
.

Aegis
A Project Change Supervisor

User Guide

Peter Miller
pmiller@opensource.org.au

User Guide Aegis

.

DEDICATIONS

This user guide is dedicated to my wife
Mary Therese Miller

for all her love and support
despite the computers.

And to my grandmother
Jean Florence Pelham

1905 — 1992
Always in our hearts.

This document describes Aegis version 4.25
and was prepared 30 July 2024.

This document describing the Aegis program, and the Aegis program itself, are
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 3 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>.

Page 2 (./lib/en/user-guide/c1.0.so) Peter Miller

Aegis User Guide

1. Introduction

Aegis is a CASE tool with a difference. In the spirit of

the

Operating System, Aegis is a small component designed

to work with other programs.

Many CASE systems attempt to provide everything,

from bubble charts to source control to compilers. Users

are trapped with the components supplied by the CASE

system, and if you don’t like one of the components (it

may be too limited, for instance), then that is just tough.

In contrast,

provides many components of a CASE system − compil-

ers, editors, dependency tools (such as make), source

control (such as SCCS). You may substitute the tool of

your choice − gcc, jove, cake, rcs (to name a few) if you

don’t like the ones supplied with the system.

Aegis adds to this list with software configuration man-

agement (SCM), and consistent with

philosophy, Aegis does not dictate the choice of any of

the other tools (although it may stretch them to their lim-

its).

1.1. Year 2000 Status

Aegis does not suffer from Year 2000 problems.

• Aegis stores dates internally in Unix style (i.e. seconds

offset), so internal storage of times and dates does not

suffer from any Y2K problems.

• Aegis always uses the ANSI C standard strftime
function to display times and dates. (This assumes that

your vendor has supplied a compliant strftime.)

This means that displaying dates does not assume fixed

field widths, nor will it display the year 2000 as “100”.

• There is no user-input of years at any time, so there is

no issue surrounding “guessing” the century.

1.2. What does aegis do?

Just what is software configuration management? This

question is sufficiently broad as to require a book in an-

swer. In essence, the aegis program is a project change

supervisor. It provides a framework within which a team

of developers may work on many changes to a program

independently, and the aegis program coordinates inte-

grating these changes back into the master source of the

program, with as little disruption as possible. Resolution

of contention for source files, a major headache for any

project with more than one developer, is one of the aegis

program’s major functions.

It should be noted that the aegis program is a developer’s

tool, in the same sense as make or RCS are developer’s

tools. It is not a manager’s tool − it does not provide

progress tracking or help with work allocation.

1.3. Why use aegis?

So why should you use the aegis program? The aegis

program uses a particular model of the development of

software projects. This model has a master source (or

baseline) of a project, consisting of several (possibly

several hundred) files, and a team of developers creating

changes to be made to this baseline. When a change is

complete, it is integrated with the baseline, to become

the new baseline. Each change must be atomic and self-

contained, no change is allowed to cause the baseline to

cease to work. "Working" is defined as passing its own

tests. The tests are considered part of the baseline.

Aegis provides support for the developer so that an entire

copy of the baseline need not be taken to change a few

files, only those files which are to be changed need to be

copied.

The win in using the aegis program is that there are O(n)

interactions between developers and the baseline. Con-

trast this with a master source which is being edited di-

rectly by the developers − there is O(n!) interactions be-

tween developers − this makes adding "just one" more

developer a potential disaster.

Another win is that the project baseline always works.

Always having a working baseline means that a version

is always available for demonstrations, or those "pre-re-

lease snapshots" we are always forced to provide.

The above advantages are all very well − for manage-

ment types. Why should Joe Average Programmer use

the aegis program? Recall that RCS provides file lock-

ing, but only for one file at a time. The aegis program

provides the file locking, atomically, for the set of files

in the change. Recall also that correct RCS usage locks

the file the instant you start editing it. This makes popu-

lar files a project bottleneck. The aegis program allows

concurrent editing, and a resolution mechanism just be-

fore the change must be integrated, meaning fewer de-

lays for J.A.Programmer.

Peter Miller (./lib/en/user-guide/c1.4.so) Page 3

User Guide Aegis

1.4. How to use this manual

This manual assumes the reader is already familiar with

the

operating system, and with developing software using

the

operating system and the tools available; terms such as

RCS and SCCS and make(1) are not explained.

There is also the assumption that the reader is familiar

with the issues surrounding team development of soft-

ware; coordination and multiple version issues, for ex-

ample, are not explained.

This manual is broken into a number of sections.

Chapter 2

describes how aegis works and some of the rea-

soning behind the design and implementation of

the aegis program. Look here for answers to

"Why does it..." questions.

Chapter 3

is a worked example of how particular users inter-

act with the aegis program. Look here for answers

to "How do I..." questions.

Chapter 4

is a discussion of how aegis interacts with the His-

tory Tool, and provides templates and suggestions

for history tools known to work with aegis.

Chapter 5

is a discussion of how aegis interacts with the De-

pendency Maintenance Tool (DMT), and provides

templates and suggestions for DMTs known to

work with aegis.

Chapter 6

is a discussion of how aegis interacts with the Dif-

ference Tools, and provides templates and sugges-

tions for difference tools known to work with

aegis.

Chapter 7

describes the project attributes and how the vari-

ous parameters may be used for particular

projects.

Chapter 8

describes managing tests and testing with Aegis.

Chapter 9

describes the branching mechanism used in Aegis.

Chapter 10

is a collection of helpful hints on how to use aegis

effectively, based on real-world experience. This

is of most use when initially placing projects un-

der the supervision of the aegis program.

Chapter 11

describes how to manage geographically distrib-

uted development using Aegis.

Appendix A

is a quick reference for placing an existing project

under aegis.

Appendix B

is a glossary of terms.

Appendix D

is a description of why Aegis must be set-uid-root,

for system administrators who are concerned

about the security issues.

Appendix I

is a brief look at internationalization and localiza-

tion if Aegis.

1.5. GNU GPL

Aegis is distributed under the terms and conditions of the

GNU General Public License. Programs which are de-

veloped using Aegis are not automatically subject to the

GNU GPL. Only programs which are derivative works

based on GNU GPL code are automatically subject to

the GNU GPL. We still encourage software authors to

distribute their work under terms like those of the GNU

GPL, but doing so is not required to use Aegis.

Page 4 (./lib/en/user-guide/c7.0.so) Peter Miller

Aegis User Guide

2. How Aegis Works

Before you will be able to exploit Aegis fully, you will

need to know what Aegis does and why.

The Aegis program provides a change control mecha-

nism and a repository, a subset of the functionality which

CASE vendors call Software Configuration Management

(SCM). In order to fit into a software engineering envi-

ronment, or any place software is written, Aegis needs a

clearly defined place in the scheme of things.

This chapter describes the model of the software devel-

opment process embodied in the Aegis program, some of

the deliberate design decisions made for Aegis, some of

the things Aegis will and wont do for you, and the situa-

tions where Aegis is most and least useful.

2.1. The Model

The model of the software development process used by

Aegis evolved and grew with time in a commercial soft-

ware development environment, and it has continued to

be used and developed.

The model described here is generic, and can be adapted

in a variety of ways. These will be described at the rele-

vant points in the text.

2.1.1. The Baseline

Most CASE systems revolve around a repository: a place

where stuff is kept. This stuff is the raw material that is

processed in some way to produce the final product,

whatever that may be. This stuff is the preferred form

for editing or composing or whatever.

In the Aegis program, the repository is known as the

baseline and the units of stuff are

files. The Aegis program makes no distinction between

text and binary files, so both are supported.

The history mechanism which must be included in any

repository function is not provided by the Aegis pro-

gram. It is instead provided by some other per-project

configurable software, such as RCS. This means that the

user may select the history tool most suited to any giv en

project. It also means that Aegis is that much smaller to

test and maintain.

The structure of the baseline is dictated by the nature of

each project. The Aegis program attempts to make as

few arbitrary rules as possible. There is one mandatory

file in the your project baseline. The mandatory file is

called aegis.conf by default, and contains the per-project

configuration information. The name of this file may be

changed if you want to call it something different. It ios

also common (though not mandatory, and the name may

be changed) to have a directory called test which con-

tains all of the test scripts. The contents and structure of

the test directory (or whatever you call it) are controlled

by a test filename pattern you supply to Aegis. Tests are

treated just like any other source file, and are subject to

the same process.

The baseline in Aegis has one particular attribute: it al-

ways works. It is always there to show off to visiting

big-wigs, it is always there to grab a copy of and ship a

"pre-release snapshot" to some overly anxious customer,

it is always there to let upper management "touch and

feel" the progress being made towards the next release.

You may claim that "works" is comfortably fuzzy, but it

is not. The baseline contains not only the source of a

project, but also the tests for a project. Tests are treated

just like any other source file, and are subject to the same

process. A baseline is defined to "work" if and only if it

passes all of its own tests. The Aegis program has

mandatory testing, to ensure that all changes to the base-

line are accompanied by tests, and that those tests have

been run and are known to pass. This means that no

change to the baseline may result in the baseline ceasing

to work1.

The model may be summarized briefly: it consists of a

baseline (master source), updated through the agency of

an integrator, who is in turn fed changes by a team of

developers. These terms will be explained in the follow-

ing sections. See figure 1 for a picture of how files flow

around the system.

The baseline is a set of files including the source files for

a projects, and also all derived files (such as generated

code, binary files from the compiler, etc), and all of the

tests. Tests are treated just like any other source file, and

are subject to the same process. All files in the baseline

are consistent with each other.

Thus the baseline may be considered to be the closure of

the source files, in mathematical terms. That is, it is the

source files and all implications flowing from those

source files, such as object files and executables. All

files in the baseline are consistent with each other; this

means that development builds can take object files from

the baseline rather than rebuild them within the develop-

ment directory.

The baseline is readable by all staff, and usually writable

by no-one. When it is necessary to write to the baseline,

this is done by Aegis, as will be shown below.

In many ways, the baseline may be thought of as a data-

base, and all derived files are projections (views) of the

source files. Passing its own tests may be thought of as

1 Well, mostly. It is possible for this restriction to be relaxed

if you feel there are special circumstances for a particular

change. The danger is that a change will be integrated with the

baseline when that change is not actually of acceptable quality.

Peter Miller (./lib/en/user-guide/c7.1.so) Page 5

User Guide Aegis

baseline

development

directory

integrator

integrate

begin

integration

directory

integrate

pass

development

directory

Figure 1: Flow of Files through the Model

input validation of fields. This is a powerful concept,

and indeed the implementation of the Aegis program

performs many of the locking and synchronization tasks

demanded of a database engine.

All of the files forming this database are text files. This

means that they may be repaired with an ordinary text

editor, should remedial action be necessary. The format

is documented in section 5 of the reference manual.

Should you wish to perform some query not yet avail-

able in Aegis, the files are readily accessible to members

of the appropriate

group.

Tests are treated just like any other source file, and are

subject to the same process.

2.1.2. The Change Mechanism

Any changes to the baseline are made by atomic incre-

ments, known (unoriginally) as "changes". A change is

a collection of files to be added to, modified in, or

deleted from, the baseline. These files must all be so al-

tered simultaneously for the baseline to continue to

"work".2

For example, if the calling interface to a function were

changed in one file, all calls to that function in any other

file must also change for the baseline to continue to

work. All of the files must be changed simultaneously,

and thus must all be included in the one change. Other

files which would logically be included in such an

change include the reference manual entry for the func-

tion, the design document relating to that area of func-

tionality, the relevant user documentation, tests would

have to be included for the functionality, and existing

tests may need to be revised.

Changes must be accompanied by tests. These tests will

either establish that a bug has been fixed (in the case of a

bug fix) or will establish that new functionality works (in

the case of an enhancement).

Tests are shell scripts, and as such are capable of testing

anything which has functionality accessible from the

command line. The ability to run background processes

allows even client-server models to be tested. Tests are

thus text files, and are treated as source files; they may

be modified by the same process as any other source file.

Tests usually need to be revised as a project grows and

adapts to changing requirements, or to be extended as

functionality is extended. Tests can even be deleted if

the functionality they test has been deleted; tests are

deleted by the same process as any other source file.

2.1.3. Change States

As a change is developed using Aegis, it passes through

six states. Many Aegis commands relate to transitions

between these states, and Aegis performs any validation

at these times.

The six states of a change are described as follows, al-

though the various state transitions, and their conditions,

will be described later.

2.1.3.1. Awaiting Development

A change is in this state after it has been created, but be-

fore it has been assigned to a developer. This state can’t

be skipped: a change can’t be immediately assigned to a

developer by an administrator, because this disempowers

the staff.

The Aegis program is not a progress tracking tool, nor is

it a work scheduling tool; plenty of both already exist.

2 Whether to allow sev eral logically independent changes to

be included in the one change is a policy decision for individual

projects to make, and is not dictated by the Aegis program. It is

a responsibility of reviewers to ensure that all new and changed

functionality is tested and documented.

Page 6 (./lib/en/user-guide/c7.1.so) Peter Miller

Aegis User Guide

2.1.3.2. Being Developed

A change is in this state after it has been assigned to a

developer, by the developer. This is the coal face: all de-

velopment is carried out in this state. Files can be edited

in no other state, this particularly means that only devel-

opers can develop, reviewers and integrators only have

the power to veto a change. Staff roles will be described

more fully in a later section.

To advance to the next state, the change must build suc-

cessfully, it must have tests, and it must pass those tests.3

The new tests must also fail against the baseline; this is

to establish that tests for bug-fixes actually reproduce the

bug and then demonstrate that it is gone. New function-

ality added by a change will naturally fail when tested in

the old baseline, because it is not there.

When these conditions are met, the Aegis program

marks all of the changes files as locked, simultaneously.

If any one of them is already locked, you can’t leave the

being developed state, because the file is part of a

change which is somewhere between being reviewed and

being integrated .

If any one of them is out-of-date with respect to the

baseline, the lock is not taken, either. Locking the files

at this state transition means that popular files may be

modified simultaneously in many changes, but that only

differences to the latest version are ever submitted for in-

tegration. The Aegis program provides a mechanism,

described later, for bringing out-of-date files in changes

up-to-date without losing the edits made by the devel-

oper.

2.1.3.3. Awaiting Review

The default configuration for an Aegis project does not

use this state, because for small-ish projects it can be te-

dious. For larger projects, however, it assists in coordi-

nating reviewers when you use email notification that a

review is required to several potential reviewers.

To enable this state, you need to change the develop_-

end_action field of the project attributes. See aepa(1)

for more information, or tkaepa(1) for a GUI interface.

It is also possible, by a different setting of the same

project attribute, to skip the code review step altogether.

This can be of benefit to one-person projects where inde-

pendent code review would be impossible.

The rest of this description will assume the awaiting re-

view state is not being used, but code reviews are being

used, to simplify matters. Once you are more familiar

3 It is possible for these testing requirements to be waived on

either a per-project or per-change basis. How is described in a

later section. The power to waive this requirement is not auto-

matically granted to developers, as experience has shown that it

is usually abused.

with Aegis, enabling the use of the awaiting review state

will be simple and will behave intuitively.

2.1.3.4. Being Reviewed

A change is in this state after a developer has indicated

that development is complete. The change is inspected,

usually by a second party (or parties), to ensure that it

matches the change description as to what it is meant to

be doing, and meets other project or company standards

you may have.

The style of review, and who may review, is not dictated

by the Aegis program. A number of alternative hav e

been observed:

• You may have a single person who coordinates review

panels of, say, 4 peers, with this coordinator the only

person allowed to sign-off review passes or fails.

• You may allow any of the developers to review any

other developer’s changes.

• You may require that only senior staff, familiar with

large portions of the code, be allowed to review.

The Aegis program enforces that a developer may not re-

view their own code. This ensures that at least one per-

son other than the developer has scrutinized the code,

and eliminates a rather obvious conflict of interest. It is

possible to turn this requirement off on a per-project ba-

sis, but this is only desirable for projects with a one per-

son team (or maybe two). The Aegis program has no

way of knowing that the user passing a review has actu-

ally looked at, and understood, the code.

The reviewer knows certain things about a change for it

to reach this state: it has passed all of the conditions re-

quired to reach this state. The change compiles, it has

tests and it passes those tests, and the changes are to the

current version of the baseline. The reviewer may thus

concentrate on issues of completeness, implementation,

and standards − to name only a few.

2.1.3.4.1. Customizing Code Review Policy

It is possible to require more than one reviewer for a

change. By setting the re view_policy_command of the

project configuration file, you can pass a shell script (or

other command) the relevant change details, and the exit

status will be used to determine of the change advances

to the awaiting integration state, or requires additional

code reviewers first.

