by editing the aegis.conf.d/site.conf file.

• GNU Automake.

http://ftp.gnu.org/pub/gnu/automake/

• You will need to install FHist, for the history tool.

http://fhist.sourceforge.net/

• You will need to install tardy, for manipulating tar-

balls.

http://miller.emu.id.au/pmiller/software/tardy/

• You will need to install ptx(1), for the permuted in-

dexes in the documentation. This is now part of GNU

coreutils.

http://ftp.gnu.org/pub/gnu/coreutils/

• You need psutils for the psselect utility, to manipulate

the documentation files, mostly to put the tables of

contents at the start, rather than at the end as GNU

Groff generates them.

http://www.dcs.ed.ac.uk/home/ajcd/psutils/

• You will need the developer libraries for the rx library

(if you installed from the tarball, you have these, but if

you installed from RPM, you need the −devel package

as well).

http://ftp.gnu.org/pub/gnu/rx/

• You will need the developer libraries for the zlib li-

brary (if you installed from the tarball, you have these,

but if you installed from RPM, you need the −devel

package as well).

http://www.gzip.org/zlib/

• You will need the developer libraries for the libcurl li-

brary (if you installed from the tarball, you have these,

but if you installed from RPM, you need the −devel

package as well).

http://curl.haxx.se/

• You need UUID generation capability. This require-

ment may be satisfied in several different ways de-

pending of your development platform.

First, on GNU/Linux you could skip this requirement

provided that your kernel has support for /proc filesys-

tem. Please note: in order to work /proc must be

mounted and /proc/sys/kernel/random/uuid must be

present.

Second, you could install the developer libraries for

the e2fsprogs package (if you installed from the tar-

ball, you have these, but if you installed from RPM

you need the −devel package as well).

http://e2fsprogs.sourceforge.net/

Third, you could install the UUID library from OSSP:

http://www.ossp.org/pkg/lib/uuid/

Fourth, if your platform has support for an API com-

pliant with DCE 1.1, Aegis also supports the DCE

API.

• The GNOME libxml2 library (http://xml-
soft.org/) is used to parse XML, you will need

version 1.8.17 or later. You do not have to install the

rest of GNOME as this library is able to be used by it-

self. This package is not optional, you need it to suc-

cessfully build Aegis.

• You need to install Bison, the GNU replacement for

Yacc.

http://ftp.gnu.org/pub/gnu/bison/

• You will need to install Flex, the GNU replacement

for Lex.

http://ftp.gnu.org/pub/gnu/non-gnu/flex/

• You need to GNU Gettext (0.16.1 or later) tools in-

stalled. Even though Glibc 2.0 and later include Get-

text, you need the developer tools as well. (You need

GNU Gettext even on Solaris, because the Solaris

Gettext implementation is less than adequate.)

http://ftp.gnu.org/pub/gnu/gettext/

• You need GNU Ghostscript, for the ps2pdf utility, so

that you can create PDF documents.

http://ftp.gnu.org/pub/gnu/ghostscript/

• You need a uudecode with a −o option (to redirect the

output). It is part of GNU Sharutils.

http://ftp.gnu.org/pub/gnu/sharutils/

Page 22 (./lib/en/howto/developer.so) Peter Miller

Aegis Howto

• You need to install GNU awk.

http://ftp.gnu.org/pub/gnu/gawk/

• You need a ctags(1) command with a −L option (to

read file names from standard input).

http://ctags.sourceforge.net/

• You need RCS installed for the automated tests.

http://ftp.gnu.org/pub/gnu/rcs/

• You need to install sudo(8). See etc/set-uid-
root in the distribution for how to configure the

/etc/sudoers file.

ftp://ftp.sudo.ws/pub/sudo/

• The location box icon is generated using convert from

ImageMagick, but the build can cope if you don’t

have it.

http://www.imagemagick.org/

• The PNG images are optimized by the pngcrush com-

mand.

http://pmt.sourceforge.net/pngcrush/

• It is possible to use the dmalloc library for debugging

memory abuses. Be warned: the dmalloc library can

be instructed to log to a file, circumventing the Aegis

I/O layer, thus it’s possible to create file owned by

root. The dmalloc library should only ever be used as

a debugging tool, and never be used in a production

build of Aegis.

http://dmalloc.com/

On a Debian system, use the apt-get install
libdmalloc-dev command.

You will need to aecp the etc/Howto.cook file to

alter the build to use the dmalloc library.

• Probably more things I’ve forgotten.

• Some parts of the build need Perl

10.2. Create The Aegis Project

The next thing to do is create an Aegis project to hold

the Aegis source. This is done in the usual way. I sug-

gest you create branches which match the current public

release, e.g. it is 4.25 at present.

The best-practice technique of having a separate user ac-

count to mind the sources is recommended. The follow-

ing commands should be run as that user, not your usual

login. This prevents a variety of accidents which can

happen when you are browsing the baseline (master

source).

You could use the following command:

% aenpr aegis.4.25
aegis: project "aegis": created
aegis: project "aegis.4.25": created
%

but experienced Aegis users will know that this means a

laborious setting of project attributes. It is easier to

create the top-level project, set the attributes, and the

create the branches, so that they inherit the attributes on

creation.

% aenpr aegis −version −
aegis: project "aegis": created
% aepa −e −p aegis
edits the project attributes for single user,

or you may find tkaepa easier

% aena −p aegis you

aegis: user "you" is now a administrator
% aend −p aegis you

aegis: user "you" is now a developer
% aenrv −p aegis you

aegis: user "you" is now a reviewer
% aeni −p aegis you

aegis: user "you" is now an integrator
% aenbr -p aegis 4
aegis: project "aegis.4": created
% aenbr -p aegis.4 25
aegis: project "aegis.4.25": created
%

At this point, the rest of the commands in this chapter

may (should!) be executed as “you,” your usual login ac-

count. When you added your normal account as an ad-

ministrator just now, you authorized yourself to perform

the necessary actions.