Because it is a program, it is possible to implement al-

most any policy you can think of, including particular re-

viewers for particular areas of code, or that there must be

3 different reviewers, etc.

Peter Miller (./lib/en/user-guide/c7.1.so) Page 7

User Guide Aegis

2.1.3.5. Awaiting Integration

A change is in this state after a reviewer has indicated

that a change is acceptable to the reviewer(s). This is es-

sentially a queue, as there may be many dev elopers, but

only one integration may proceed at any one time.

The issue of one integration at a time is a philosophical

one: all of the changes in the queue are physically inde-

pendent; because of the Develop End locking rules they

do not have intersecting sets of files. The problem

comes when one change would break another, in these

cases the integrator needs to know which to bounce and

which to accept. Integrating one change at a time greatly

simplifies this, and enforces the "only change one thing

at a time" maxim, occasionally at the expense of integra-

tor throughput.

2.1.3.6. Being Integrated

A change is in this state when the integration of the

change back into the baseline is commenced. A (logical)

copy of the baseline is taken, and the change is applied

to that copy. In this state, the change is compiled and

tested once again.

The additional compilation has two purposes: it ensures

that the successful compile performed by the developer

was not a fluke of the developer’s environment, and it

also allows the baseline to be the closure of the sources

files. That is, all of the implications flowing from the

source files, such as object files and linked programs or

libraries. It is not possible for Aegis to know which files

these are in the development directory, because Aegis is

decoupled from the build mechanism (this will discussed

later).

To advance to the next state, the integration copy must

have been compiled, and the tests included in the change

must have been run and passed.

The integrator also has the power of veto. A change may

fail an integration because it fails to build or fails tests,

and also just because the integrator says so. This allows

the being integrated state to be another review state, if

desired. The being integrated state is also the place to

monitor the quality of reviews and reviewers.

Should a faulty change manage to reach this point, it is

to be hoped that the integration process, and the integra-

tor’s sharp eyes, will detect it.

While most of this task is automated, this step is neces-

sary to ensure that some strange quirk of the developer’s

environment was not responsible for the change reaching

this stage. The change is built once more, and tested

once more. If a change fails to build or test, it is re-

turned to the developer for further work; the integrator

may also choose to fail it for other reasons. If the inte-

grator passes that change, the integrated version

becomes the new baseline.

2.1.3.7. Completed

A change reaches this state when integration is complete.

The (logical) copy of the baseline used during integra-

tion has replaced the previous copy of the baseline, and

the file histories have been updated. Once in this state, a

change may never leave it, unlike all other states.

If you wish to remove a change which is in this state

from the baseline, you will have to submit another

change.

2.1.4. The Software Engineers

The model of software development used by Aegis has

four different roles for software engineers to fill. These

four roles may be overlapping sets of people, or be dis-

tinct, as appropriate for your project.

2.1.4.1. Developer

This is the coal-face. This role is where almost every-

thing is done. This is the only role allowed to edit a

source file of a project.

Most staff will be developers. There is nothing stopping

a dev eloper from also being an administrator, except for

the possible conflict of interests with respect to testing

exemptions.

A dev eloper may edit many of the attributes of a change

while it is being developed. This is mostly useful to up-

date the description of the change to say why it was done

and what was actually done. A dev eloper may not grant

testing exemptions (but they may be relinquished).

2.1.4.2. Reviewer

The role of the reviewer is to check a developer’s work.

This review may consist of a peer examining the code, or

it may be handled by a single member of staff setting up

and scheduling multi-person review panels. The Aegis

program does not mandate what style of review, it only

requires that a reviewer pass or fail each change. If it

passes, an integrator will handle it next, otherwise it is

returned to the developer for further work.

In a large team, the reviewers are usually selected from

the more senior members of the team, because of their

depth of experience at spotting problems, but also be-

cause this is an opportunity for more senior members of

staff to coach juniors on the finer points of the art.

The Aegis programs makes some of the reviewer’s task

easier, because the reviewer knows several specific

things about a change before it comes up for review: it

builds, it has tests, and they hav e run successfully. There

is also optional (per project) additional conditions im-

posed at the end of development, such as line length

Page 8 (./lib/en/user-guide/c7.1.so) Peter Miller

Aegis User Guide

limits, or anything else which is automatically testable.

The Aegis program also provides a difference listing to

the reviewer, so that each and every edit, to each and

ev ery file, can be pointed out to the reviewer.

There is nothing stopping a reviewer from being either

an administrator or a developer. The Aegis program

specifically prevents a developer from reviewing his own

work, to avoid conflicts of interest. (It is possible for

this restriction to be waived, but that only makes sense

for one person projects.)

It will occasionally be necessary to arbitrate between a

developer and a reviewer. The appropriate person to do

this would have line responsibility above both staff in-

volved. Thus it is desirable that supervisors/managers

not be reviewers, except in very small teams.

2.1.4.3. Integrator

The role of the integrator is to take a change which has

already been reviewed and integrate it with the baseline,

to form a new baseline. The integrator is thus the last

line of defense for the baseline.

There is nothing preventing an integrator from being an

administrator, a dev eloper or a reviewer. The Aegis pro-

gram specifically prevents a developer or reviewer from

integrating his own work, eliminating any conflict of in-

terests. (It is possible for this restriction to be waived,

but that only makes sense for one and two person

projects.)

It will occasionally be necessary to arbitrate between an

integrator and a reviewer and/or a developer. The appro-

priate person to do this would have line responsibility

above all of the staff inv olved. Thus it is desirable that

supervisors/mangers not be integrators, except in very

small teams.

The baseline is readable by all developers, but not

writable. All updates of the baseline to reflect changes

produced by developers are performed through the

agency of the integrator.

2.1.4.4. Administrator

The project administrator has the following duties:

• Create new changes. These may be the result of some

customer bug reporting mechanism, it may be the result

of new functionality being requested.

• Grant testing exemptions. By default, Aegis insists that

all changes be accompanied by tests. The project admin-

istrator may grant case-by-case exemptions, or a project-

wide exemption.

• Add or remove staff. The four roles described in this

section may be assigned to, or removed from, specific

logins by the project administrator.

• Edit project attributes. There are many attributes at-

tached to a project, only a project administrator may al-

ter them.

• Edit change attributes. There are many attributes at-

tached to a change, only a project administrator may al-

ter all of them.

A project usually has only one or two administrators at

any one time.

2.1.5. The Change Process

This section will examine the progression of a change

through the six change states. Most of the attention will

be given to the conditions which must be met in order to

progress from one state to the next, as this is where the

software development model employed by Aegis is most

often expressed.

See figure 2 for a picture of how all of the states and

transitions fit together.

2.1.5.1. New Change

A project administrator creates a change. This change

will consist mostly of a description at this time. The

project administrator is not able (through Aegis) to as-

sign it to a specific developer.

The change is awaiting development; it is in the awaiting

development state.

2.1.5.2. New Change Undo

It is possible to abandon a change if it is in the awaiting

development state. All record of the change, including

its description, will be deleted.

It is called new change undo to emphasize the state it

must be in to delete it.

2.1.5.3. Develop Begin

A dev eloper, for whatever reason, scans the list of

changes awaiting development. Having selected a

change, the developer then assigns that change to herself.

The change is now being developed; it is in the being de-

veloped state.

A number of Aegis commands only work in this state,

including commands to include files and tests in the

change (be they new files to be added to the baseline,

files in the baseline to be modified, or files to be deleted

from the baseline), commands to build the change, com-

mands to test the change, and commands to difference

the change.

The process of taking sources files, the preferred form

for editing of a project, and transforming them, through

various manipulations and translations, into a "finished"

product is known as building. In the

Peter Miller (./lib/en/user-guide/c7.1.so) Page 9

User Guide Aegis

new

change

aw aiting

development

develop

begin

being

developed

develop

end

being

reviewed

review

pass

aw aiting

integration

integrate

begin

being

integrated

integrate

pass

completed

new

change

undo

develop

begin

undo

develop

end

undo

develop

end

undo

integrate

begin

undo

review

fail

review

pass

undo

integrate

fail

Figure 2: Change States and Transitions

world this usually means things like compiling and link-

ing a program, but as fancy graphical programs become

more wide-spread, the source files could be the binary

output from a graphical Entity-Relationship-Diagram ed-

itor, which would then be run through a database schema

generator.

The process of testing a change has three aspects. The

most intuitive is that a test must be run to determine of

the functionality works. The second requirement is that

the test be run against the baseline and fail; this is to

ensure that bugs are not just fixed, but reproduced as

well. The third requirement is optional: all or some of

the tests already in the baseline may also be run. Tests

consist of

shell scripts − anything that can be done in a shell script

can be tested.

In preparation for review, a change is differenced. This

usually consists of automatically comparing the present

contents of the baseline with what the change proposes

to do to the baseline, on a file-by-file basis. The results

of the difference, such as

diff −c output, is kept in a difference file, for examina-

tion by the reviewer(s). The benefit of this procedure is

that reviewers may examine these files to see every

change the developer made, rather than only the obvious

ones. The differencing commands are per-project con-

figurable, and other validations, such as line length re-

strictions, may also be imposed at this time.

To leave this state, the change must have source files, it

must have tests, it must have built successfully, it must

have passed all its own tests, and it must have been dif-

ferenced.

2.1.5.4. Develop Begin Undo

It is possible to return a change from the being devel-

oped state to the awaiting development state. This is

usually desired if a developer selected the wrong change

by mistake. It also provides a method to start over on a

change for some other reason.

2.1.5.5. Develop End

When the conditions for the end of development have

been met (the change must have source files, it must

have tests, it must have built successfully, it must have

passed all its own tests, and it must have been differ-

enced) the developer may cause the change to leave the

being developed state and enter the being reviewed state.

The Aegis program will check to see that all the condi-

tions are met at this time. There is no history kept of un-

successful develop end attempts.

Most of these preconditions are determined by the use of

time stamps which are recorded for various operations,

in addition to file system timestamps on the files them-

selves. Logical sequencing (e.g. tests being run after

building after editing) is also verified.

Note that there are 3 kinds of tests

1. If a change contains a new test or a test which is be-

ing modified, this test must pass against the code

compiled and linked in the change. This is simply

referred to as a “test”. Changes may be granted an

exemption from such tests.

Page 10 (./lib/en/user-guide/c7.1.so) Peter Miller

Aegis User Guide

2. If a change contains a new test and the change is a

bug fix, this test must fail against the old code in the

baseline. This is to confirm that the bug has been

fixed. This is referred to as a “baseline test”.

Changes may be granted an exemption from such

tests.

3. Tests which already exist in the baseline may be run

against the code compiled and linked in the change.

These tests must pass. This is to confirm that the

project has not regressed, which is why these tests

are referred to as “regression tests”. Changes may

be granted an exemption from such tests.

A successful develop end command results in the change

advancing from the being developed state to the being

re viewed state. (It is also possible to advance to the

awaiting review state or the awaiting integration state.

See aede(1) or aepattr(5) for more information.)

2.1.5.6. Develop End Undo

There are many times when a developer thinks that a

change is completed, and goes hunting for a reviewer.

Half way down the hall, she thinks of something that

should have been included.

It is possible for a developer to rescind a Develop End to

allow further work on a change. No reason need be

given. This request may be issued to a change in either

the being reviewed or awaiting integration states.

2.1.5.7. Review Pass

This event is used to notify Aegis that the change has

been examined, by a method unspecified as discussed

above, and has been found to be acceptable.

2.1.5.8. Review Pass Undo

The reviewer of a change may rescind a Review Pass

while the change remains in the awaiting integration

state. No reason need be supplied. The change will be

returned to the being reviewed state.

2.1.5.9. Review Fail

This event is used to notify Aegis that the change has

been examined, by a method unspecified as discussed

above, and has been found to be unacceptable.

A file containing a brief summary of the problems must

be given, and will be included in the change’s history.

The change will be returned to the being developed state

for further work.

It is not the responsibility of any reviewer to fix a defec-

tive change.

2.1.5.10. Integrate Begin

This command is used to commence integration of a

change into the project baseline.

Whether a physical copy of the baseline is used, or a log-

ical copy using links, is controlled by the project config-

uration file. The change is then applied to this copy.

The integrator must then issue build and test commands

as appropriate. This is not automated as some integrator

tasks may be required in and around these commands.

2.1.5.11. Integrate Begin Undo

This command is used to return a change to the integra-

tion queue, without prejudice. No reason need be given.

This is usually done when a particularly important

change is in the queue, and the current integration is ex-

pected to take a long time.

2.1.5.12. Integrate Pass

This command is used to notify Aegis that the change

being integrated is acceptable.

The current baseline is replaced with the integration

copy, and the history is updated.

2.1.5.13. Integrate Fail

This command is used to notify Aegis that an integration

is unacceptable, usually because it failed to build or test

in some way, or sometimes because the integrator found

a deficiency.

A file containing a brief summary of the problems must

be given, and the summary will be included in the

change’s history.

The change will be returned to the being developed state

for further work. The integration copy of the baseline is

deleted, leaving the original baseline unchanged.

It is not the responsibility of any integrator to fix a de-

fective change, or even diagnose what the defect may be.

Peter Miller (./lib/en/user-guide/c7.2.so) Page 11

User Guide Aegis

2.2. Philosophy

The philosophy is simple, and that makes some of the

implementation complex.

• When a change is in the being developed state, the

aegis program is a developer’s tool. Its purpose is to

make it as easy for a developer to develop changes as

possible.

• When a change leaves (or attempts to leave) the being

developed state, the aegis program is protecting the

project baseline, and does not exist to make the devel-

oper happy.

• The aegis program attempts to adhere to the

minimalist philosophy. Least unnecessary output, least

command line length, least dependence on specific 3rd

party tools.

• No overlap in functionality of cooperating tools. (I.e.

no internal build mechanism, no internal history mecha-

nism, etc.)

2.2.1. Development

During the development of a change, the aegis program

exists to help the developer. It helps him navigate

around his change and the project, it copies file for him,

and keeps track of the versions. It can even tell him

what changes he has made.

2.2.2. Post Development

When a change has left the "being developed" state, or

when it is attempting to leave that state, the aegis pro-

gram ceases to attempt to help the developer and pro-

ceeds to defend the project baseline. The model used by

aegis states that "the baseline always works", and aegis

attempts to guarantee this.

2.2.3. Minimalism

The idea of minimalism is to help the user out. It is the

intention that the aegis program can work out unstated

command line options for itself, in cases where it is

"safe" to do so. This means a number of defaulting

mechanisms, all designed to help the user.

2.2.4. Overlap

It was very tempting while writing the aegis program to

have it grow and cover source control and dependency

maintenance roles. Unfortunately, this would have

meant that the user would have been trapped with what-

ev er the aegis program provided, and the aegis program

is already plenty big. To add this functionality would

have div erted effort, resulting in an inferior result. It

would also have violated the underlying

philosophy.

2.2.5. Design Goals

A number of specific ideas molded the shape of the aegis

program. These include:

The

philosophy of writing small tools for specific tasks with

little or no overlap. Tools should be written with the ex-

pectation of use in pipes or scripts, or other combina-

tions.

• Stay out of the way. If it is possible to let a project do

whatever it likes, write the code to let it. It is not possi-

ble to anticipate even a fraction of the applications of a

software tool.

• People. The staff using aegis should be in charge of

the development process. They should not feel that

some machine is giving them orders.

• Users aren’t psychic. Feedback must be clear, accurate

and appropriate.

Page 12 (./lib/en/user-guide/c7.5.so) Peter Miller

Aegis User Guide

2.3. Security

Access to project data is controlled by the

group mechanism. The group may be selected as suit-

able for your project, as may the umask.

All work done by developers (build, difference, etc) is all

with a default group of the project’s group, irrespective

of the user’s default group. Directories (when BSD se-

mantics are available) are all created so that their con-

tents default to the correct group. This ensures that re-

viewers and integrators are able to examine the change.

Other

users not in the project’s group may be excluded, or not,

by the appropriate setting of the project umask. This

umask is used by all Aegis actions, assuring appropriate

default behaviour.

A second aspect of security is to ensure that developers

are unable to deliberately deceive Aegis. Should the

files be tampered with at any later date, Aegis will no-

tice.

2.4. Scalability

How big can a project get before Aegis chokes? There

are a huge number of variables in this question.

The most obvious bottleneck is the integrator. An artifi-

cial "big project" example: Assume that the average inte-

gration takes an hour to build and test. A full-time inte-

grator could be expected to get 7 or 8 of these done per

day (this was the observed average on one project the au-

thor was involved in). Assume that the average time for

a dev eloper to develop a change is two weeks; a figure

recommended by many text books as "the most you can

afford to throw away". These two assumptions mean

that for this "big project" Aegis can cope with 70 to 80

developers, before integrations become a bottleneck.