You will need about 120MB of free space to build and

integrate Aegis changes, or more, depending on the

changes you make and the size of your development di-

rectories.

The .forward file of the “aegis” user needs to be set to

someone appropriate to read mail directed at the project.

You can now set the “aegis” user’s password field to “*”.

This effectively prevents the “aegis” user from logging

in. Aegis is designed to make this unnecessary from

now on.

10.3. The Download

The Aegis project is distributed in the form of an

aedist(1) change set. The file to download is called

http://aegis.sourceforge.net-
/aegis−4.25.ae and can be grabbed using your fa-

vorite web browser, or wget(1).

The downloaded change set is applied using the follow-

ing command

% aedist −receive \
−f aegis−4.25.ae \
−p aegis.4.25

...lots of output...

%

It is a good idea to give the project name on the com-

mand line, or aedist will try to use the project name it

finds in the change set, and it probably wont find it if

you are using different numbering to the chief main-

tainer’s copy.

Peter Miller (./lib/en/howto/developer.so) Page 23

Howto Aegis

The aedist command will, in turn, issue a number of

other commands. These are all normal Aegis commands

you could issue yourself, if you were familiar with

Aegis. It will, however, stop with a moderately alarming

message:

Warning: This change contains files which could

host a Trojan horse attack. You should review it be-

fore building it or testing it or completing develop-

ment. This change remains in the being developed

state.

This message comes because in order to build the

project, you are going to have to execute a number of

commands contained in the project aegis.conf file, and in

the etc/Howto.cook file. For your own protection, aedist

stops at this point. You may want to inspect these two

files before continuing.

I really must get around to signing it with PGP. This

would make the −notrojan option safe, because you

could tell the file is direct from the chief maintainer, and

thus as trustable as you think the chief maintainer hap-

pens to be.

In order to complete development of the change set, you

must first build it...

% ae_p aegis.4.25
% aecd
% aeb
...you will see commands which build the project...

%

Things that can go wrong...

• There are checks to make sure that there is no white

space on the ends of lines. If you use Emacs, you can

add

(add-hook ’write-file-hooks
’delete-trailing-whitespace)

to have this done automagically. The same checks

also verify that the text files are all printable, and that

line lengths are 80 characters or less. Please don’t dis-

able the checks, it makes accepting your patches more

time consuming.

• Each change set has an architecture list associated

with it. Initially you won’t care, but Aegis does if you

see the following error message:

found 1 unlisted architecture, edit the change at-

tributes to remove it or edit the project configura-

tion file to add it

You need to use the aeca −e command (not the tkaeca

command). You will be placed into an editor (usually

vi unless you have used Aegis before, and know how

to configure it differently). You need to leave just

about everything alone, except for the architecture

specification. Change it from

architecture =
[

"unspecified",
];

to something more meaningful on your machine. For

PC users, this is almost always

architecture =
[

"linux−i386",
];

The alternatives may be found in the config in the cur-

rent directory (search for architecture =). If

you can’t see a suitable choice, you may need to add

one; the aepconf(5) man page has more information.

Edit the config file to contain a suitable entry, and then

use the aeca −e command to have the change agree

with it.

• If you don’t hav e Cook installed, the build command

(aeb) will fail.

• If you don’t hav e GNU Bison installed, the build will

fail.

• If you don’t hav e GNU Gettext installed, the error

message run-time binaries will not be built. This isn’t

an error, so you can keep going, but you’ll get the

shorter, cryptic form of the error messages.

• Please note: if these instructions have a problem, let

someone know! If you are having a problem, so is the

next guy. Please send all problem reports to Peter

Miller <pmiller@opensource.org.au>

Once the change builds, you need to difference it (this is

a little redundant for this first command, but you’ll see

how useful it is later).

% aed
...you will see commands which "diff" the project...

%

Things that can go wrong...

• If you don’t hav e the FHist package installed, the dif-

ference (aed) will fail. The fcomp command it is

looking for is a whole-file context difference com-

mand (the GNU diff −c is a bit too terse for hu-

mans).

Now you will need to test the change. This is the basic

test suite for Aegis, it ensures nothing is broken. It takes

a while, go grab a cup of coffee.

% aet
...lots of output...

%

Page 24 (./lib/en/howto/developer.so) Peter Miller

Aegis Howto

The change is now ready to end development.

% aede
aegis: project "aegis.4.25": change 10:

development complete
%

The change set is now ready to be reviewed. In a single-

person project like this one, you can review your own

work. Obviously this is a conflict of interest, and larger

projects are usually configured to have Aegis prevent

this.

% aerpass −p aegis.4.25 −c 10
aegis: project "aegis.4.25": change 10:

review pass
%

The change is now ready to be integrated. Only when

integration is complete are the files actually committed

to the repository.

% aeib −p aegis.4.25 −c 10
% aeb
...you will see commands which build the project...

−rwsr−xr−x 1 root ... arch/bin/aegis
−rwsr−xr−x 1 root ... arch/bin/aeimport
−rwsr−xr−x 1 root ... arch/bin/aelock
Integrator: please do the following:
sudo .../baseline/etc/set-uid-root arch aegis aeimport aelock
if they aren’t root already. See etc/set-uid-root for
instructions for how to set-up your /etc/sudoers file.

%

This message at the end of the build is where Aegis is

made set-uid-root in the repository. You want to do this,

because you are going to symlink out of /usr/local/bin

(or wherever you installed Aegis) right into the baseline.

In this way, you will be executing your bleeding-edge

version of Aegis, exercising it before you send it to any-

one else. Hang on a bit, the sending part comes later.

Don’t know how to set these files set-uid-root? The

above message includes the command to do it:

$ cd blahblah/delta*
$ sudo etc/set-uid-root arch aegis aeimport aelock
$

You will need to substitute the appropriate architecture

name, although it is likely to be “unspicified on a fresh

project.

Things that can go wrong...

• If you don’t hav e ps2pdf or psselect or ptx installed, it

won’t build the documentation (this isn’t an error, just

keep going).

• If you don’t hav e tardy(1) install, it won’t build the

tarball (this isn’t an error, just keep going).

• Please note: if these instructions have a problem, let

someone know! If you are having a problem, so is the

next guy. Please send all problem reports to Peter

Miller <pmiller@opensource.org.au>

If all is OK, continue with the integration...

% aed
...you will see commands which "diff" the project...

% aet && aet −bl
...lots of output...

% cd
% aeipass
...you will see commands committing the files to fhist...

aegis: project "aegis.1.0": change 10:
integrate pass

%

The “cd” command you see is actually important: you

need to be out of the development directory and integra-

tion directory so that they can be cleaned up (deleted)

when the change completes.

10.4. Supporting Several Architectures

Aegis is able to track architectures to make sure that

change sets have been built and tested on all necessary

architectures. You may hav notices that Aegis is calling

your architecture “unspecified”, you can give it a more

descriptive name, too.

The architecture configuration data is described in the

architecture field of the aepconf(1) man page. It is based

on the uname(2) data, see the man page for how. You

will, of course, need a change set to change it.

Once you have a change set, you need to create the

aegis.conf.d/architecture file.

% aenf aegis.conf.d/architecture
% aefa aegis.conf.d/architecture entire-source-hide
% aefa aegis.conf.d/architecture local-source-hide
%

Here are some suggestions for what you may like to set

Peter Miller (./lib/en/howto/developer.so) Page 25

Howto Aegis

for your architecture or architectures.

architecture =
[
{
name = "linux-i386";
pattern = "Linux-*-*-i?86";

},
{
name = "linux-x86_64";
pattern = "Linux-*-*-x86_64";

},
{
name = "freebsd-i386";
pattern = "FreeBSD-*-*-i?86";

},
{
name = "sunos-4.1-sparc";
pattern = "SunOS-4.1*-*-sun4*";

},
{
name = "solaris-2.6-sparc";
pattern = "SunOS-5.6*-*-sun4*";

},
{
name = "solaris-2.6-i386";
pattern = "SunOS-5.6*-*-i86pc";

},
{
name = "solaris-7-sparc";
pattern = "SunOS-5.7*-*-sun4*";

},
{
name = "solaris-7-i386";
pattern = "SunOS-5.7*-*-i86pc";

},
{
name = "ppc-Darwin-7.x";
pattern = "Darwin-7.*-Darwin*";

},
];

Remember to only include the architectures from the

above list that you actually have. Having architectures

in this list that you don’t routinely have access to means

that you will not be able to aede(1) any change sets.

Occasional architectures can be handled, too:

architecture =
[
{
name = "ppc-Darwin-7.x";
pattern = "Darwin-7.*-Darwin*";
mode = optional;

},
];

Again, only do this with architectures you actually have

access to.

If you need to have architecture specific options to

some commands, you can also have project_specific at-

tributes, too. Note that you should first look into having

a $prefix/share/config.site or $pre-
fix/etc/config.site file for ./configure to read.

This is particularly important if you want to include

/usr/local/include, /usr/local/lib, etc, in the various com-

piler flags.

10.5. The Bleeding Edge

As I mentioned above, the next thing to do is create sym-

bolic links out of /usr/local/bin into your Aegis baseline.

The reason for doing this is so that you exercise your

Aegis changes by using Aegis before you send them to

anyone else. (Never trust a skinny chef.)

There is a shell script called ae-symlinks in the baseline

$arch/bin direcdtory. Use it like this:

$ aecd −bl
su
Password:
linux-i486/bin/ae-symlinks aegis.4.25
exit
$

The linux-i486 may need to be replaced with the output

of the aesub −bl ’$arch’ command if you are using

something more interesting than a PC.

10.6. Undiscovered Country

If you got this far, your local Aegis project is ready for

use.

It is strongly suggested that you complete the first

change “as is” and perform your own customizations in

later changes, rather than trying to get the project started

and customize it at the same time.

The rest of this file describes how to perform various

common changes to the example project.

10.7. Sending Changes

First, read the Distributed Development chapter of the

User Guide.

When you have a change set you wish to have the other

Aegis deveopers try, use a simple command such as:

aedist −send −p aegis.4.25 −c number | \
gpg −−clearsign | \
mail aegis-developers@lists.sourceforge.net

or similar. (Or maybe aepatch(1) instead.) A suitable

subject line would be very helpful.

10.8. Guidelines

10.8.1. What You Can Do

Write more documentation. There is a crying need for

documentation of all sorts: better manual pages, more

and better information in the User Guide, more and bet-

ter HOWTOs. If you work out how to do something,

and it isn’t in the documentation, write some

Page 26 (./lib/en/howto/developer.so) Peter Miller

Aegis Howto

documentation and put it in a change set because other

folks have probably missed it too.

Add more ease-of-use functionality. Stuff which makes

the development process more efficient, or makes the in-

formation in the repository more accessible.

Extend the GUI. All of the commands which manipulate

the change while in the being developed state are candi-

dates. Some kind of wrapper that ties it all together

would be good, too. User preferences, project attributes

and creating projects are candidates, too.