The more serious bottle neck is the dependency mainte-

nance tool. Seventy developers can churn out a stagger-

ing volume of code. It takes a very long time to wade

through the file times and the rules, just to find the one

or two files which changed. This can easily push the in-

tegrate build time past the one hour mark. Developers

also become very vocal when build times are this long.

Peter Miller (./lib/en/user-guide/c1.3.so) Page 13

User Guide Aegis

2.5. When (not) to use Aegis

The aegis program is not a silver bullet; it will not solve

all of your problems. Aegis is suitable for some kinds of

projects, useful for others, and useless for a few.

The software development process embodied by Aegis

has the following attributes:

• Each change set is applied atomically.

• Each change set must build successfully before it will

be accepted. (This can be trivial, if desired.)

• Each change set must test successfully before it will

be accepted. (This can be disabled, if desired.)

• Each change set must pass a peer review before it will

be accepted. (This can be a rubber stamp, if desired.)

The most difficult thing about Aegis program is that it

takes management buy-in. It takes effort to convince

many people that the model used by aegis has benefits,

and you need management backing you up when some

person comes along with a way of developing software

"without the extra work" imposed by the model used by

Aegis.

2.5.1. Building

If the source code to your software product doesn’t

build, it isn’t a product. However, many software shops

commit changes to their repository without precondi-

tions, and then do a daily build (or worse, weekly). The

problem here is that "pollution" by defective changes is

already in your product before it is detected. Aegis will

not let it be committed in the first place.

If your product is entirely composed of scripts or

HTML, you can make the build step completely trivial:

"exit 0" is usually used for this purpose. Thus, this re-

quirement, while usually highly desirable, may be

avoided if desired.

2.5.2. Testing

There is extra up-front work: writing tests. The win is

that the tests hang around forever, catching minor and

major slips before they become embarrassing "features"

in a released product. Prevention is cheaper than cure in

this case, the tests save work down the track. See the

testing chapter for more information.

2.5.3. Reviewing

Code reviews of some sort are normal in most software

houses. Often, unfortunately, time pressures or other po-

litical pressures mean that code reviews manage not to

happen. Yet the literature repeatedly cites reviews as one

of the most important factors in removing defects before

they reach your code repository. Aegis requires a code

review before it will commit code into your product;

again, the idea is to remove defects before they pollute

the product.

Page 14 (./lib/en/user-guide/c7.4.so) Peter Miller

Aegis User Guide

2.6. Further Work

The Aegis program is far from finished. A number of

features are known to be lacking.

At the date of this writing, Aegis is being actively

supported and improved.

2.6.1. Code Coverage Tool

It would be very helpful if a code coverage tool could be

used to analyze tests included with changes to ensure

that the tests actually exercised the lines of code changed

in the change.

Another use of the code coverage tool would be to select

regression tests based on the object files recompiled by a

change, and those regression tests which exercise those

files.

While there is freeware C code coverage tool available,

based on GNU C, the interfacing and semantics still

need more thought.

Note: A fairly good approximation is already available

using the −suggest option of the aet(1) command. It

works on the correlation of sources file versus tests in

the various change sets. See aet(1) for more informa-

tion.

2.6.2. Virtual File System

There is almost sufficient information in the Aegis data

base to create a virtual file system, overlaying the devel-

opment directory atop the baseline4. This could be im-

plemented similarly to automounters, intercepting file

system operations by pretending to be an NFS server.

Many commercial CASE products provide such a facil-

ity.

Such a virtual file system has a number of advantages:

you don’t need such a capable DMT, for starters; it only

needs the dynamic include dependencies, and does not

need a search path5. Second, many horrible and dumb

compilers, notably FORTRAN and "fourth" GLs, don’t

have adequate include semantics; overlaying the two di-

rectories make this much easier to deal with6. Many

graphical tools, such as bubble chart drawers, etc, when

they do actually have include files, have no command

line specifiable search path.

The disadvantage is that this adds significant complexity

to an already large program. Also, implementation is

limited to NFS capable systems, or would have to be

4 Reminiscent of Sun’s TFS, but not the same. Similar to

AT&T’s 3D-FS. Similar to TeamNet. Similar to ClearCase, but

I wasn’t thinking of the time-travel aspects which they imple-

ment.
5 Discussed in the Dependency Maintenance Tool chapter.
6 There are other ways, discussed in the Tips and Traps chap-

ter.

rewritten for a variety of other systems. The semantics

of interactions between the daemon and other Aegis

commands, while clearly specifiable, are challenging to

implement. Performance could also be a significant fac-

tor.

The question is "is it really necessary?" If the job can be

done without it, does the effort of writing such a beast

result in significant productivity gains?

The addition of the create_symlinks_before_build field

to the project configuration file has greatly reduced the

need for this functionality. Howev er, it does not provide

copy-on-write semantics, nor automatic aecp functional-

ity; which a virtual file system could do.

Peter Miller (./lib/en/user-guide/c2.0.so) Page 15

User Guide Aegis

3. The Change Development Cycle

As a change to a project is developed using Aegis, it

passes through several states. Each state is characterized

by different quality requirements, different sets of ap-

plicable Aegis commands, and different responsibilities

for the people involved.

These people may be divided into four categories: devel-

opers, reviewers, integrators and administrators. Each

has different responsibilities, duties and permissions; al-

though one person may belong to more than one cate-

gory, depending on how a project is administered.

This chapter looks at each of these categories, by way of

an example project undergoing its first four changes.

This example will be examined from the perspective of

each category of people in the following sections.

There are six hypothetical users in the example: the de-

velopers are Pat, Jan and Sam; the reviewers are Robyn

and Jan; the integrator is Isa; and the administrator is

Alex7. There need not have been this many people in-

volved, but it keeps things slightly cleaner for this exam-

ple.

The project is called "example". It implements a very

simple calculator. Many features important to a quality

product are missing, checking for divide-by-zero for ex-

ample. These have been omitted for brevity.

7 The names are deliberately gender-neutral. Finding such a

name starting with "I" is not easy!

Page 16 (./lib/en/user-guide/c2.0.so) Peter Miller

Aegis User Guide

3.1. The Developer

The developer role is the coal face8. This is where new software is written, and bugs are fixed. This example shows

only the addition of new functionality, but usually a change will include modifications of existing code, similar to

bug-fixing activity.

3.1.1. Before You Start

Have you configured your account to use Aegis? See the User Setup section of the Tips and Traps chapter for how

to do this.

3.1.2. The First Change

While the units of change, unoriginally, are called "changes", this also applies to the start of a project − a change to

nothing, if you like. The developer of this first change will be Pat.

First, Pat has been told by the project administrator that the change has been created. How Alex created this change

will be detailed in the "Administrator" section, later in this chapter. Pat then acquires the change and starts work.

pat% aedb −l −p example.1.0
Project "example.1.0"
List of Changes

Change State Description
−−−−−−− −−−−−−− −−−−−−−−−−−−−
10 awaiting_ Create initial skeleton.

development
pat% aedb example.1.0 10
aegis: project "example.1.0": change 10: development directory "/u/pat/

example.1.0.C010"
aegis: project "example.1.0": change 10: user "pat" has begun development
pat% aecd
aegis: project "example.1.0": change 10: /u/pat/example.1.0.C010
pat%

At this point Aegis has created a development directory for the change and Pat has changed directory to the develop-

ment directory9.

Five files will be created by this change.

pat% aenf aegis.conf Howto.cook gram.y lex.l main.c
aegis: project "example.1.0": change 10: file "Howto.cook" added
aegis: project "example.1.0": change 10: file "aegis.conf" added
aegis: project "example.1.0": change 10: file "gram.y" added
aegis: project "example.1.0": change 10: file "lex.l" added
aegis: project "example.1.0": change 10: file "main.c" added
pat%

The contents of the aegis.conf file will not be described in this section, mostly because it is a rather complex sub-

ject; so complex it requires four chapters to describe: the History Tool chapter, the Dependency Maintenance Tool

chapter, the Difference Tools chapter and the Project Attributes chapter. The contents of the Howto.cook file will

not be described in this section, as it is covered in the Dependency Maintenance Tool chapter.

The file main.c will have been created by Aegis as an empty file. Pat edits it to look like this

#include <stdio.h>

8 I thought this expression was fairly common English usage, until I had a query. "The Coal Face" is an expression meaning

"where the real work is done" in reference to old-style coal mining which was hard, tiring, hot, very dangerous, and bad for your

health even if you were lucky enough not to be killed. It was a 14-hour per day job, and you walked to and from work in the dark,

ev en in summer. Unlike the mine owners, who rode expensive horses and saw sunlight most days of the week.
9 The default directory in which to place new dev elopment directories is configurable for each user.

Peter Miller (./lib/en/user-guide/c2.1.so) Page 17

User Guide Aegis

static void
usage()
{

fprintf(stderr, "usage: example\n");
exit(1);

}

void
main(argc, argv)

int argc;
char **argv;

{
if (argc != 1)

usage();
yyparse();
exit(0);

}

The file gram.y describes the grammar accepted by the calculator. This file was also created empty by Aegis, and

Pat edits it to look like this:

%token DOUBLE
%token NAME

%union
{

int lv_int;
double lv_double;

}

%type <lv_double> DOUBLE expr
%type <lv_int> NAME

%left ’+’ ’−’
%left ’*’ ’/’
%right UNARY

%%

example
: /* empty */
| example command ’\n’

{ yyerrflag = 0; fflush(stderr); fflush(stdout); }
command

: expr
{ printf("%g\n", $1); }

| error
expr

: DOUBLE
{ $$ = $1; }

| ’(’ expr ’)’
{ $$ = $2; }

| ’−’ expr
%prec UNARY
{ $$ = −$2; }

| expr ’*’ expr
{ $$ = $1 * $3; }

| expr ’/’ expr
{ $$ = $1 / $3; }

| expr ’+’ expr
{ $$ = $1 + $3; }

| expr ’−’ expr
{ $$ = $1 − $3; }

The file lex.l describes a simple lexical analyzer. It will be processed by lex(1) to produce C code implementing the

lexical analyzer. This kind of simple lexer is usually hand crafted, but using lex allows the example to be far

Page 18 (./lib/en/user-guide/c2.1.so) Peter Miller

Aegis User Guide

smaller. Pat edits the file to look like this:

%{
#include <math.h>
#include <libaegis/gram.h>
%}
%%
[\t]+ ;
[0−9]+(\.[0−9]*)?([eE][+−]?[0−9]+)? {

yylval.lv_double = atof(yytext);
return DOUBLE;

}
[a−z] {

yylval.lv_int = yytext[0] − ’a’;
return NAME;

}
\n |
. return yytext[0];

Note how the gram.h file is included using the #include <filename> form. This is very important for builds

in later changes, and is discussed more fully in the Using Cook section of the Dependency Maintenance Tool chap-

ter.

The files are processed, compiled and linked together using the aeb command; this is known as building a change.

This is done through Aegis so that Aegis can know the success or failure of the build. (Build success is a precondi-

tion for a change to leave the being developed state.) The build command is in the aegis.conf file so vaguely de-

scribed earlier. In this example it will use the cook(1) command which in turn will use the Howto.cook file, also al-

luded to earlier. This file describes the commands and dependencies for the various processing, compiling and link-

ing.

pat% aeb
aegis: project "example.1.0": change 10: development build started
aegis: cook −b Howto.cook project=example.1.0 change=10

version=1.0.C010 −nl
cook: yacc −d gram.y
cook: mv y.tab.c gram.c
cook: mv y.tab.h gram.h
cook: cc −I. −I/projects/example/branch.1./branch0/baseline −O −c gram.c
cook: lex lex.l
cook: mv lex.yy.c lex.c
cook: cc −I. −I/projects/example/branch.1/branch.0/baseline −O −c lex.c
cook: cc −I. −I/projects/example/baseline −O −c main.c
cook: cc −o example gram.o lex.o main.o −ll −ly
aegis: project "example.1.0": change 10: development build complete
pat%

The example program is built, and Pat could even try it out:

pat% example
1 + 2
3
ˆD
pat%

At this point the change is apparently finished. The command to tell Aegis this is the develop end command:

pat% aede
aegis: project "example.1.0": change 10: no current ’aegis −DIFFerence’

registration
pat%

It didn’t work, because Aegis thinks you have missed the difference step.

The difference step is used to produce files useful for reviewing changes, mostly in the form of context difference

files between the project baseline and the development directory. Context differences allow reviewers to see exactly

what has changed, and not have to try to track them down and inevitably miss obscure but important edits to large or

Peter Miller (./lib/en/user-guide/c2.1.so) Page 19

User Guide Aegis

complex files.

pat% aed
aegis: set +e; diff −c /dev/null /u/pat/example.1.0.C010/Howto.cook >

/u/pat/example.1.0.C010/Howto.cook,D; test $? −eq 0 −o $? −eq 1
aegis: set +e; diff −c /dev/null /u/pat/example.1.0.C010/aegis.conf >

/u/pat/example.1.0.C010/aegis.conf,D; test $? −eq 0 −o $? −eq 1
aegis: set +e; diff −c /dev/null /u/pat/example.1.0.C010/gram.y >

/u/pat/example.1.0.C010/gram.y,D; test $? −eq 0 −o $? −eq 1
aegis: set +e; diff −c /dev/null /u/pat/example.1.0.C010/lex.l >

/u/pat/example.1.0.C010/lex.l,D; test $? −eq 0 −o $? −eq 1
aegis: set +e; diff −c /dev/null /u/pat/example.1.0.C010/main.c >

/u/pat/example.1.0.C010/main.c,D; test $? −eq 0 −o $? −eq 1
aegis: project "example.1.0": change 10: difference complete
pat%

Doing a difference for a new file may appear a little pedantic, but when a change consists of tens of files, so modifi-

cations of existing files and some new, there is a temptation for reviewers to use "more *,D" and thus completely

miss the new files if it were not for this pedanticism10.

So that reviewers, and conscientious developers, may locate and view all of these difference files, the command

pat% more ‘find . −name "*,D" −print | sort‘
...examines each file...

pat%

could be used, however this is a little too long winded for most users, and so the aedmore alias does exactly this.

There is a similar aedless alias for those who prefer the less(1) command.

So now Pat is done, let’s try to sign off again:

pat% aede
aegis: project "example.1.0": change 10: no current ’aegis −Test’

registration
pat%

It didn’t work, again. This time Aegis is reminding Pat that every change must be accompanied by at least one test.

This is so that the project team can be confident at all times that a project works11. Making this a precondition to

leave the being developed state means that a reviewer can be sure that a change builds and passes its tests before it

can ever be reviewed. Pat adds the truant test:

pat% aent
aegis: project "example.1.0": change 10: file "test/00/t0001a.sh" new

test
pat%

The test file is in a weird place, eh? This is because many flavors of

are slow at searching directories, and so Aegis limits itself to 100 tests per directory. Whatever the name, Pat edits

the test file to look like this:

#!/bin/sh
#
test simple arithmetic
#
tmp=/tmp/$$
here=‘pwd‘
if [$? −ne 0]; then exit 1; fi

10 This is especially true when you use a tool such as fcomp(1) which gives a complete file listing with the inserts and deletes

marked in the margin. This tool is also available from the author of Aegis.
11 As discussed in the How Aegis Works chapter, aegis has the objective of ensuring that projects always work, where "works" is

defined as passing all tests in the project’s baseline. A change "works" if it passes all of its accompanying tests.

Page 20 (./lib/en/user-guide/c2.1.so) Peter Miller

Aegis User Guide

fail()
{

echo FAILED 1>&2
cd $here
rm −rf $tmp
exit 1

}

pass()
{

cd $here
rm −rf $tmp
exit 0

}
trap "fail" 1 2 3 15

mkdir $tmp
if [$? −ne 0]; then exit 1; fi
cd $tmp
if [$? −ne 0]; then fail; fi

#
with input like this
#
cat > test.in << ’foobar’
1
(24 − 22)
−(4 − 7)
2 * 2
10 / 2
4 + 2
10 − 3
foobar
if [$? −ne 0]; then fail; fi

#
the output should look like this
#
cat > test.ok << ’foobar’
1
2
3
4
5
6
7
foobar
if [$? −ne 0]; then fail; fi

#
run the calculator
and see if the results match
#
$here/example < test.in > test.out
if [$? −ne 0]; then fail; fi
diff test.ok test.out
if [$? −ne 0]; then fail; fi

#
this much worked
#
pass

There are several things to notice about this test file:

• It is a Bourne shell script. All test files are Bourne shell scripts because they are the most portable.12 (Actually,

12 Portable for Aegis’ point of view: Bourne shell is the most widely available shell. Of course, if you are writing code to publish

on USENET or for FTP, portability of the tests will be important from the developer’s point of view also.