Most new project configuration things belong in the

project config file. Only add new project attributes (aepa

−e) for things which (a) are catch 22 to change in a

change set, or (b) allow a security abuse if in a change

set (e.g. the notify commands, particularly aede), or (c)

allow the repository to be damaged. (My thanks to Ralf

Fassel <ralf@akutech.de> 2 Feb 1999 for pointing this

out.)

10.8.2. What You Can’t Do

You can’t change Aegis’ semantics. Developers around

the world, and their managers, rely on Aegis working

just the way it does right now. You can’t change things

that will compromise their ability to get things done.

Particularly, Aegis has a strong security story. Availabil-

ity, integrity and confidentiality, and all that. If you want

it more flexible, that’s good, but you can’t change the de-

faults and you can’t make it irretrievably weaker. (You

can, as a non−default make it weaker, within limits.)

Aegis (the executable, not the whole package) is quite

big enough. Don’t add code to arch/bin/aegis than

can be done with the report generator, or as a separate

program like aesub or aefind. More GUI can be

added using Tk/Tcl − unless you have grander plans and

ev en then it still shouldn’t be added to the set-uid-root

executable.

10.9. Coding Style

Please try to emulate the existing coding style. (Indents

recently changed from 8 to 4, not all of the code has

caugh-up yet.) Lines are to be 80 charcters or less wide,

limited to the 95 printable ASCII characters, with no

trailing white space.

Probably need a GNU Indent profile for code formatting,

too.

10.10. Writing Tests

If you have fixed a bug you should write a test to verify

the correct behaviour of Aegis. Because test file names

are generated automatically starting from your repository

state, it’s possible that aet will create a test with the same

name as one in the P.Miller repository. Because Aegis is

not yet able to detect such situation, if you plan to send

back your work to P.Miller you may want to modify your

aegis.conf adding the following lines:

new_test_filename =
"test/${zpad $hundred 2}/"
"t${zpad $number 4}${left $type 1}−${left ${user login} 4}.sh";

In this way the possibility of a name collision should be

reduced. Invoke aent:

% aent
aegis: appending log to "aegis.log"
aegis: user "walter", group "projadm"
aegis: rm −f etc/cook/change_filesf etc/cook/project_files
aegis: project "aegis.4.16.2": change 11: file "test/01/t0157a−walt.sh" new test
%

Now you can start to implement the test. Remember to

invoke the programs under test as $bin/program.

• In order to improve error messages you should orga-

nize your script as a sequence of activity and use the

activity variable as sketched below:

#
create a new change
#
activity="new change 163"
cat > tmp << ’end’
brief_description = "The first change";
cause = internal_bug;
end
if test $? −ne 0 ; then no_result; fi
$bin/aegis −nc 1 −f tmp −p foo > log 2>&1
if test $? −ne 0 ; then cat log; no_result; fi

If you are reading this document, you probably don’t

need help to understand this code fragment, the only

thing to note is that the number in the string (163) re-

fer to the current line number and is used when print-

ing a failure message. You don’t need to maintain it

by hand as explained in the following step.

• You can use test/activity.sh to automatically

renumber the activity variables of your tests:

$ sh test/activity.sh
test/01/t0159a−walt.sh...
test/01/t0160a−walt.sh...
$

If you have not modified test/activity.sh you

should find it as bl/test/activity.sh or

blbl/test/activity.sh.

10.11. Debugging

Aegis, as any other software, may contain undiscovered

bugs. If you are interested in helping to fix these bugs,

and as a developer you should be interested, the first

thing to do is compiling Aegis in DEBUG mode. In or-

der to do so you must modify common/main.h and

uncomment the DEBUG define. (If you use the aecp

−read-only option, Aegis will remind you to uncopy the

Peter Miller (./lib/en/howto/developer.so) Page 27

Howto Aegis

file again before develop end, ensuring that you don’t ac-

cidentally integrate this.)

In DEBUG mode the −Trace command line option is

available for most Aegis commands. This option is fol-

lowed by the names of the source files you want to trace,

and may be used more than once.

If you need to add tracing capability to a file, you must

first include trace.h, modify the code in order to use

the trace facility (look at common/trace.h) then

build the change with aeb and run the buggy command

with the proper −Trace option.

On Linux >= 2.4 the aegis command, wich is set-uid-

root, is enabled to dump core when needed. If this does

not happen, remember to verify the ulimit(1) settings;

you may need to execute the ulimit −c unlimited com-

mand.

10.12. The To-Do List

• Add an additonal mode to aedist to query an aeget

server for change set UUIDs and download and apply

missing change sets. It needs to be able to be run by

cron(8). Submitted: PMiller, 1-Jun-2004

10.12.1. aecvsserver

• The aecvsserver needs to be extensively tested by

users. Submitted: PMiller, 1-Jun-2004

• Implement more of the CVS client commands which

can be sent to the server, usually by saying "yes,

bwana" and doing nothing. Submitted: PMiller,

1-Jun-2004

• Implement a cvs commit against a project (at the mo-

ment this is not allowed because you have to use a

"module" named after a change set) which will create

a change set apply the changes and do everything to

get to aede. Submitted: PMiller, 1-Jun-2004

• Is it possible to use the same techinique to write an

SVN server? Submitted: PMiller, 1-Jun-2004

• Is it possible to use the same techinique to write an

arch server? Submitted: PMiller, 1-Jun-2004

• Arch has the concept (if not the implementation) of an

SCM-neutral interchange format. Implement it. Sub-

mitted: PMiller, 23-Jan-2004

10.12.2. Geographically Distributed Development

• The aedist −receive command needs to be enhanced

to understand file attributes. Submitted: PMiller,

2-Jun-2004

• The aepatch −receive command needs to be enhanced

to understand file attributes. Submitted: PMiller,

2-Jun-2004

• Enhance the aedist −receive command to understand

incoming files with UUIDs. Submitted: PMiller,

1-Jun-2004

• Enhance the aepatch −receive command to under-

stand incoming files with UUIDs. Submitted: PMiller,

1-Jun-2004

• Add an additonal mode to aedist to query an aeget

server for change set UUIDs and download and apply

missing change sets. It needs to be able to be run by

cron(8). Submitted: PMiller, 1-Jun-2004

• Enhance aedist to preserve change history (both send

and receive will need work). Don’t forget backwards

compatibility. Submitted: Jerry Pendergraft, 2003

• Enhance aedist −receive to leave changes in awaiting

development or being developed if that’s the state they

were in at the origin. Submitted: Jerry Pendergraft,

May-2004

• Enhance aepatch −receive to run tests on changes

which require it. Submitted: PMiller, 1-Jun-2004

• Enhance aepatch to preserve change history (both

send and receive will need work). Incoming patches

with no meta-data obviously can’t do this. Don’t for-

get meta-data backwards compatibility. Submitted:

PMiller, 1-Jun-2004

• Enhance aepatch −receive to leave changes in being

developed if that’s the state they were in at the origin.

Patches with no meta-data stay in being developed.

Submitted: PMiller, 1-Jun-2004

• Enhance aepatch and aedist to automagically sign

(send) and verify (receive) the contents, using the (re-

volting) library from the gpgme project. This stupid

library spawns an gpg(1) instance and talks to it; un-

like a sensible library e.g. the zlib project; why on

earth couldn’t they take the common code from gpg

and make a library of that? Submitted: PMiller,

1-Jun-2004

10.12.3. Documentation

• Add a section to the branching chapter of the User

Guide, describing how a dev eloper may use a branch

to temporarily waive the build command. After a se-

ries of changes on this branch, the build command is

restored, and the branch development ended. This al-

lows regular "non working" commits, without losing

any of the strengths of the Aegis process. Submitted:

7-Mar-2000

• The manual pages need to have an example(s) section

added to make them clearer. This isn’t just for begin-

ners, infrequently used commands need examples

ev en for sophisticated Aegis users. Submitted: Geoff

Soutter <geoff@whitewolf.com.au>, 3 Mar 2000

Page 28 (./lib/en/howto/devel_to_do.so) Peter Miller

Aegis Howto

• Get tkdiff 3-way merge working with Aegis (see

http://www.ede.com/free/tkdiff/ for

code). Submitted: 24-jan-2000

• Add information to the History Tool chapter, describ-

ing how to use CVSup to access the RCS history tree.

Submitted: 28-jan-2000

• the RCS history commands in the aegis user guide all

use the ‘−u’ option for ‘ci’ to check out a copy after

registering/updating a file. However ‘ci −u’ always

does keyword expansion. To avoid this, we have

omitted the −u, so the working file is gone after the

‘ci’. We check it out again using ‘co’, this time with

the ‘−ko’ option to avoid keyword expansion. Note

that the −ko option is always given to the ‘co’ com-

mand, never to ‘ci’ or ‘rcs’. Submitted: Ralf Fassel

<ralf@akutech.de>, 18 Jan 2000

• * diff ; test $? −le 1 → diff ; test $? −ne 1 means that

unchanged files prevent aede!! (Only fly in the oint-

ment is moving files − need to cope with this.) Sub-

mitted: Gus <gus@getsystems.com> 28 Jul 1999

• mention in the diff tool part of the User Guide, that

you can mess with diff_command to exclude with bi-

nary files, or file with CR in them, or lines too long,

etc. Submitted: PMiller, 28-jun-99

• in the branching chapter, hav e a section about using

sub-branches to turn build_command off (or to ignore

exit status), and integrate lots of teensy tiny bug fixes,

and then turn it on again. In the front, reference the

branching chapter in “how to extend the Aegis

process” Can mention extra review steps there, too.

Submitted: choffman@dvcorp.com, 22 Jun 1999

• Document the build_time_adjust_notify_command in

the DMT chapter of the User Guide. Update the ex-

ample projects to use it. Update the config example to

use it. Submitted: PMiller, 4-Apr-99

• Mention binary files in the diff and merge section

(may provide aebinfil command to help choose which

behavior?) Submitted: PMiller, 31-mar-99

• mention “rcs −ko” in the User Guide and put it into

the examples AND also fhist keywords in the User

Guide and put it into the examples. and make sure the

examples all have hist_{put,create} the same. Sub-

ject: Ralf Fassel <ralf@akutech.de>, 9 Mar 1999

• worked example, “5.2.7 says that the cook file con-

tains all of the above commands but my copy doesn’t

have them ...” [for config file and howto.cook file]

BUT integration diffs not in the worked example.

Submitted: Michael McCarty <mmc-

carty@xinetix.com>, 26-Feb-99

• need discussion (Howto, or maybe the User Guide) of

how to use Aegis when you site has a mix of Unix and

Wintel. Submitted: Paolo Supino

<paolo@schema.co.il>, 4 Feb 1999

• add chapter to User Guide, saying how to config web

interface and how to use it. Submitted: Graham

Wheeler <gram@cdsec.com>, 27 Jan 1999

• User Guide: big changes bouncing: how to use a

branch to get smaller reviews and smaller diffs. Sub-

mitted: Ralf Fassel <ralf@akutech.de>, 27 Jan 1999

• note for User Guide: metrics software form

ftp://ftp.qucis.queensu.ca/pub/software-eng/software/-

Cmetrics/

• correct documentation of file locking in UG: correct

the example around the file locking − it gives the

wrong text of the aede error − and probably other

stuff. also, the wrong person comes back from aero-

bics

10.12.4. More Reports

• Add a −REVerse option, so that all of the listings (ael)

come out in the reverse order to that used at present.