Peter Miller (./lib/en/user-guide/c2.1.so) Page 21

User Guide Aegis

Aegis likes test files not to be executable, it passes them to the Bourne shell explicitly when running them.)

• It makes the assumption that the current directory is either the development directory or the baseline. This is valid,

aegis always runs tests this way; if you run one manually, you must take care of this yourself.

• It checks the exit status of each and every command. It is essential that even unexpected and impossible failures

are handled.

• A temporary directory is created for temporary files. It cannot be assumed that a test will be run from a directory

which is writable; it is also easier to clean up after strange errors, since you need only throw the directory

aw ay, rather than track down individual temporary files. It mostly protects against rogue programs scrambling

files in the current directory, too.

• Every test is self-contained. The test uses auxiliary files, but they are not separate source files (figuring where they

are when some are in a change and some are in the baseline can be a nightmare). If a test wants an auxiliary

file, it must construct the file itself, in a temporary directory.

• Two functions have been defined, one for success and one for failure. Both forms remove the temporary directory.

A test is defined as passing if it returns a 0 exit status, and failing if it returns anything else.

• Tests are treated just like any other source file, and are subject to the same process. They may be altered in another

change, or even deleted later if they are no longer useful.

The most important feature to note about this test, after ignoring all of the trappings, is that it doesn’t do much you

wouldn’t do manually! To test this program manually you would fire it up, just as the test does, you would give it

some input, just as the test does, and you would compare the output against your expectations of what it will do, just

as the test does.

The difference with using this test script and doing it manually is that most development contains many iterations of

the "build, test, think, edit, build, test..." cycle. After a couple of iterations, the manual testing, the constant re-typ-

ing, becomes obviously unergonomic. Using a shell script is more efficient, doesn’t forget to test things later, and is

preserved for posterity (i.e. adds to the regression test suite).

This efficiency is especially evident when using commands13 such as

pat% aeb && aet ; vi aegis.log
...
pat% !aeb
...
pat%

It is possible to talk to the shell extremely rarely, and then only to re-issue the same command, using a work pattern

such as this.

As you have already guessed, Pat now runs the test like this:

pat% aet
aegis: sh /u/pat/example.1.0.C010/test/00/t0001a.sh
aegis: project "example.1.0": change 10: test "test/00/t0001a.sh"

passed
aegis: project "example.1.0": change 10: passed 1 test
pat%

Finally, Pat has built the change, prepared it for review and tested it. It is now ready for sign off.

pat% aede
aegis: project "example.1.0": change 10: no current ’aegis −Build’

registration
pat%

Say what? The problem is that the use of aent canceled the previous build registration. This was because Aegis is

decoupled from the dependency maintenance tool (cook in this case), and thus has no way of knowing whether or

not the new file in the change would affect the success or failure of a build14. All that is required is to re-build, re-

13 This is a csh specific example, unlike most others.
14 Example: in addition to the executable file "example" shown here, the build may also produce an archive file of the project’s

source for export. The addition of one more file may push the size of this archive beyond a size limit; the build would thus fail be-

cause of the addition of a test.

Page 22 (./lib/en/user-guide/c2.1.so) Peter Miller

Aegis User Guide

test, re-difference (yes, the test gets differenced, too) and sign off.

pat% aeb
aegis: logging to "/u/pat/example.1.0.C010/aegis.log"
aegis: project "example.1.0": change 10: development build started
aegis: cook −b Howto.cook project=example.1.0 change=10

version=1.0.C001 −nl
cook: "all" is up−to−date
aegis: project "example.1.0": change 10: development build complete
pat% aet
aegis: logging to "/u/pat/example.1.0.C010/aegis.log"
aegis: sh /u/pat/example..1.0.C010/test/00/t0001a.sh
aegis: project "example.1.0": change 10: test "test/00/t0001a.sh"

passed
aegis: project "example.1.0": change 10: passed 1 test
pat% aed
aegis: logging to "/u/pat/example.1.0.C010/aegis.log"
aegis: set +e; diff −c /dev/null /u/pat/example.1.0.C010/test/00/

t0001a.sh > /u/pat/example.1.0.C010/test/00/t0001a.sh,D; test
$? −eq 0 −o $? −eq 1

aegis: project "example.1.0": change 10: difference complete
pat% aede
aegis: sh /usr/local/lib/de.sh example.1.0 10 pat
aegis: project "example.1.0": change 10: development completed
pat%

The change is now ready to be reviewed. This section is about developers, so we will have to leave this change at

this point in its history. Some time in the next day or so Pat receives electronic mail that this change has passed re-

view, and another later to say that it passed integration. Pat is now free to develop another change, possibly for a dif-

ferent project.

3.1.3. The Second Change

The second change was created because someone wanted to name input and output files on the command line, and

called the absence of this feature a bug. When Jan arrived for work, and lists the changes awaiting development, the

following list appeared:

jan% aedb −l −p example.1.0
Project "example.1.0"
List of Changes

Change State Description
−−−−−− −−−−−− −−−−−−−−−−−−
11 awaiting_ Add input and output file names to the

development command line.
12 awaiting_ add variables

development
13 awaiting_ add powers

development
jan%

The first on the list is chosen.

jan% aedb −c 11 −p example.1.0
aegis: project "example.1.0": change 11: development directory "/u/

jan/example.1.0.C011"
aegis: project "example.1.0": change 11: user "jan" has begun

development
jan% aecd
aegis: project "example.1.0": change 11: /u/jan/example.002
jan%

Peter Miller (./lib/en/user-guide/c2.1.so) Page 23

User Guide Aegis

The best way to get details about a change is to used the "change details" listing.

jan% ael cd
Project "example.1.0", Change 11
Change Details

NAME
Project "example.1.0", Change 11.

SUMMARY
file names on command line

DESCRIPTION
Optional input and output files may be specified on the
command line.

CAUSE
This change was caused by internal_bug.

STATE
This change is in ’being_developed’ state.

FILES
Change has no files.

HISTORY
What When Who Comment
−−−−−− −−−−−− −−−−− −−−−−−−
new_change Fri Dec 11 alex

14:55:06 1992
develop_begin Mon Dec 14 jan

09:07:08 1992
jan%

Through one process or another, Jan determines that the main.c file is the one to be modified. This file is copied

into the change:

jan% aecp main.c
aegis: project "example.1.0": change 11: file "main.c" copied
jan%

This file is now extended to look like this:

#include <stdio.h>

static void
usage()
{

fprintf(stderr, "usage: example [<infile> [<outfile>]]\n");
exit(1);

}

void
main(argc, argv)

int argc;
char **argv;

{
char *in = 0;
char *out = 0;
int j;

Page 24 (./lib/en/user-guide/c2.1.so) Peter Miller

Aegis User Guide

for (j = 1; j < argc; ++j)
{

char *arg = argv[j];
if (arg[0] == ’−’)

usage();
if (!in)

in = arg;
else if (!out)

out = arg;
else

usage();
}

if (in && !freopen(in, "r", stdin))
{

perror(in);
exit(1);

}
if (out && !freopen(out, "w", stdout))
{

perror(out);
exit(1);

}

yyparse();
exit(0);

}

A new test is also required,

jan% aent
aegis: project "example.1.0": change 11: file "test/00/t0002a.sh" new

test
jan%

which is edited to look like this:

#!/bin/sh
#
test command line arguments
#
tmp=/tmp/$$
here=‘pwd‘
if [$? −ne 0]; then exit 1; fi

fail()
{

echo FAILED 1>&2
cd $here
rm −rf $tmp
exit 1

}

pass()
{

cd $here
rm −rf $tmp
exit 0

}
trap "fail" 1 2 3 15

mkdir $tmp
if [$? −ne 0]; then exit 1; fi
cd $tmp
if [$? −ne 0]; then fail; fi

Peter Miller (./lib/en/user-guide/c2.1.so) Page 25

User Guide Aegis

#
with input like this
#
cat > test.in << ’foobar’
1
(24 − 22)
−(4 − 7)
2 * 2
10 / 2
4 + 2
10 − 3
foobar
if [$? −ne 0]; then fail; fi

#
the output should look like this
#
cat > test.ok << ’foobar’
1
2
3
4
5
6
7
foobar
if [$? −ne 0]; then fail; fi

#
run the calculator
and see if the results match
#
(Use /dev/null for input in case input redirect fails;
don’t want the test to hang!)
#
$here/example test.in test.out < /dev/null
if [$? −ne 0]; then fail; fi
diff test.ok test.out
if [$? −ne 0]; then fail; fi
$here/example test.in < /dev/null > test.out.2
if [$? −ne 0]; then fail; fi
diff test.ok test.out.2
if [$? −ne 0]; then fail; fi

#
make sure complains about rubbish
on the command line
#
$here/example −trash < test.in > test.out
if [$? −ne 1]; then fail; fi

#
this much worked
#
pass

Now it is time for Jan to build and test the change. Through the magic of static documentation, this works first time,

Page 26 (./lib/en/user-guide/c2.1.so) Peter Miller

Aegis User Guide

and here is how it goes:

jan% aeb
aegis: logging to "/u/pat/example.1.0.C011/aegis.log"
aegis: project "example.1.0": change 11: development build started
aegis: cook −b /projects/example/baseline/Howto.cook

project=example.1.0 change=11 version=1.0.C011 −nl
cook: cc −I. −I/projects/example/baseline −O −c main.c
cook: cc −o example main.o /projects/example/baseline/gram.o

/projects/example/baseline/lex.o −ll −ly
aegis: project "example.1.0": change 11: development build complete
jan% aet
aegis: logging to "/u/pat/example.1.0.C011/aegis.log"
aegis: sh /u/jan/example.1.0.C011/test/00/t0002a.sh
aegis: project "example.1.0e": change 11: test "test/00/t0002a.sh"

passed
aegis: project "example.1.0": change 11: passed 1 test
jan%

All that remains if to difference the change and sign off.

jan% aed
aegis: logging to "/u/pat/example.1.0.C011/aegis.log"
aegis: set +e; diff −c /projects/example/main.c /u/jan/

example.1.0.C011/main.c > /u/jan/example.1.0.C011/main.c,D; test $?
−eq 0 −o $? −eq 1

aegis: project "example.1.0": change 11: difference complete
jan% aedmore
...examines the file...

jan%

Note how the context difference shows exactly what has changed. And now the sign-off:

jan% aede
aegis: project "example.1.0": change 11: no current ’aegis −Test

−BaseLine’ registration
jan%

No, it wasn’t enough. Tests must not only pass against a new change, but must fail against the project baseline. This

is to establish, in the case of bug fixes, that the bug has been isolated and fixed. New functionality will usually fail

against the baseline, because the baseline can’t do it (if it could, you wouldn’t be adding it!). So, Jan needs to use a

variant of the aet command.

jan% aet −bl
aegis: sh /u/jan/example.1.0.C011/test/00/t0002a.sh
usage: example
FAILED
aegis: project "example.1.0": change 11: test "test/00/t0002a.sh" on

baseline failed (as it should)
aegis: project "example.1.0": change 11: passed 1 test
jan%

Running the regression tests is also a good idea

jan% aet −reg
aegis: logging to "/u/pat/example.1.0.C011/aegis.log"
aegis: sh /projects/example/baseline/test/00/t0001a.sh
aegis: project "example.1.0": change 11: test "test/00/t0001a.sh"

passed
aegis: project "example.1.0": change 11: passed 1 test
jan%

Peter Miller (./lib/en/user-guide/c2.1.so) Page 27

User Guide Aegis

Now Aegis will be satisfied

jan% aede
aegis: sh /usr/local/lib/aegis/de.sh example.1.0 11 jan
aegis: project "example.1.0": change 11: development completed
jan%

Like Pat in the change before, Jan will receive email that this change passed review, and later that it passed integra-

tion.

3.1.4. The Third and Fourth Changes

This section will show two people performing two changes, one each. The twist is that they hav e a file in common.

First Sam looks for a change to work on and starts, like this:

sam% aedb −l
Project "example.1.0"
List of Changes

Change State Description
−−−−−−− −−−−−−− −−−−−−−−−−−−−
12 awaiting_ add powers

development
13 awaiting_ add variables

development
sam% aedb 12
aegis: project "example.1.0": change 12: development directory "/u/

sam/example.1.0.C012"
aegis: project "example.1.0": change 12: user "sam" has begun

development
sam% aecd
aegis: project "example.1.0": change 12: /u/sam/example.1.0.C012
sam%

A little sniffing around reveals that only the gram.y grammar file needs to be altered, so it is copied into the change.

sam% aecp gram.y
aegis: project "example.1.0": change 12: file "gram.y" copied
sam%

The grammar file is changed to look like this:

%token DOUBLE
%token NAME
%union
{

double lv_double;
int lv_int;

};

%type <lv_double> DOUBLE expr
%type <lv_int> NAME
%left ’+’ ’−’
%left ’*’ ’/’
%right ’ˆ’
%right UNARY

%%
example

: /* empty */
| example command ’\n’

{ yyerrflag = 0; fflush(stderr); fflush(stdout); }
;

Page 28 (./lib/en/user-guide/c2.1.so) Peter Miller

Aegis User Guide

command
: expr

{ printf("%g\n", $1); }
| error
;

expr
: DOUBLE
| ’(’ expr ’)’

{ $$ = $2; }
| ’−’ expr

%prec UNARY
{ $$ = −$2; }

| expr ’ˆ’ expr
{ $$ = pow($1, $3); }

| expr ’*’ expr
{ $$ = $1 * $3; }

| expr ’/’ expr
{ $$ = $1 / $3; }

| expr ’+’ expr
{ $$ = $1 + $3; }

| expr ’−’ expr
{ $$ = $1 − $3; }

;

The changes are very small. Sam checks to make sure using the difference command:

sam% aed
aegis: logging to "/u/sam/example.1.0.C012/aegis.log"
aegis: set +e; diff −c /projects/example/baseline/gram.y /u/sam/

example.1.0.C012/gram.y > /u/sam/example.1.0.C012/gram.y,D; test $?
−eq 0 −o $? −eq 1

aegis: project "example.1.0": change 12: difference complete
sam% aedmore
...examines the file...

sam%

The difference file looks like this

*** /projects/example/baseline/gram.y
−−− /u/sam/example.1.0.C012/gram.y

*** 1,5 ****
−−− 1,6 −−−−
%{
#include <stdio.h>

+ #include <math.h>
%}
%token DOUBLE
%token NAME

*** 13,18 ****
−−− 14,20 −−−−
%type <lv_int> NAME
%left ’+’ ’−’
%left ’*’ ’/’

+ %right ’ˆ’
%right UNARY
%%
example

Peter Miller (./lib/en/user-guide/c2.1.so) Page 29

User Guide Aegis

*** 32,37 ****
−−− 34,41 −−−−

| ’−’ expr
%prec UNARY
{ $$ = −$2; }

+ | expr ’ˆ’ expr
+ { $$ = pow($1, $3); }

| expr ’*’ expr
{ $$ = $1 * $3; }

| expr ’/’ expr

These are the differences Sam expected to see.

At this point Sam creates a test. All good software developers create the tests first, don’t they?

sam% aent
aegis: project "example.1.0": change 12: file "test/00/t0003a.sh" new

test
sam%

The test is created empty, and Sam edit it to look like this:

:
here=‘pwd‘
if test $? −ne 0 ; then exit 1; fi
tmp=/tmp/$$
mkdir $tmp
if test $? −ne 0 ; then exit 1; fi
cd $tmp
if test $? −ne 0 ; then exit 1; fi

fail()
{

echo FAILED 1>&2
cd $here
chmod u+w ‘find $tmp −type d −print‘
rm −rf $tmp
exit 1

}

pass()
{

cd $here
chmod u+w ‘find $tmp −type d −print‘
rm −rf $tmp
exit 0

}
trap "fail" 1 2 3 15

cat > test.in << ’end’
5.3 ˆ 0
4 ˆ 0.5
27 ˆ (1/3)
end
if test $? −ne 0 ; then fail; fi

cat > test.ok << ’end’
1
2
3
end
if test $? −ne 0 ; then fail; fi

$here/example test.in < /dev/null > test.out 2>&1
if test $? −ne 0 ; then fail; fi

Page 30 (./lib/en/user-guide/c2.1.so) Peter Miller

Aegis User Guide

diff test.ok test.out
if test $? −ne 0 ; then fail; fi

$here/example test.in test.out.2 < /dev/null
if test $? −ne 0 ; then fail; fi

diff test.ok test.out.2
if test $? −ne 0 ; then fail; fi

it probably worked
pass

Everything is ready. Now the change can be built and tested, just like the earlier changes.

sam% aeb
aegis: logging to "/u/sam/example.1.0.C012/aegis.log"
aegis: project "example1.0": change 12: development build started
aegis: cook −b /projects/example/baseline/Howto.cook

project=example.1.0 change=12 version=1.0.C012 −nl
cook: yacc −d gram.y
cook: mv y.tab.c gram.c
cook: mv y.tab.h gram.h
cook: cc −I. −I/projects/example/baseline −O −c gram.c
cook: cc −I. −I/projects/example/baseline −O −c /projects/

example/baseline/lex.c
cook: cc −o example gram.o lex.o /projects/example/baseline/

main.o −ll −ly −lm
aegis: project "example": change 3: development build complete
sam%

Notice how the yacc run produces a gram.h which logically invalidates the lex.o in the baseline, and so the lex.c file

in the baseline is recompiled, using the gram.h include file from the development directory, leaving a new lex.o in

the development directory. This is the reason for the use of

#include <filename>

directives, rather then the double quote form.

Now the change is tested.

sam% aet
aegis: logging to "/u/sam/example.1.0.C012/aegis.log"
aegis: sh /u/sam/example.1.0.C012/test/00/t0003a.sh
aegis: project "example.1.0": change 12: test "test/00/t0003a.sh"

passed
aegis: project "example.1.0": change 12: passed 1 test
sam%

Peter Miller (./lib/en/user-guide/c2.1.so) Page 31

User Guide Aegis

The change must also be tested against the baseline, and fail. Sam knows this, and does it here.

sam% aet −bl
aegis: logging to "/u/sam/example.1.0.C012/aegis.log"
aegis: sh /u/sam/example.1.0.C012/test/00/t0003a.sh
1,3c1,6
< 1
< 2
< 3
−−−
> syntax error
> 5.3
> syntax error
> 4
> syntax error
> 27
FAILED
aegis: project "example.1.0": change 12: test "test/00/t0003a.sh" on

baseline failed (as it should)
aegis: project "example.1.0": change 12: passed 1 test
sam%

Running the regression tests is also a good idea.

sam% aet −reg
aegis: logging to "/u/sam/example.1.0.C012/aegis.log"
aegis: sh /projects/example/baseline/test/00/t0001a.sh
aegis: project "example.1.0": change 12: test "test/00/t0001a.sh"

passed
aegis: sh /projects/example/baseline/test/00/t0002a.sh
aegis: project "example.1.0": change 12: test "test/00/t0002a.sh"

passed
aegis: project "example.1.0": change 12: passed 2 tests
sam%

A this point Sam has just enough time to get to the lunchtime aerobics class in the staff common room.

Earlier the same day, Pat arrived for work a little after Sam, and also looked for a change to work on.

pat% aedb −l
Project "example.1.0"
List of Changes

Change State Description
−−−−−−− −−−−−−− −−−−−−−−−−−−−
13 awaiting_ add variables

development
pat%

With such a wide choice, Pat selected change 13.

pat% aedb 13
aegis: project "example.1.0": change 13: development directory "/u/

pat/example.1.0.C013"
aegis: project "example.1.0": change 13: user "pat" has begun

development
pat% aecd
aegis: project "example.1.0": change 13: /u/pat/example.1.0.C013
pat%

To get more information about the change, Pat then uses the "change details" listing:

pat% ael cd
Project "example.1.0", Change 13
Change Details

Page 32 (./lib/en/user-guide/c2.1.so) Peter Miller

Aegis User Guide

NAME
Project "example.1.0", Change 13.

SUMMARY
add variables

DESCRIPTION
Enhance the grammar to allow variables. Only single
letter variable names are required.

CAUSE
This change was caused by internal_enhancement.

STATE
This change is in ’being_developed’ state.

FILES
This change has no files.

HISTORY
What When Who Comment
−−−−−− −−−−−− −−−−− −−−−−−−
new_change Mon Dec 14 alex

13:08:52 1992
develop_begin Tue Dec 15 pat

13:38:26 1992
pat%

To add the variables the grammar needs to be extended to understand them, and a new file for remembering and re-

calling the values of the variables needs to be added.

pat% aecp gram.y
aegis: project "example.1.0": change 13: file "gram.y" copied
pat% aenf var.c
aegis: project "example.1.0": change 13: file "var.c" added
pat%

Notice how Aegis raises no objection to both Sam and Pat having a copy of the gram.y file. Resolving this con-

tention is the subject of this section.

Pat now edits the grammar file.

pat% vi gram.y
...edit the file...

pat% aed
aegis: logging to "/u/pat/example.1.0.C013/aegis.log"
aegis: set +e; diff −c /projects/example/baseline/gram.y /u/pat/

example.1.0.C013/gram.y > /u/pat/example.1.0.C013/gram.y,D; test $?
−eq 0 −o $? −eq 1

aegis: project "example.1.0": change 13: difference complete
pat%

The difference file looks like this

...hey, someone fill me in!...

The new var.c file was created empty by Aegis, and Pat edits it to look like this:

static double memory[26];

void
assign(name, value)

int name;
double value;

{
memory[name] = value;

}

Peter Miller (./lib/en/user-guide/c2.1.so) Page 33

User Guide Aegis

double
recall(name)

int name;
{

return memory[name];
}

Little remains except to build the change.

pat% aeb
aegis: logging to "/u/pat/example.1.0.C013/aegis.log"
aegis: cook −b /example.proj/baseline/Howto.cook

project=example.1.0 change=13 version=1.0.C013 −nl
cook: yacc −d gram.y
cook: mv y.tab.c gram.c
cook: mv y.tab.h gram.h
cook: cc −I. −I/projects/example/baseline −O −c gram.c
cook: cc −I. −I/projects/example/baseline −O −c /projects/

example/baseline/lex.c
cook: cc −I. −I/projects/example/baseline −O −c var.c
cook: cc −o example gram.o lex.o /projects/example/baseline/

main.o var.o −ll −ly −lm
aegis: project "example.1.0": change 13: development build complete
pat%

A new test for the new functionality is required and Pat creates one like this.

:
here=‘pwd‘
if test $? −ne 0 ; then exit 1; fi
tmp=/tmp/$$
mkdir $tmp
if test $? −ne 0 ; then exit 1; fi
cd $tmp
if test $? −ne 0 ; then exit 1; fi

fail()
{

echo FAILED 1>&2
cd $here
chmod u+w ‘find $tmp −type d −print‘
rm −rf $tmp
exit 1

}
pass()
{

cd $here
chmod u+w ‘find $tmp −type d −print‘
rm −rf $tmp
exit 0

}
trap "fail" 1 2 3 15

cat > test.in << ’end’
a = 1
a + 1
c = a * 40 + 5
c / (a + 4)
end
if test $? −ne 0 ; then fail; fi

cat > test.ok << ’end’
2
9
end
if test $? −ne 0 ; then fail; fi

Page 34 (./lib/en/user-guide/c2.1.so) Peter Miller

Aegis User Guide

$here/example test.in < /dev/null > test.out 2>&1
if test $? −ne 0 ; then fail; fi

diff test.ok test.out
if test $? −ne 0 ; then fail; fi

$here/example test.in test.out.2 < /dev/null
if test $? −ne 0 ; then fail; fi

diff test.ok test.out.2
if test $? −ne 0 ; then fail; fi

it probably worked
pass

The new files are then differenced:

pat% aed
aegis: logging to "/u/pat/example.1.0.C013/aegis.log"
aegis: set +e; diff −c /projects/example/baseline/gram.y /u/pat/

example.1.0.C013/gram.y > /u/pat/example.1.0.C013/gram.y,D; test $?
−eq 0 −o $? −eq 1

aegis: set +e; diff −c /dev/null /u/pat/example.1.0.C013/test/00/
t0004a.sh > /u/pat/example.1.0.C013/test/00/t0004a.sh,D; test
$? −eq 0 −o $? −eq 1

aegis: set +e; diff −c /dev/null /u/pat/example.1.0.C013/var.c > /u/
pat/example.1.0.C013/var.c,D; test $? −eq 0 −o $? −eq 1

aegis: project "example.1.0": change 13: difference complete
pat%

Notice how the difference for the gram.y file is still current, and so is not run again.

The change is tested.

pat% aet
aegis: logging to "/u/pat/example.1.0.C013/aegis.log"
aegis: sh /u/pat/example.1.0.C013/test/00/t0001a.sh
aegis: project "example.1.0": change 13: test "test/00/t0004a.sh"

passed
aegis: project "example.1.0": change 13: passed 2 tests
pat%

The change is tested against the baseline.

pat% aet −bl
aegis: logging to "/u/pat/example.1.0.C013/aegis.log"
aegis: sh /u/pat/example.1.0.C013/test/00/t0001a.sh
1,2c1,4
< 2
< 9
−−−
> syntax error
> syntax error
> syntax error
> syntax error
FAILED
aegis: project "example.1.0": change 13: test "test/00/t0004a.sh" on

baseline failed (as it should)
pat%

Peter Miller (./lib/en/user-guide/c2.1.so) Page 35

User Guide Aegis

And the regression tests

pat% aet −reg
aegis: logging to "/u/pat/example.1.0.C013/aegis.log"
aegis: sh /projects/example/baseline/test/00/t0001a.sh
aegis: project "example.1.0": change 13: test "test/00/t0001a.sh"

passed
aegis: sh /projects/example/baseline/test/00/t0002a.sh
aegis: project "example.1.0": change 13: test "test/00/t0002a.sh"

passed
aegis: project "example.1.0": change 13: passed 2 tests
pat%

Note how test 3 has not been run, in any form of testing. This is because test 3 is part of another change, and is not

yet integrated with the baseline.

All is finished for this change,

pat% aede
aegis: sh /usr/local/lib/de.sh example.1.0 13 pat
aegis: project "example.1.0": change 13: development completed
pat%

Anxious to get this change into the baseline, Pat now wanders down the hall in search of a reviewer, but more of that

in the next section.

Some time later, San returns from aerobics feeling much improved. All that is required for change 12 is to do de-

velop end, or is it?

sam% aede
aegis: project "example.1.0": change 12: file "gram.y" in baseline

has changed since last ’aegis −DIFFerence’ command
sam%

A little sleuthing on Sam’s part with the Aegis list command will reveal how this came about. The way to resolve

this problem is with the difference command, but the merge variant − this will merge the new baseline version, and

Sam’s edit together.

sam% aem
aegis: logging to "/u/pat/example.1.0.C012/aegis.log"
aegis: co −u’1.1’ −p /projects/example/history/gram.y,v > /tmp/

aegis.14594
/projects/example/history/gram.y,v −−> stdout revision 1.1 (unlocked)
aegis: (diff3 −e /projects/example/baseline/gram.y /tmp/

aegis.14594 /u/sam/example.003/gram.y | sed −e ’/ˆw$/d’
−e ’/ˆq$/d’; echo ’1,$p’) | ed − /projects/example/
baseline/gram.y,B > /u/sam/example.003/gram.y

aegis: project "example.1.0": change 12: merge complete
aegis: project "example.1.0": change 12: file "gram.y" was out of

date and has been merged, see "gram.y,B" for original source
aegis: new ’aegis −Build’ required
sam%

This was caused by the conflict between change 13, which is now integrated, and change 12; both of which are edit-

ing the gram.y file. Sam examines the gram.y file, and is satisfied that it contains an accurate merge of the edit done

Page 36 (./lib/en/user-guide/c2.1.so) Peter Miller

Aegis User Guide

by change 13 and the edits for this change. The merged source file looks like this:

%{
#include <stdio.h>
#include <math.h>
%}
%token DOUBLE
%token NAME
%union
{

double lv_double;
int lv_int;

};

%type <lv_double> DOUBLE expr
%type <lv_int> NAME
%left ’+’ ’−’
%left ’*’ ’/’
%right ’ˆ’
%right UNARY

%%
example

: /* empty */
| example command ’\n’

{ yyerrflag = 0; fflush(stderr); fflush(stdout); }
;

command
: expr

{ printf("%g\n", $1); }
| NAME ’=’ expr

{ assign($1, $3); }
| error
;

expr
: DOUBLE
| NAME

{ extern double recall(); $$ = recall($1); }
| ’(’ expr ’)’

{ $$ = $2; }
| ’−’ expr

%prec UNARY
{ $$ = −$2; }

| expr ’ˆ’ expr
{ $$ = pow($1, $3); }

| expr ’*’ expr
{ $$ = $1 * $3; }

| expr ’/’ expr
{ $$ = $1 / $3; }

| expr ’+’ expr
{ $$ = $1 + $3; }

| expr ’−’ expr
{ $$ = $1 − $3; }

;

The automatic merge worked because most such conflicts are actually working on logically separate portions of the

file. Two different areas of the grammar in this case. In practice, there is rarely a real conflict, and it is usually

small enough to detect fairly quickly.

Peter Miller (./lib/en/user-guide/c2.1.so) Page 37

User Guide Aegis

Sam now rebuilds:

sam% aeb
aegis: logging to "/u/sam/example.1.0.C012/aegis.log"
aegis: project "example.1.0": change 12: development build started
aegis: cook −b /projects/example/baseline/Howto.cook

project=example.1.0 change=12 version=1.0.C012 −nl
cook: rm gram.c
cook: rm gram.h
cook: yacc −d gram.y
cook: mv y.tab.c gram.c
cook: mv y.tab.h gram.h
cook: rm gram.o
cook: cc −I. −I/projects/example/baseline −O −c gram.c
cook: rm lex.o
cook: cc −I. −I/projects/example/baseline −O −c /projects/

example/baseline/lex.c
cook: rm example
cook: cc −o example gram.o lex.o /projects/example/baseline/

main.o /projects/example/baseline/var.o −ll −ly −lm
aegis: project "example.1.0": change 12: development build complete
sam%

Notice how the list of object files linked has also adapted to the addition of another file in the baseline, without any

extra work by Sam.

All that remains is to test the change again.

sam% aet
aegis: /bin/sh /u/sam/example.1.0.C012/test/00/t0003a.sh
aegis: project "example.1.0": change 12: test "test/00/t0003a.sh"

passed
aegis: project "example.1.0": change 12: passed 1 test
sam%

And test against the baseline,

sam% aet −bl
aegis: /bin/sh /u/sam/example.1.0.C012/test/00/t0003a.sh
1,3c1,6
< 1
< 2
< 3
−−−
> syntax error
> 5.3
> syntax error
> 4
> syntax error
> 27
FAILED
aegis: project "example.1.0": change 12: test "test/00/t0003a.sh" on

baseline failed (as it should)
aegis: project "example.1.0": change 12: passed 1 test
sam%

Perform the regression tests, too. This is important for a merged change, to make sure you didn’t break the function-

Page 38 (./lib/en/user-guide/c2.1.so) Peter Miller

Aegis User Guide

ality of the code you merged with.

sam% aet −reg
aegis: logging to "/u/sam/example.1.0.C012/aegis.log"
aegis: /bin/sh /projects/example/baseline/test/00/

t0001a.sh
aegis: project "example.1.0": change 12: test "test/00/t0001a.sh"

passed
aegis: /bin/sh /projects/example/baseline/test/00/

t0002a.sh
aegis: project "example.1.0": change 12: test "test/00/t0002a.sh"

passed
aegis: /bin/sh /projects/example/baseline/test/00/

t0004a.sh
aegis: project "example.1.0": change 12: test "test/00/t0004a.sh"

passed
aegis: project "example.1.0": change 12: passed 3 tests
sam%

All done, or are we?

sam% aede
aegis: project "example.1.0": change 12: no current ’aegis −Diff’

registration
sam%

The difference we did earlier, which revealed that we were out of date, does not show the differences since the two

changes were merged, and possibly further edited.

sam% aed
aegis: logging to "/u/sam/example.1.0.C012/aegis.log"
aegis: set +e; diff /projects/example/baseline/gram.y /u/pat/

example.1.0.C012/gram.y > /u/pat/example.1.0.C012/gram.y,D;
test $? −le 1

aegis: project "example.1.0": change 12: difference complete
sam%

This time everything will run smoothly,

sam% aede
aegis: project "example.1.0": change 12: development completed
sam%

Some time soon Sam will receive email that this change passed review, and later that it passed integration.

Within the scope of a limited example, you have seen most of what Aegis can do. To get a true feeling for the pro-

gram you need to try it in a similarly simple case. You could even try doing this example manually.