Submitted: John Darrington <johnd@ot.com.au>,

20-Jul-2001

• Write an aereport file to produce MS-Project views of

a project, making sure that the states of each change

are linked, use averages to predict any incomplete

states. And maybe another to produce HTML pages

of the same thing. Submitted: 15-Jan-2000

• On the aeget(1) web pages, link the file edit numbers

to pages which will retrieve the historical version.

Submitted: Anoop Kulkarni <anoop@sasi.com>, 22

Dec 1999

• Add a user_change report (just like “ael

user_changes”) which takes a user name, so you can

get a list of changes by user. Make aeget(1) do this,

too. Submitted: Ralf Fassel <ralf@akutech.de>, 9

Dec 1999

• Add a outstanding_changes report (just like “ael out-

standing_changes”) which takes a user name, so you

can get a list of outstanding changes by user. Make

aeget(1) do this, too. Submitted: Ralf Fassel

<ralf@akutech.de>, 9 Dec 1999

• Write a report which says when you have to do to get

a change completed Jerry says he has written most of

this. Submitted: jerry.pendergraft@endocardial.com

3-Nov-99

• ael change_history − write as a report and then in-

clude project history for sub branches. Don’t forget

the web reports, too. Submitted:Jerry Pendergraft

<jerry@endocardial.com>, 30 Aug 1999

• ael outstanding_changes − rewrite as a report and then

include sub branches. Don’t forget the web reports,

Peter Miller (./lib/en/howto/devel_to_do.so) Page 29

Howto Aegis

too. Submitted: Jerry Pendergraft <jerry@endocar-

dial.com>, 30 Aug 1999

• ael project_history − rewrite as a report and then in-

clude parents and sub branches. Don’t forget the web

reports, too. Submitted: Jerry Pendergraft <jerry@en-

docardial.com>, 30 Aug 1999

• aer file_history − include parents and sub branches.

Don’t forget the web reports, too. Submitted: Jerry

Pendergraft <jerry@endocardial.com> 30 Aug 1999

• Some kind of web report which makes “train track”

diagrams of file branching.

• Some kind of web report which makes “train track”

diagrams of project branching.

• multivariate linear regression: needed as a report gen-

erator function: needed for metrics analysis

• more blurb in the statistics web pages, so they are

more self-explaining Submitted: Ralf Fassel

<ralf@akutech.de>, 13-Oct-98

• Add anew report like “ael uc” except that it (option-

ally) takes a user name as well, to list a particular

user’s changes.

• File Activity Report (web) does not translate user

name and give email link. Should also put user name

under change state, as in change lists.

10.12.5. Core Enhancements

• Use the per-file attributes to record the encoding of the

text (e.g. UTF-8) and the line termination. Provide a

way (via the iconv(3) function? via recode(1) com-

mand?) to change the encoding. Submitted: PMiller,

23-Jun-2004

• "I hav e determined that one reason [that aedeu is used

in preference to aerfail] is the reviewer is afraid they

don’t understand the change and once explained they

would not fail it. Now the fact that the description,

comments etc did not do the job to explain the change

is reason enough to fail it notwithstanding... They are

saying if they had an aerfu command they would be

willing to aerf changes. How difficult would that be?"

Not very difficult at all. Provided, of course, that

nothing has been changed in the mean time (and Aegis

has everything it needs to check that). Submitted:

Jerry Pendergraft, 23-Jun-2004

• The project_file_roll_forward function needs to be en-

hanced to understand file UUIDs. Submitted: PMiller,

1-Jun-2004

• Now the sources are all being compiled by a C++

cimpiler, convert the various OO portions of the code

(inout_ty and its derived classes, output_ty, etc) to true

C++. Need a style guide first, so other developers

know how I want it done. See SRecord for examples

until this is done. Submitted: PMiller, 1-Jun-2004

• More doxygen comments in the header files. Submit-

ted: PMiller, 23-Jan-2004

• Add a "development directory style" configuration op-

tion. The current styles are "view path" and two types

of "symlink farm", although this is well concealed by

the code. Need to add a hard link (arch-ish) / copyfile

(cvs-ish) style as well, but only for source files. The

code which currently maintains the symlinks can be

pressed into doing the extra work fairly easily. Sub-

mitted: PMiller, 1-Jun-2004

• It would be nice to have a way to specify a timeout for

aegis tests. If a single test does not finish within this

time, it should be aborted and considered ‘No Result’.

Then aet should continue with the next test (as appro-

priate if −persevere was given). A ‘−timeout’ argu-

ment to ‘aet’ would do the trick, and also a project

config field. The implementation could be interesting,

since signaling the forked aegis child process might

not be enough to stop all processes (process groups?).

Submitted: Ralf Fassel <ralf@akutech.de>,

24-Jan-2001

• Problem with aepa that doesn’t specify the default val-

ues for all the test features in aeca (there are three

types in aeca and only one in aepa). Submitted: Mark

Veltzer <mark2776@yahoo.com>, 16 Aug 2001

• The aedist(1) program should send changes with no

files, or changes in "being developed". Submitted:

Mark Veltzer <mark2776@yahoo.com>, 16 Aug 2001

• Hav e aem merge changes properly if another changed

moved the file in the baseline. You need to do this

across the board, not just in aegis/aed.c Submit-

ted: Ralf Fassel <ralf@akutech.de>, 25 Feb 2000

• Add progress (%) indicators (aeib was specific exam-

ple, but there may be others e.g. symlink farms and

aecp, even aede for big changes) for use by the GUI

interfaces − and maybe the text interface too. Submit-

ted: Ralf Fassel <ralf@akutech.de> 10 Dec 1999

• Extend the create_symlinks_before_build functional-

ity to copy, not just symlink. Because they would edit

the files direct, we then need an implicit aecpcorne de-

tector. You need to look for other boundary condi-

tions this is also going to affect. You need a re-

move_symlinks_after_build analogue, too. Submit-

ted: Darrin Thompson <dthompson@character-

link.net>, 15 Nov 1999

• os.h is a system header on some systems, so os.h has

to move Sumbitted: Christophe Broult

<broult@info.unicaen.fr> 30 Sep 1999

• aedist −rec needs to preserve (a) copyright years, (b)

test exemptions (subject to permissions), and (c)

Page 30 (./lib/en/howto/devel_to_do.so) Peter Miller

Aegis Howto

architecture (if possible). AND CHANGE NUM-

BER? Submitted: Ewolt Wolters <ewolt@pallas-

athena.com>, 27 Jul 1999

• Aedist to add project history to end of description

when sending change set. Submitted: Jerry Pender-

graft <jerry@endocardial.com>, Dec-2000

• can we separate change creation from other adminis-

trator permissions? can we make "ev eryone" able to

create changes? Submitted: Ewolt Wolters

<ewolt@pallas-athena.com>, 28 Jun 1999

• should explicitly mention CPPFLAGS=−I/usr/lo-

cal/include; export CPPFLAGS LD-

FLAGS=−L/usr/local/lib; export LDFLAGS in the

configuring section. Submitted: John Huddleston

<jhudd@cody.itc.nrcs.usda.gov>, 19 Mar 1999

• Using file attributes, add coupling between files to

form file groups; this means when you aecp, you get

the whole set of related files. Submitted: PMiller,

18-Feb-99

• The aed command does not promote aenf→aecp un-

less the ,D file does not exist. This is annoying,

should always do it. (So should some other com-

mands.) Subject: Ralf Fassel <ralf@akutech.de>, 1

Feb 1999

• Add a default_regression_test_exemption project at-

tribute. Submitted: Ralf Fassel <ralf@akutech.de>,

31 Jan 1999,

Jerry Pendergraft <jerry@endocardial.com>, 2 Feb

2001.

• Need a clean_exceptions file in the project config file

(list of strings) so can have local RCS dirs, and do "ci

‘aegis −l cf −ter‘" in the develop_end_command Sub-

mitted: 1-Feb-99

• aenpr −dir −keep: allow directory to already exist if

has right owner and is empty? Submitted: Jerry Pen-

dergraft <jerry@endocardial.com>, 22 Jan 1999

• Add a new post_merge_command so can generate

summary of files needing editing. Subject: Ralf Fas-

sel <ralf@akutech.de>, 21 Dec 1998

• Create a new aepatch command: “aepatch −send” to

create "ordinary" OpenSource source patches, and

“aepatch −receive” to turn patches into an Aegis

change − and not necessarily only patches generated

with aepatch. Yes, intentionally similar to aedist.

• integrate difference should look for missing ,D files

(usually impossible) and re-instate them. Submitted:

PMiller, 22-Sep-98

• tests 7, 20, 70 warn symlink.c: In function ‘main’:

symlink.c:5: warning: return type of ‘main’ is not ‘int’

Submitted: Bruce Stephen Adams <brucea@cybernet-

ics.demon.co.uk>, 10 Sep 1998

• change_set_env needs to set LINES and COLS

• commands which accept −branch and/or −trunk

should also accept −grandparent but not all do. check.

• Add a −no-baseline-lock option to the aeb and aecp

commands. Warn them not to in the manual pages.

• list locks − need to spot the case where *all* of a set

are taken (all 64k) and report sensibly (not 64K lines)

• aemv does not correctly check the to filename. (spe-

cific example = file name length)

• aefind needs a sort option

• aefind needs the rest of the find functionality added

• * Add a −output option to the aent command (others?)

for scripting support.

• aed − when auto upgrade create to modify, clear move

if set.

• aede needs to make sure that the files (and directories)

are readable (and searchable) by reviewers.

• make aemv rename files within a change

• aecp −anticipate

• Make the listing more specific for aecp aecpu aenfu

aentu aerm aermu, etc

• add a file copy notification command to the project

config file

• Add pseudo change do can do many integrations at

once (this pseudo change would be created by aeib

and destroyed by aeipass, aeifail or aeibu).

• Version punctuation: at the moment you gets dots be-

tween the branch numbers. Need more flexible punc-

tuation: especially, want a hyphen first, then dots

(sometimes).

• * aecp −delta bug

“I’ve been making good use of the "−delta" option of

aecp lately.

But there has been a complication in its use. Let’s

say a file

was aerm’ed in delta 100. Let’s further say that we

are at delta

175 and are trying to restore the source code as of

delta 75.

If I do a "aecp − delta 75 file.c" I’m told that file.c is

no

longer part of the project.” Should aecp −del fake

aenf for deleted files in earlier deltas? Submitted:

markm@endo.com

• internationalize −interactive

• Enhance aet to allow reviewers to run tests.

• check library state files on project creation

“I was creating a new release from a large project.

After copying the

Peter Miller (./lib/en/howto/devel_to_do.so) Page 31

Howto Aegis

baseline and creating hundreds of history files the

aenrls failed

because the library dir I specified wasn’t writable by

aegis and no

state file was created. Couldn’t this be checked first?”