Peter Miller (./lib/en/user-guide/c2.1.so) Page 39

User Guide Aegis

3.1.5. Developer Command Summary

Only a few of the Aegis commands available to developers have been used in the example. The following table

(very tersely) describes the Aegis commands most useful to developers.

Command Description

aeb Build

aeca edit Change Attributes

aecd Change Directory

aeclean Clean a dev elopment directory

aeclone copy a whole change

aecp Copy File

aecpu Copy File Undo

aed Difference

aedb Develop Begin

aedbu Dev elop Begin Undo

aede Develop End

aedeu Develop End Undo

ael List Stuff

aenf New File

aenfu New File Undo

aent New Test

aentu New Test Undo

aerm Remove File

aermu Remove File Undo

aet Test

You will want to read the manual entries for all of these commands. Note that all Aegis commands have a −Help

option, which will give a result very similar to the corresponding man(1) output. Most Aegis commands also have a

−List option, which usually lists interesting context sensitive information.

/* vim: set ts=8 sw=4 et : */

Page 40 (./lib/en/user-guide/c2.2.so) Peter Miller

Aegis User Guide

3.2. The Reviewer

The role of a reviewer is to check another user’s work. You are helped in this by Aegis, because changes can never

reach the being reviewed state without several preconditions:

• The change is known to build. You know that it compiled successfully, so there is no need to search for syntax er-

rors.

• The change has tests, and those tests have been run, and have passed.

This information allows you to concentrate on implementation issues, completeness issues, and local standards is-

sues.

To help the reviewer, a set of "comma D" files is available in the change development directory. Every file which is

to be added to the baseline, removed from the baseline, or changed in some way, has a corresponding "comma D"

file.

3.2.1. Before You Start

Have you configured your account to use Aegis? See the User Setup section of the Tips and Traps chapter for how

to do this.

3.2.2. The First Change

Robyn finds out what changes are available for review by asking Aegis:

robyn% aerpass −l −p example.1.0

Project "example.1.0"
List of Changes

Change State Description
−−−−−−− −−−−−−− −−−−−−−−−−−−−
10 being_reviewed Place under Aegis

robyn%

Any of the above changes could be reviewed, Robyn chooses the first.

robyn% aecd −p example.1.0 −c 10
aegis: project "example": change 1: /u/pat/example.1.0.C010
robyn% aedmore
...examines each file...

robyn%

The aedmore command walks the development directory tree to find all of the "comma D" files, and displays them

using more(1). There is a corresponding aedless for those who prefer the less(1) command.

Once the change has been reviewed and found acceptable, it is passed:

robyn% aerpass −p example.1.0 10
aegis: sh /usr/local/lib/rp.sh example.1.0 10 pat robyn
aegis: project "example.1.0": change 10: passed review
robyn%

Some time soon Isa will notice the email notification and commence integration of the change.

3.2.3. The Second Change

Peter Miller (./lib/en/user-guide/c2.2.so) Page 41

User Guide Aegis

Most reviews have the same pattern as the first.

robyn% aerpass −l −p example.1.0

Project "example.1.0"
List of Changes

Change State Description
−−−−−−− −−−−−−− −−−−−−−−−−−−−
11 being_reviewed file names on command line

robyn%

Always change directory to the change’s dev elopment directory, otherwise you will not be able to review the files.

robyn% aecd −p example.1.0 −c 11
aegis: project "example.1.0": change 11: /u/jan/example.1.0.C011
robyn%

Another useful way of finding out about a change is the "list change details" command, viz:

robyn% ael cd −p example.1.0 −c 11

Project "example.1.0", Change 11
Change Details

NAME
Project "example.1.0", Change 11.

SUMMARY
file names on command line

DESCRIPTION
Optional input and output files may be specified on
the command line.

CAUSE
This change was caused by internal_bug.

STATE
This change is in ’being_reviewed’ state.

FILES
Type Action Edit File Name
−−−−−−− −−−−−−− −−−−−−− −−−−−−−−−−−
source modify 1.1 main.c
test create test/00/t0002a.sh

HISTORY
What When Who Comment
−−−−−− −−−−−− −−−−− −−−−−−−
new_change Fri Dec 11 alex

14:55:06 1992
develop_begin Mon Dec 14 jan

09:07:08 1992
develop_end Mon Dec 14 jan

11:43:23 1992
robyn%

Once Robyn knows what the change is meant to be doing, the files are then examined:

robyn% aedmore
...examines each file...

robyn%

Once the change is found to be acceptable, it is passed:

robyn% aerpass −p example.1.0 11
aegis: sh /usr/local/lib/rp.sh example.1.0 11 jan robyn
aegis: project "example.1.0": change 11: passed review
robyn%

Page 42 (./lib/en/user-guide/c2.2.so) Peter Miller

Aegis User Guide

Some time soon Isa will notice the email notification and commence integration of the change.

The reviews of the third and fourth changes will not be given here, because they are almost identical to the other

changes. If you want to know how to fail a review, see the aerfail(1) manual entry.

3.2.4. Reviewer Command Summary

Only a few of the Aegis commands available to reviewers have been used in this example. The following table (very

tersely) describes the Aegis commands most useful to reviewers.

Command Description

aecd Change Directory

aerpass Review Pass

aerpu Review Pass Undo

aerfail Review Fail

ael List Stuff

You will want to read the manual entries for all of these commands. Note that all Aegis commands have a −Help

option, which will give a result very similar to the corresponding man(1) output. Most Aegis commands also have a

−List option, which usually lists interesting context sensitive information.

Peter Miller (./lib/en/user-guide/c2.3.so) Page 43

User Guide Aegis

3.3. The Integrator

This section shows what the integrator must do for each of the changes shown to date. The integrator does not have

the ability to alter anything in the change; if a change being integrated is defective, it is simply failed back to the de-

veloper. This documented example has no such failures, in order to keep it manageably small.

3.3.1. Before You Start

Have you configured your account to use Aegis? See the User Setup section of the Tips and Traps chapter for how

to do this.

3.3.2. The First Change

The first change of a project is often the trickiest, and the integrator is the last to know. This example goes

smoothly, and you may want to consider using the example project as a template.

The integrator for this example project is Isa. Isa knows there is a change ready for integration from the notification

which arrived by email.

isa% aeib −l −p example.1.0

Project "example.1.0"
List of Changes

Change State Description
−−−−−−− −−−−−−− −−−−−−−−−−−−−
10 awaiting_ Place under Aegis

integration
isa% aeib example.1.0 10
aegis: project "example.1.0": change 10: link baseline to integration

directory
aegis: project "example.1.0": change 10: apply change to integration

directory
aegis: project "example.1.0": change 10: integration has begun
isa%

The integrator must rebuild and retest each change. This ensures that it was no quirk of the developer’s environment

which resulted in the success at the development stage.

isa% aeb
aegis: logging to "/projects/example/delta.001/aegis.log"
aegis: project "example.1.0": change 10: integration build started
aegis: cook −b Howto.cook project=example.1.0 change=10

version=1.0.D001 −nl
cook: yacc −d gram.y
cook: mv y.tab.c gram.c
cook: mv y.tab.h gram.h
cook: cc −I. −O −c gram.c
cook: lex lex.l
cook: mv lex.yy.c lex.c
cook: cc −I. −O −c lex.c
cook: cc −I. −O −c main.c
cook: cc −o example gram.o lex.o main.o −ll −ly
aegis: project "example.1.0": change 10: integration build complete
isa%

Notice how the above build differed from the builds that were done while in the being developed state; the extra

baseline include is gone. This is because the integration directory will shortly be the new baseline, and must be en-

tirely internally consistent and self-sufficient.

You are probably wondering why this isn’t all rolled into the one Aegis command. It is not because there may be

some manual process to be performed after the build and before the test. This may be making a command set-uid-

root (as in the case of Aegis itself) or it may require some tinkering with the local oracle or ingress database. In-

structions for the integrator may be placed in the description field of the change attributes.

Page 44 (./lib/en/user-guide/c2.3.so) Peter Miller

Aegis User Guide

The change is now re-tested:

isa% aet
aegis: logging to "/projects/example/delta.001/aegis.log"
aegis: sh /project/example/delta.001/test/00/t0001a.sh
aegis: project "example": change 1: test "test/00/t0001a.sh"

passed
aegis: project "example": change 1: passed 1 test
isa%

The change builds and tests. Once Isa is happy with the change, perhaps after browsing the files, Isa then passes the

integration, causing the history files to be updated and the integration directory becomes the baseline.

isa% aeipass
aegis: logging to "/projects/example/delta.001/aegis.log"
aegis: ci −u −m/dev/null −t/dev/null /projects/example/delta.001/

Howto.cook /projects/example/history/Howto.cook,v;
rcs −U /projects/example/history/Howto.cook,v

/projects/example/history/Howto.cook,v <−−
/projects/example/delta.001/Howto.cook

initial revision: 1.1
done
RCS file: /projects/example/history/Howto.cook,v
done
aegis: rlog −r /projects/example/history/Howto.cook,v | awk

’/ˆrevision/ {print $2}’ > /tmp/aegis.15309
...lots of similar RCS output...

aegis: project "example.1.0": change 10: remove development directory
aegis: sh /usr/local/lib/ip.sh example.1.0 10 pat robyn isa
aegis: project "example.1.0": change 10: integrate pass
isa%

All of the staff inv olved, will receive email to say that the change has been integrated. This notification is a shell

script, so USENET could be usefully used instead.

You should note that the development directory has been deleted. It is expected that each development direc-

tory will only contain files necessary to develop the change. You should keep "precious" files somewhere else.

3.3.3. The Other Changes

There is no difference to integrating any of the later changes. The integration process is very simple, as it is a cut-

down version of what the developer does, without all the complexity.

Your project may elect to have the integrator also monitor the quality of the reviews. An answer to "who will watch

the watchers" if you like.

It is also a good idea to rotate people out of the integrator position after a few weeks in a busy project, this is a very

stressful position. The position of integrator gives a unique perspective to software quality, but the person also needs

to be able to say "NO!" when a cruddy change comes along.

Peter Miller (./lib/en/user-guide/c2.3.so) Page 45

User Guide Aegis

3.3.4. Integrator Command Summary

Only a few of the Aegis commands available to integrators have been used in this example. The following table

(very tersely) describes the Aegis commands most useful to integrators.

Command Description

aeb Build

aecd Change Directory

aed Difference

aeib Integrate Begin

aeibu Integrate Begin Undo

aeifail Integrate Fail

ael List Stuff

aet Test

aeipass Integrate Pass

You will want to read the manual entries for all of these commands. Note that all Aegis commands have a −Help

option, which will give a result very similar to the corresponding man(1) output. Most Aegis commands also have a

−List option, which usually lists interesting context sensitive information.

3.3.5. Minimum Integrations

The aegis −integrate-begin command provides a −minimum option which may be used for various reasons. The

term minimum may be a bit counter intuitive. One might think it means to the minimum amount of work, however

it actually means use a minimum of files from the baseline in populating the delta directory. This normally leads to

actually building everything in the project from sources and, as such, might be considered the most robust of builds.

Note that any change which removes a file, whether by aerm or aemv, results in an implicit minimum integration.

This is intended to ensure nothing in the project references the removed file.

A project may adopt a policy that a product release should be based on a minimum integration. Such a policy may

be a reflection of local confidence, or lack therof, in the projects DMT (Dependency Maintenance Tool) or build sys-

tem. Or it may be based on a validation process wishing to make a simple statement on how the released package

was produced.

Another, more transient, reason a to require a minimum integration might be when upgrading a third party library,

compiler or maybe even OS lev el. Any of these events would signal the need for a minimum integration to ensure

ev erything is rebuilt using the new resources.

The cost of a minimum integration varies according to type and size of the project. For very large projects, espe-

cially those building large numbers of binaries, the cost can be large. However large projects also require significant

time to fully populate the delta directory. A minimum integration only copies those files under aegis control, skip-

ping all “produced” files. In the case where a file upon which everything depends is changed, everything will be

built anyway so the copy of the already built files is a waste of time. This means that sometimes a minimum can be

as cheap as a normal integration.

Page 46 (./lib/en/user-guide/c2.4.so) Peter Miller

Aegis User Guide

3.4. The Administrator

The previous discussion of developers, reviewers and integrators has covered many aspects of the production of soft-

ware using Aegis. The administrator has responsibility for everything they don’t, but there is very little left.

These responsibilities include:

• access control: The administrator adds and removes all categories of user, including administrators. This is on a

per-project basis, and has nothing to do with

user administration. This simply nominates which users may do what.

• change creation: The administrator adds (and sometimes removes) changes to the system. At later stages, develop-

ers may alter some attributes of the change, such as the description, to say what they fixed.

• project creation: Aegis does not limit who may create projects, but when a project is created the user who created

the project is set to be the administrator of that project.

All of these things will be examined

3.4.1. Before You Start

Have you configured your account to use Aegis? See the User Setup section of the Tips and Traps chapter for how

to do this.

3.4.2. The First Change

Many things need to happen before development can begin on the first change; the project must be created, the staff

but be giv en access permissions, the branches created, and the change must be created.

alex% aenpr example −dir /projects/example −version −
aegis: project "example": project directory "/projects/example"
aegis: project "example": created
alex%

Once the project has been created, the project attributes are set. Alex will set the desired project attributes using the

−Edit option of the aepa command. This will invoke an editor (vi(1) by default) to edit the project attributes. Alex

edits them to look like this:

description = "Aegis Documentation Example Project";
developer_may_review = false;
developer_may_integrate = false;
reviewer_may_integrate = false;

The project attributes are set as follows:

alex% aepa −edit −p example
...edit as above...

aegis: project "example.1.0": attributes changed
alex% ael p
List of Projects

Project Directory Description
−−−−−−− −−−−−−−−−−− −−−−−−−−−−−−−
example /projects/example Aegis Documentation Example

Project
alex%

The various staff must be added to the project. Developers are the only staff who may actually edit files.

alex% aend pat jan sam −p example
aegis: project "example": user "pat" is now a developer
aegis: project "example": user "jan" is now a developer
aegis: project "example": user "sam" is now a developer
alex%

Peter Miller (./lib/en/user-guide/c2.4.so) Page 47

User Guide Aegis

Reviewers may veto a change. There may be overlap between the various categories, as show here for Jan:

alex% aenrv robyn jan −p example
aegis: project "example": user "robyn" is now a reviewer
aegis: project "example": user "jan" is now a reviewer
alex%

The next role we need to fill is an integrator.

alex% aeni isa −p example
aegis: project "example": user "isa" is now an integrator
alex%

Once the staff hav e been given access, it is time to create the working branch. Branches inherit their attributes and

staff lists from their parent branches when they are first created, which is why we set all that stuff first.

alex% aegis −nbr −p example 1
aegis: project "example.1": created
alex% aegis −nbr −p example.1 0
aegis: project "example.1.0": created
alex%

This is for versioning; see the Branching chapter for more information. For the moment, we will simply work on

branch 1.0. Notice how the branches appear as projects in the project listing; in general branches can be used inter-

changeably with projects.

alex% ael p
List of Projects

Project Directory Description
−−−−−−− −−−−−−−−−−− −−−−−−−−−−−−−
example /projects/example Aegis Documentation Example

Project
example.1 /projects/example/ Aegis Documentation Example

branch.1 Project, branch.1.
example.1.0 /projects/example/ Aegis Documentation Example

branch.1/branch.0 Project, branch.1.0.
alex%

Once the working branch has been created, Alex creates the first change. The −Edit option of the aenc command is

used, to create the attributes of the change. They are edited to look like this:

brief_description = "Create initial skeleton.";
description = "A simple calculator using native \
floating point precision. \
The four basic arithmetic operators to be provided, \
using conventional infix notation. \
Parentheses and negation also required.";
cause = internal_enhancement;

The change is created as follows:

alex% aenc −edit −p example.1.0
...edit as above...

aegis: project "example.1.0": change 10: created
alex%

Notice that the first change number is “10”. This is done so that changes 1 to 9 could be used as bug-fix branches at

some future time. See the Branching chapter for more information. You can over-ride this is you need to.

The above was written almost a decade ago. There is a newer command, tkaenc, which uses a GUI and is much eas-

ier to use, with a much less fiddly interface. You may want to try that command, instead, for most routine change

creation.

At this point, Alex walks down the hall to Pat’s off ice, to ask Pat to develop the first change. Pat has had some prac-

tice using Aegis, and can be relied on to do the rest of the project configuration speedily.

Page 48 (./lib/en/user-guide/c2.4.so) Peter Miller

Aegis User Guide

3.4.3. The Second Change

Some time later, Alex patiently sits through the whining and grumbling of an especially pedantic user. The follow-

ing change description is duly entered:

brief_description = "file names on command line";
description = "Optional input and output files may be \
specified on the command line.";
cause = internal_bug;

The pedantic user wanted to be able to name files on the command line, rather than use I/O redirection. Also, hav-

ing a bug in this example is useful. The change is created as follows:

alex% aenc −edit −p example.1.0
...edit as above...

aegis: project "example.1.0": change 11: created
alex%

At some point a developer will notice this change and start work on it.

3.4.4. The Third Change

Other features are required for the calculator, and also for this example. The third change adds exponentiation to the

calculator, and is described as follows:

brief_description = "add powers";
description = "Enhance the grammar to allow exponentiation. \
No error checking required.";
cause = internal_enhancement;

The change is created as follows:

alex% aenc −edit −p example.1.0
...edit as above...

aegis: project "example.1.0": change 12: created
alex%

At some point a developer will notice, and this change will be worked on.

3.4.5. The Fourth Change

A fourth change, this time adding variables to the calculator is added.

brief_description = "add variables";
description = "Enhance the grammar to allow variables. \
Only single letter variable names are required.";
cause = internal_enhancement;

The change is created as follows:

alex% aenc −edit −p example.1.0
...edit as above...

aegis: project "example.1.0": change 13: created
alex%

At some point a developer will notice, and this change will be worked on.

3.4.6. Administrator Command Summary

Only a few of the Aegis commands available to administrators have been used in this example. The following table

lists the Aegis commands most useful to administrators.

Command Description

aeca edit Change Attributes

ael List Stuff

aena New Administrator

Peter Miller (./lib/en/user-guide/c2.4.so) Page 49

User Guide Aegis

aenc New Change

aencu New Change Undo

aend New Dev eloper

aeni New Integrator

aenpr New Project

aenrv New Reviewer

aepa edit Project Attributes

aera Remove Administrator

aerd Remove Dev eloper

aeri Remove Integrator

aermpr Remove Project

aerrv Remove Reviewer

You will want to read the manual entries for all of these commands. Note that all Aegis commands have a −Help

option, which will give a result very similar to the corresponding man(1) output. Most Aegis commands also have a

−List option, which usually lists interesting context sensitive information.

Page 50 (./lib/en/user-guide/c2.0.so) Peter Miller

Aegis User Guide

3.5. What to do Next

This chapter has given an overview of what using Aegis

feels like. As a next step in getting to know Aegis, it

would be a good idea if you created a project and went

through this same exercise. You could use this exact ex-

ample, or you could use a similar small project. The

idea is simply to run through many of the same steps as

in the example. Typos and other natural events will en-

sure that you come across a number of situations not di-

rectly covered by this chapter.

If you have not already done do, a printed copy of the

section 1 and 5 manual entries will be invaluable. If you

don’t want to use that many trees, they will be available

on-line, by using the "−Help" option of the appropriate

command variant. Try:

% aedb −help
...manual entry...

%

Note that this example has not demonstrated all of the

available functionality. One item of particular interest is

that tests, like any other source file, may be copied into a

change and modified, or even deleted, just like any other

source file.

3.6. Common Questions

There are a number of questions which are frequently

asked by people evaluating Aegis. This section attempts

to address some of them.

3.6.1. Insulation

The repository model used by Aegis is of the “push”

type − that is, changes to the baseline are “pushed” onto

the developer as soon as they are integrated. Many con-

figuration management systems have a “pull” model,

where the developer elects when to cope with changes in

the repository. At first glance, Aegis does not appear to

have a “pull” equivalent.

It is possible to insulate your change from the baseline as

much or as little as required. The aecp(1) command,

used to copy files into a change, has a −read-only
option. The files copied in this way are marked as insu-

lation (i.e. you don’t intend to change them). If you have

not un-copied them at develop end time, the aede(1)

command will produce a suitable error message, remind-

ing you to un-copy the insulation and verify that your

change still builds and tests successfully with the (proba-

bly) now-different baseline.

3.6.1.1. Copy Read-Only

It is possible to select the degree of insulation. By using

“aecp .” at the top of a development directory, the

complete project source tree will be copied, thus com-

pletely insulating you. Mind you, it comes at the cost of

a complete build.

If you are working on a library, and only want the rest of

the library to remain fixed, simply copy the whole li-

brary (aecp library/fred), and allow the rest to

track the baseline. This comes at a smaller cost, because

more of the baseline’s object files can be taken advan-

tage of.

3.6.1.2. Branches

It is also possible to create a sub-branch (see the Branch-

ing chapter). This does not itself automatically insulate,

however the first change of a branch intended to insulate

would copy and integrate but not modify the files to be

insulated. You need to remember to perform a cross-

branch merge with the parent branch before integrating

the branch back into the parent branch.

3.6.1.3. Builds

You can also insulate yourself from baseline change by

being selective about what you choose to build. You can

do this by giving specific build targets on the aeb(1)

command line, or you could copy the build tool’s config-

uration file and butcher it. Remember to change it back

before you aede(1) your change!

3.6.1.4. Mix-and-Match

Some or all of the above techniques may be combined to

provide an insulation technique best suited to your

project and development policy. E.g. changing the build

configuration file for a branch dedicated to working on a

small portion of a large project; towards the ed of the de-

velopment, change the build configuration file back and

perform integration testing.

3.6.1.5. Disadvantages

There is actually a down-side to insulating your changes

from the evolution of the baseline. By noticing and

adapting to the baseline, you have much less merging to

do at the end of your change set. Each integration will

typically be be modest, but the cumulative effect could

be substantial, and add a huge unexpected (and un-bud-

geted for) time penalty.

It also means that if there are integration problems be-

tween your work and the changes which were integrated

before yours, or if your work shows up a bug in their

work, the project find this out late, rather than early. The

literature, based on industrial experience, indicates that

the earlier problems are found the cheaper they are to

fix.

Peter Miller (./lib/en/user-guide/c2.6.so) Page 51

User Guide Aegis

Insulated development directories also use more disk

space. While disk space is relatively cheap these days, it

can still add up to a substantial hit for a large develop-

ment team. Un-insulated development directories can

take advantage of the pre-compiled objects and libraries

in the baseline.

3.6.2. Partial Check-In

In the course of developing new functionality, it is very

common to come across a pre-existing bug which the

new functionality exposes. It is common for such bugs

to be fixed by the developer in the same development di-

rectory, in order to get the new functionality to a testable

state.

There are two common courses of action at this point:

simply include the bug fix with the rest of the change, or

integrate the bug fix earlier than the rest of the change.

Combining the bug fix with the rest of the change can

have nasty effects on statistics: it can hide the true bug

level from your metrics program, and it also denies

Aegis the opportunity of having accurate test correla-

tions (see aet(1) for more information.) It also denies

the rest of the development team the use of the bug fix,

or worse, it allows the possibility that more than one

team member will fix the bug, wasting development ef-

fort and time.

Many configuration management systems allow you to

perform a partial check-in of a work area. This means

that you can check-in just the bug fix, but continue to

work on the unfinished portions of the functionality you

are implementing.

Because Aegis insists on atomic change sets which are

known to build and test successfully, such a partial

check-in is not allowed − because Aegis can’t know for

certain that it works.

Instead, you are able to clone a change (see aeclone(1)

for more information). This gives you a new change,

and a second development directory, with exactly the

same files. You then remove from this second change all

of the files not related to the bug fix (using aecpu(1),

aenfu(11), etc). You then create a test, build, difference,

run the test, develop end, all as usual.

The original change will then need to be merged with the

baseline, because the bug fix change will have been inte-

grated before it. Usually this is straight-forward, as you

already have the changes (some merge tools make this

harder than others). Often, all that is required is to

merge, and then say “aecpu −unch” to un-copy all

files which are (now) unchanged when compared to the

current baseline.

3.6.3. Multiple Active Branches

Some companies have multiple branches active at the

same time, for different customers or distributions, etc.

They often need to make the same change to more than

one branch. Some configuration management systems

allow you to check-in the same file multiple times, once

to each active branch. Aegis does not let you do this, be-

cause you need to convince Aegis that the change set

will build and test cleanly on each branch. It is quite

common for the change to require non-trivial edits to

work on each branch.

3.6.3.1. Cloning

Aegis instead provides two mechanisms to handle this.

The first, and simplest to understand, is to clone the

change onto each relevant branch (rather than onto the

same branch, as mentioned above for bug fixes). Then

build and test as normal.

3.6.3.2. Ancestral

The second technique is more subtle. Perform the fix as

a change to the common ancestor of both branches. This

assumes that neither branch is insulated against the rele-

vant area of code, and that earlier changes to the branch

do not mask it in some way (otherwise a cross-branch

merge with the common ancestor will be needed to prop-

agate the fix).

3.6.4. Collaboration

It is often the case that difficult problems are tackled by

small groups of 2 or 3 staff working together. In order to

do this, they often work in a shared work area with

group-writable or global-write permissions. However,

this tends to give security auditor heart attacks.

Aegis has several different ways to achieve the same

ends, and still not give the auditors indigestion.

3.6.4.1. Change Owner

The simplest method available is to change the owner-

ship of a change from one developer to the next. A new

development directory is created for the new dev eloper,

and the source files are copied across15. This allows a

kind of serial collaboration between developers.

3.6.4.2. Branch

The other possibility is to create a branch to perform the

work in, rather than a simple change. (A branch in

Aegis is literally just a big change, which has lots of sub-

changes.) This allows parallel collaboration between

15 For the technically minded: the chown(2) system call has

semantics which vary too widely between

variants and file-systems to be useful.

Page 52 (./lib/en/user-guide/c2.6.so) Peter Miller

Aegis User Guide

developers.

3.6.4.3. View Path Hacking

Aegis usually provides a “view path” to the build tool.

This specifies where to look for source files and derived

files, in order to union together the development direc-

tory, and the baseline, and the branch’s ancestors’ base-

lines. If you run the build by hand, rather than through

Aegis, you can add another developer’s dev elopment di-

rectory to the view path, after your own development di-

rectory, but before the baseline.

This has many of the advantages of the branch method,

but none of the safeguards. In particular, if the other de-

veloper edits a file, and it no longer compiles, your de-

velopment directory will not, either.

Peter Miller (./lib/en/user-guide/c3.0.so) Page 53

User Guide Aegis

4. The History Tool

Aegis is decoupled from the history mechanism. This

allows you to use the history mechanism of your choice,

SCCS or RCS, for example. You may even wish to write

your own.

The intention of this is that you may use a history mech-

anism which suits your special needs, or the one that

comes free with your flavour of

operating system.

Aegis uses the history mechanism for file history and so

does not require many of the features of SCCS or RCS.

This simplistic approach can sometimes make the inter-

face to these utilities look a little strange.

4.1. History File Names

In order to track project source file renames and yet pre-

serve a continuous history, the name of each source file

and the name of each corresponding history file have

nothing in common. The history file will have the same

name (both on the local repository and any remote repos-

itory it is in) no matter how many times the source file is

renamed.

Each source file is assigned universally unique identifier

(UUID) when it is first created. This attribute, unlike the

source file’s name, is immutable and thus is suitable for

use when forming the name of the history file.

4.2. Interfacing

The history mechanism interface is found in the project

configuration file called aegis.conf , relative to the root

of the baseline. It is a source file and subject to the same

controls as any other source file. The history fields of

the file are described as follows

4.2.1. history_create_command

This field is used to create a new history. The command

is always executed as the project owner. Substitutions

available for the command string are:

${Input}

absolute path of source file

${History}

absolute path of history file

In addition, all substitutions described in aesub(5) are

available.

This command should be identical to the history_put_-

command otherwise mysterious things can happen when

branches are ended.

4.2.2. history_get_command

This field is used to get a file from history. The com-

mand may be executed by developers. Substitutions

available for the command string are:

${History}

absolute path of history file

${Edit}

edit number, as giv en by the history_query_-

command.

${Output}

absolute path of destination file

In addition, all substitutions described in aesub(5) are

available.

4.2.3. history_put_command

This field is used to add a new change to the history.

The command is always executed as the project owner.

Substitutions available for the command string are:

${Input}

absolute path of source file

${History}

absolute path of history file

In addition, all substitutions described in aesub(5) are

available.

This command should be identical to the history_-

create_command otherwise mysterious things can hap-

pen when branches are ended.

4.2.4. history_query_command

This field is used to query the topmost edit of a history

file. Result to be printed on the standard output. This

command may be executed by developers. Substitutions

available for the command string are:

${History}

absolute path of history file

In addition, all substitutions described in aesub(5) are

available.

4.2.5. history_content_limitation

This field describes the content style which the history

tool is capable of working with.

ascii_text

The history tool can only cope with files which

contain printable ASCII characters, plus space, tab

and newline. The file must end with a newline.

This is the default.

international_text

The history tool can only cope with files which do

not contain the NUL character. The file must end

Page 54 (./lib/en/user-guide/c3.0.so) Peter Miller

Aegis User Guide

with a newline.

binary_capable

The history tool can cope with files without any

limitation on the form of the contents.

When a file is added to the history (by either the

history_create_command or the history_put_command

field) it is examined for conformance to this limitation.

If there is a problem, the file is encoded in either the

MIME quoted printable or the MIME Base 64 encoding

(see RFC 1521), whichever is smaller, before being

given to the history tool. The file in the baseline is un-

changed.

On extract (the history_get_command field) the encoding

is reversed, using information attached to the change file

information. This is because each put could use a differ-

ent encoding (although in practice, file contents rarely

change that dramatically, and the same encoding is likely

to be deduced every time).

4.2.6. history_tool_trashes_file

Many history tools (e.g. RCS) can modify the contents

of the file when it is committed. While there are usually

options to turn this off, they are seldom used. The prob-

lem is: if the commit changes the file, the source in the

repository now no longer matches the object file in the

repository − i.e. the history tool has compromised the

referential integrity of the repository.

By default, when this happens Aegis issues a fatal error

(at intergate pass time). You can turn this into a warning

if you are convinced this is irrelevant. This would only

make sense if the substition only ever occurs in com-

ments. See aepconf(5) for more information on the val-

ues for this field.

4.2.7. Quoting Filenames

The default setting is for Aegis to reject filenames which

contain shell special characters. This ensures that file-

names may be substituted into the commands without

worrying about whether this is safe. If you set the

shell_safe_filenames field of the project aegis.conf file to

false, you will need to surround filenames with the

${quote filename} substitution. This will only quote

filenames which actually need to be quoted, so users

usually will not notice. This applies to all of the various

filenames in the commands in the sections which follow.

4.2.8. Templates

The source distribution contains numerous configuration

examples in a directory called lib/config.example/ which

is installed into /usr/local/share/config.example/ by de-

fault. In the interests of accuracy, it may be best to copy

configurations from there, rather than copy-type the ones

below.

Peter Miller (./lib/en/user-guide/c3.5.so) Page 55

User Guide Aegis

4.3. Using aesvt

The aesvt(1) command is distributed with Aegis. It sup-

ports binary files, has versy small history files, and has

good end-to-end behaviour. The entries for the com-

mands are listed below.

4.3.1. history_create_command

This command is used to create a new file history. This

command is always executed as the project owner.

The following substitutions are available:

${Input}

absolute path of the source file

${History}

absolute path of the history file

The entry in the aegis.conf file looks like this:

history_create_command =
"aesvt −checkin "
"−history $history "
"−f $input"
;

4.3.2. history_put_command

It is essential that the history_create_command and the

history_put_command are identical. It is a historical ac-

cident that there are two separate commands: before

Aegis supported branches, this was not a requirement.

4.3.3. history_get_command

This command is used to get a specific edit back from

history. This command is always executed as the project

owner.

The following substitutions are available:

${History}

absolute path of the history file

${Edit}

edit number, as giv en by history_query_command

${Output}

absolute path of the destination file

The entry in the aegis.conf file looks like this:

history_get_command =
"aesvt −checkout "
"−history $history "
"−edit $edit "
"−o $output"
;

4.3.4. history_query_command

This command is used to query what the history mecha-

nism calls the top-most edit of a history file. The result

may be any arbitrary string, it need not be anything like

a number, just so long as it uniquely identifies the edit

for use by the history_get_command at a later date. The

edit number is to be printed on the standard output. This

command is always executed as the project owner.

The following substitutions are available:

${History}

absolute path of the history file

The entry in the aegis.conf file looks like this:

history_query_command =
"aesvt −query "
"−history $history"
;

4.3.5. Templates

The lib/config.example/aesvt file in the Aegis distribu-

tion (installed as /usr/local/share/config.example/aesvt

by default) contains all of the above commands, so that

you may readily insert them into your project configura-

tion file.