Submitted: Lloyd Fischer <lloyd@dvcorp.com>

• Add precedence constraints: a list of prerequisite

changes, which must all be in the “completed” state

before the change may end development. Submitted:

Christian F. Goetze <c-goetze@u-aizu.ac.jp>

• If there is a read error when reading the template

source file during aent, get a stupid error within error

message, and never tells you about the file

• How about "include" support for the config file? That

way one could also cover architecture specific things

by “include ${libdir}/${project}.defs” in the config

file. Submitted: Jerry Pendergraft <jerry.pender-

graft@endocardial.com>, 7 Sep 2001

• Add an aetouch command, to touch all of the (non-

build) source files in the change. Submitted: 2001

• Hav e the “aeclean −list” option say what aeclean

would do, rather than list the change source files.

Submitted: 2001

• Hav e aed (aem) *remember* the previous state when

it finds a problem (much like aet does, now). Submit-

ted: Ralf Fassel <ralf@akutech.de> 3-Mar-2002

10.12.5.1. More O(1) Scalability

• Need to supplement the {project,change}_file_find

and {project,change}_file_nth interfaces with

{project,change}_file_name_nth interfaces. Then, use

them as often as possible.

• Need the fstate file to have a manifest field; access this

for file names. Then, store each file into in a separate

file; only access this file is file state is required.

• The presence or absence of the manifest field in the

top-level fstate file tells you if the old or new file state

usage is present.

10.12.6. GUI

• tkaeca barfs when there are no changes on the branch.

should be more graceful. Submitted: Ewolt Wolters

<ewolt@pallas-athena.com>, 11 Aug 1999

• using tkaegis: project > branch > role > integrate, a

window pops up "Error in tcl script, Error: invalid

command name ".mbar.review.menu"". Submitted:

Ewolt Wolters <ewolt@pallas-athena.com> 9 Aug

1999

• user pasted in text (including back slash) into aeifail

edit window. which was accepted, but broke change

state (illegal escape sequence). Submitted: Michael

McCarty <mmccarty@xinetix.com>, 10 May 1999

• A new ${architecture_list} substitution to give all ar-

chitectures in a command. Submitted: jerry.pender-

graft@endocardial.com, 31 Mar 1999

• hav e aedist −rec accept a −delta option, so you can tell

it where to apply from. Anticipated use is “−delta 0”

meaning start of branch. (also a −reg option). Sub-

mitted: PMiller, 22-mar-99

10.12.7. Release and Build and Install

• add debian .deb file, add notification to <cd@de-

bian.org> for new releases. Submitted: PMiller,

22-Jun-99

• building documentation needs to talk about libz some

more. particularly, you either need it on ROOT’s

LD_LIBRARY_PATH or you need to static link it.

Submitted: Ralf Fassel <ralf@akutech.de> 5-Apr-99

• hav e configure script whine about missing libz Sub-

mitted: PMiller, 7 Apr 99

• hav e configure script whine about missing regcomp

Submitted: PMiller, 7 Apr 99

• Sample documentation needs to make the group thing

obvious. And also the umask at aenpr time! Submit-

ted: Alan Zimmerman <alanz@electrosolv.co.za>, 5

Apr 1999

• generated makefile CC=cc needs to quote cc in case

has spaces Submitted: Aaron Johnson

<adj@ccltd.com>, 31 Mar 1999

• The BUILDING file needs to mention that you should

install zlib with −−prefix=/usr because many systems

think /usr/local/lib "insecure directory". Submitted:

Fabien Campagne <campagne@Inka.MSSM.EDU>,

26 Mar 1999

• add piece to BUILDING file saying to get Apache

first. Submitted: Graham Wheeler <gram@cd-

sec.com> 27 Jan 1999

10.12.8. Database

• Write an ODBC interface to the database? Submitted:

P. Miller, 16 Aug 2001

• Does it make sense to have an NNTP interface?

Would it be any use? Submitted: P. Miller, 16 Aug

2001

Page 32 (./lib/en/howto/main.ms) Peter Miller

Aegis Howto

.

Peter Miller (./lib/en/howto/main.ms) Page i

Aegis Howto

Table of Contents

1. Introduction . 3

1.1. Assumed Knowledge . 3

1.2. Howto Install Aegis . 3

1.3. Howto Contribute . 3

2. Cheat Sheet . 4

2.1. Common Commands . 4

2.2. Developer Commands . 4

2.3. Reviewer Commands . 5

2.4. Integrator Commands . 5

2.5. Project Administrator Commands . 5

3. How to Start Using Aegis . 6

3.1. First, Create The Project . 6

3.2. Second, Use a Template Project . 6

3.3. Second, Copy a Template Project . 6

4. How to Recreate Old Versions . 7

4.1. aecp . 7

4.2. Finding Delta Numbers . 7

4.3. ${version} . 7

4.4. Out Of Date . 7

5. How to Create a New Project . 8

5.1. Single User Project . 8

5.2. Two User Project . 8

5.3. Multi User Project . 9

5.4. Warning . 9

5.5. Changing The Project Owner . 9

6. How to Move a Project . 10

6.1. Relocating a Project . 10

6.2. Renaming a Project . 10

7. Working in Teams . 12

7.1. Local . 12

7.2. Distributed . 13

8. How to use Aegis with Python . 16

8.1. Handling Aegis search paths . 16

8.2. The build step . 17

8.3. Testing . 17

8.4. Running your programs . 17

9. Howto End A Branch . 20

10. How to Become an Aegis Developer . 22

10.1. Required Software . 22

10.2. Create The Aegis Project . 23

10.3. The Download . 23

10.4. Supporting Several Architectures . 25

10.5. The Bleeding Edge . 26

10.6. Undiscovered Country . 26

10.7. Sending Changes . 26

10.8. Guidelines . 26

10.9. Coding Style . 27

10.10. Writing Tests . 27

10.11. Debugging . 27

10.12. The To-Do List . 28

Peter Miller (./lib/en/howto/main.ms) Page mi

Howto Aegis

Page mii () Peter Miller