Also, there are some subtleties to writing the commands,

which are not present in the above examples. In particu-

lar, being able to support file names which contain char-

acters which are special to the shell requires the use of

the ${quote} substitution around all of the files names in

the commands.

In addition, it is possible to store meta-data with each

version. For example: “Description=${quote
($version) ${change description}}” in-

serts the version number and the brief description into

the file’s log. This means that using the aesvt −list op-

tion will provide quite useful summaries.

4.3.6. Binary Files

The aesvt(1) command is able to cope with binary files.

Set

history_content_limitation =
binary_capable;

so that Aegis knows that no encoding is required.

Page 56 (./lib/en/user-guide/c3.1.so) Peter Miller

Aegis User Guide

4.4. Using SCCS

The entries for the commands are listed below. SCCS

uses a slightly different model than Aegis wants, so

some maneuvering is required. The command strings in

this section assume that the SCCS command sccs is in

the command search PATH, but you may like to hard-

wire the path, or set PATH at the start of each command.

(It is also possible that you need to say “delta” instead of

“sccs delta”. if this is the case, this command needs to

be in the path.) You should also note that the strings are

always handed to the Bourne shell to be executed, and

are set to exit with an error immediately a sub-command

fails.

One further assumption is that the ae-sccs-put(1) com-

mand, which is distributed with Aegis, is in the com-

mand search path. This insulates some of the weirdness

that SCCS carries on with, and makes the commands be-

low comprehensible.

4.4.1. history_create_command

This command is used to create a new project history.

The command is always executed as the project owner.

The following substitutions are available:

${Input}

absolute path of the source file

${History}

absolute path of the history file

The entry in the aegis.conf file looks like this:

history_create_command =
"ae−sccs−put −y$version −G$input "
" ${d $h}/s.${b $h}";

It is important that the history_create_command and the

history_put_command be the same. This is necessary

for branching to work correctly.

4.4.2. history_get_command

This command is used to get a specific edit back from

history. The command may be executed by developers.

The following substitutions are available:

${History}

absolute path of the history file

${Edit}

edit number, as giv en by history_query_command

${Output}

absolute path of the destination file

The entry in the aegis.conf file looks like this:

history_get_command =
"get −r’$e’ −s −p −k "
" ${d $h}/s.${b $h} > $o";

4.4.3. history_put_command

This command is used to add a new "top-most" entry to

the history file. This command is always executed as the

project owner.

The following substitutions are available:

${Input}

absolute path of source file

${History}

absolute path of history file

The entry in the aegis.conf file looks like this:

history_put_command =
"ae−sccs−put −y$version −G$input "
" ${d $h}/s.${b $h}";

Note that the SCCS file is left in the not-edit state, and

that the source file is left in the baseline.

It is important that the history_create_command and the

history_put_command be the same. This is necessary

for branching to work correctly.

4.4.4. history_query_command

This command is used to query what the history mecha-

nism calls the top-most edit of a history file. The result

may be any arbitrary string, it need not be anything like

a number, just so long as it uniquely identifies the edit

for use by the history_get_command at a later date. The

edit number is to be printed on the standard output. This

command may be executed by developers.

The following substitutions are available:

${History}

absolute path of the history file

The entry in the aegis.conf file looks like this:

history_query_command =
"get −t −g ${d $h}/s.${b $h}";

Note that "get" reports the edit number on stdout.

4.4.5. Templates

The lib/config.example/sccs file in the Aegis distribution

contains all of the above commands (installed as /usr/lo-

cal/share/example.config/sccs by default) so that you

may readily insert them into your project configuration

file (called aegis.conf by default, see aepconf(5) for how

to call it something else).

Also, there are some subtleties to writing the commands,

which are not present in the above examples. In particu-

lar, being able to support file names which contain char-

acters which are special to the shell requires the use of

the ${quote} substitution around all of the files names in

the commands.

Peter Miller (./lib/en/user-guide/c3.1.so) Page 57

User Guide Aegis

In addition, it is possible to have a much more useful de-

scription for the −y option. For example: “−y${quote
($version) ${change description}}” in-

serts the version number and the brief description into

the file’s log. This means that using the sccs prs(1) com-

mand will provide quite useful summaries.

4.4.6. Binary Files

SCCS is unable to cope with binary files. However,

Aegis will transparently encode all such files, if you

leave the history_content_limitation field unset.

Page 58 (./lib/en/user-guide/c3.2.so) Peter Miller

Aegis User Guide

4.5. Using RCS

The entries for the commands are listed below. RCS

uses a slightly different model than aegis wants, so some

maneuvering is required. The command strings in this

section assume that the RCS commands ci and co and

rcs and rlog are in the command search PATH, but you

may like to hard-wire the paths, or set PATH at the start

of each. You should also note that the strings are always

handed to the Bourne shell to be executed, and are set to

exit with an error immediately a sub-command fails.

In these commands, the RCS file is kept unlocked, since

only the owner will be checking changes in. The RCS

functionality for coordinating shared access is not re-

quired.

One advantage of using RCS version 5.6 or later is that

binary files are supported, should you want to have bi-

nary files in the baseline.

4.5.1. history_create_command

This command is used to create a new file history. This

command is always executed as the project owner.

The following substitutions are available:

${Input}

absolute path of the source file

${History}

absolute path of the history file

The entry in the aegis.conf file looks like this:

history_create_command =
"ci −u −d −M −m$c −t/dev/null \
$i $h,v; rcs −U $h,v";

The "ci −u" option is used to specify that an unlocked

copy will remain in the baseline. The "ci −d" option is

used to specify that the file time rather than the current

time is to be used for the new revision. The "ci −M"

option is used to specify that the mode date on the origi-

nal file is not to be altered. The "ci −t" option is used

to specify that there is to be no description text for the

new RCS file. The "ci −m" option is used to specify

that the change number is to be stored in the file log if

this is actually an update (typically from aenf after aerm

on the same file name). The "rcs −U" option is used to

specify that the new RCS file is to have unstrict locking.

It is essential that the history_create_command and the

history_put_command are identical. It is a historical ac-

cident that there are two separate commands: before

Aegis supported branches, this was not a requirement.

4.5.2. history_get_command

This command is used to get a specific edit back from

history. This command is always executed as the project

owner.

The following substitutions are available:

${History}

absolute path of the history file

${Edit}

edit number, as giv en by history_query_command

${Output}

absolute path of the destination file

The entry in the aegis.conf file looks like this:

history_get_command =
"co −r’$e’ −p $h,v > $o";

The "co −r option is used to specify the edit to be re-

trieved. The "co −p option is used to specify that the

results be printed on the standard output; this is because

the destination filename will never look anything like

the history source filename.

4.5.3. history_put_command

This command is used to add a new "top-most" entry to

the history file. This command is always executed as the

project owner.

The following substitutions are available:

${Input}

absolute path of source file

${History}

absolute path of history file

The entry in the aegis.conf file looks like this:

history_put_command =
"ci −u −d −M −m$c −t/dev/null \
$i $h,v; rcs −U $h,v";

Uses ci to deposit a new revision, using −d and −M as

described for history_create_command. The −m flag

stores the change number in the file log, which allows

rlog(1) to be used to find the Aegis change numbers to

which each revision of the file corresponds.

The "ci −u" option is used to specify that an unlocked

copy will remain in the baseline. The "ci −d" option is

used to specify that the file time rather than the current

time is to be used for the new revision. The "ci −M"

option is used to specify that the mode date on the origi-

nal file is not to be altered. The "ci −m" option is used

to specify that the change number is to be stored in the

file log, which allows rlog to be used to find the change

numbers to which each revision of the file corresponds.

You might want to use −m$p,$c instead which stores

both the project name and the change number. Or

−m$version, which will be composed of the branch

and the delta. These make it much easier to track

changes across branches.

It is essential that the history_create_command and the

history_put_command are identical. It is a historical

Peter Miller (./lib/en/user-guide/c3.2.so) Page 59

User Guide Aegis

accident that there are two separate commands: before

Aegis supported branches, this was not a requirement.

4.5.4. history_query_command

This command is used to query what the history mecha-

nism calls the top-most edit of a history file. The result

may be any arbitrary string, it need not be anything like

a number, just so long as it uniquely identifies the edit

for use by the history_get_command at a later date. The

edit number is to be printed on the standard output. This

command is always executed as the project owner.

The following substitutions are available:

${History}

absolute path of the history file

The entry in the aegis.conf file looks like this:

history_query_command =
"rlog −r $h,v | "
"awk ’/ˆrevision/ {print $$2}’";

4.5.5. merge_command

RCS also provides a merge program, which can be used

to provide a three-way merge.

All of the command substitutions described in aesub(5)

are available. In addition, the following substitutions are

also available:

${ORiginal}

The absolute path name of a file containing the

version originally copied. Usually in a temporary

file.

${Most_Recent}

The absolute path name of a file containing the

most recent version. Usually in the baseline.

${Input}

The absolute path name of the edited version of

the file. Usually in the development directory.

Aegis usually moves the original source file aside,

so that the output may have the source file’s name.

${Output}

The absolute path name of the file in which to

write the difference listing. Usually in the devel-

opment directory, usually the name of a change

source file.

The entry in the aegis.conf file looks like this:

merge_command =
"set +e; "
"merge −p −L baseline −L C$c "
" $mr $orig $in > $out; "
"test $? −le 1";

The "merge −L" options are used to specify labels for

the baseline and the development directory, respectively,

when conflict lines are inserted into the result. The

"merge −p" options is used to specify that the results

are to be printed on the standard output.

It is important that this command does not move its input

and output files around, otherwise this contradicts the

warnings Aegis may issue to the user. (In previous ver-

sions of Aegis, this was necessary, howev er this is no

longer the case.)

Warning: The version of diff3(1) available to RCS

merge(1) has a huge impact on its performance and util-

ity. You need to grab and install GNU diff to get the best

results. Unfortunately the diff tool used by RCS

merge(1) is determined at compile time. This means that

you need to build and install GNU diff package before

you build and install GNU RCS package.

4.5.6. Referential Integrity

Many history tools (including RCS) can modify the con-

tents of the file when it is committed. While there are

usually options to turn this off, they are seldom used.

The problem is: if the commit changes the file, the

source in the repository now no longer matches the ob-

ject file in the repository − i.e. the history tool has com-

promised the referential integrity of the repository.

history_put_trashes_file = warn;

If you use RCS keyword substitution, you will need this

line. (The default is to report a fatal error.)

Another reason for this option is that it tells Aegis it

needs to recalculate the file’s fingerprint after a checkin.

4.5.7. Templates

The lib/config.example/rcs file in the Aegis distribution

(installed as /usr/local/share/config.example/rcs by de-

fault) contains all of the above commands, so that you

may readily insert them into your project configuration

file.

Also, there are some subtleties to writing the commands,

which are not present in the above examples. In particu-

lar, being able to support file names which contain char-

acters which are special to the shell requires the use of

the ${quote} substitution around all of the files names in

the commands.

In addition, it is possible to have a much more useful de-

scription for the −m option. For example:

“−m${quote ($version) ${change de-
scription}}” inserts the version number and the

brief description into the file’s log. This means that us-

ing the rlog(1) command will provide quite useful sum-

maries.

4.5.8. Binary Files

RCS (version 5.6 and later) is able to cope with binary

files. It does so by saving a whole copy of the file at

Page 60 (./lib/en/user-guide/c3.2.so) Peter Miller

Aegis User Guide

each check-in.

If you want Aegis to transparently encode all such files,

simply leave the history_content_limitation field unset.

If you want to check-in binary files, add the −kb option

to each of the rcs −U commands in the fields above,

and also set

history_content_limitation =
binary_capable;

so that Aegis knows that no encoding is desired.

4.5.9. history_put_trashes_files

If you use RCS keywords, such as id or log, this

will result in the file in the baseline being changed by

RCS at integrate pass. This is after the build. The result

is that the source files no longer match the object files.

Oops.

While such mechanism are essential when using only a

simple history tool, far more information may be ob-

tained using the file history report (aer file_his-
tory filename), rendering such crude methods unneces-

sary.

In addition to expected expansions in file header com-

ments, this can also be very destructive if, for example,

such a string appeared in a uuencoded or MIME base 64

encoded file.

If you wish to prevent RCS from performing keyword

expansion, used the rcs −kb option.

If, however, you wish to keep using keyword expansion,

set

history_tool_trashes_file = warning;

to cause Aegis to warn you, rather than fail.

Peter Miller (./lib/en/user-guide/c3.3.so) Page 61

User Guide Aegis

4.6. Using fhist

The fhist program was written by David I. Bell and is

admirably suited to providing a history mechanism with

out the "cruft" that SCCS and RCS impose.

Please note that the [# edit #] feature needs to be

avoided, or the −Forced_Update (−fu) flag needs to be

used in addition to the −Conditional_Update (−cu) flag,

otherwise updates will complain that “Input file "XXX"

contains edit A instead of B for module "YYY"”

The history_create_command and the history_put_com-

mand are intentionally identical. This minimizes prob-

lems when using branches.

4.6.1. history_create_command

This command is used to create a new project history.

The command is always executed as the project owner.

The following substitutions are available:

${Input}

absolute path of the source file

${History}

absolute path of the history file

The entry in the aegis.conf file looks like this:

history_create_command =
"fhist ${b $h} −create −cu "
"−i $i −p ${d $h} −r";

Note that the source file is left in the baseline.

4.6.2. history_get_command

This command is used to get a specific edit back from

history. The command may be executed by developers.

The following substitutions are available:

${History}

absolute path of the history file

${Edit}

edit number, as giv en by history_query_command

${Output}

absolute path of the destination file

The entry in the aegis.conf file looks like this:

history_get_command =
"fhist ${b $h} −e ’$e’ −o $o "
"−p ${d $h}";

Note that the destination filename will never look any-

thing like the history source filename, so the −p is essen-

tial.

4.6.3. history_put_command

This command is used to add a new "top-most" entry to

the history file. This command is always executed as the

project owner.

The following substitutions are available:

${Input}

absolute path of source file

${History}

absolute path of history file

The entry in the aegis.conf file looks like this:

history_put_command =
"fhist ${b $h} −create −cu "
"−i $i −p ${d $h} −r";

Note that the source file is left in the baseline.

4.6.4. history_query_command

This command is used to query what the history mecha-

nism calls the "top-most" edit of a history file. The re-

sult may be any arbitrary string, it need not be anything

like a number, just so long as it uniquely identifies the

edit for use by the history_get_command at a later date.

The edit number is to be printed on the standard output.

This command may be executed by developers.

The following substitutions are available:

${History}

absolute path of the history file

The entry in the aegis.conf file looks like this:

history_query_command =
"fhist ${b $h} −l 0 "
"−p ${d $h} −q";

4.6.5. Templates

The lib/config.example/fhist file in the Aegis distribution

(installed as /usr/local/share/config.example/fhist by de-

fault) contains all of the above commands, so that you

may readily insert them into your project configuration

file.

4.6.6. Capabilities

By default, FHist is unable to cope will NUL characters

in its input files, however this is the only limitation. By

default, Aegis expects that history tools are only able to

cope with printable ASCII text. To tell it ontherwise, set

history_content_limitation =
international_text;

in the project aegis.conf file.

Aegis will transparently encode binary files (files which

contain NUL characters) on entry and exit from the his-

tory tool. This means that you may have binary files in

your project without configuring anything special.

4.6.7. Binary Files

FHist (version 1.7 and later) has support for binary files.

The fhist −binary option may be used to specify that the

Page 62 (./lib/en/user-guide/c3.3.so) Peter Miller

Aegis User Guide

file is binary, that it may contain NUL characters. It is

essential that you have consistent presence or absence of

the −binary option for each file when combined with the

−CReate, −Update, −Conditional_Update and −Extract

options. Failure to do so will produce inconsistent re-

sults.

This means that you have to always use the −binary op-

tion in the history_create_command and his-

tory_put_command fields. You have to decide right at

the very beginning if your project history will ever hav e

binary files, or will never hav e binary files. You can’t

change your mind later. If you choose to use the −binary

option, set

history_content_limitation =
binary_capable;

However, Aegis would transparently encode all such

files, if you leave the history_content_limitation field set

for international text. In some cases, Aegis’ encoding

will be more efficient than fhist’s. And you have the ad-

vantage of being able to change your mind later.

Peter Miller (./lib/en/user-guide/c3.4.so) Page 63

User Guide Aegis

4.7. Detecting History File Corruption

When you have files which exist for long periods of

time, particularly files such as the ones typically used by

history tools, which are generally appended to, without

modification of the bulk of the file, there is a very real

possibility that a block of the file could become cor-

rupted over the years.16 Unless you access the file ver-

sions contained within that block, you have no way of

knowing whether or not the history file is OK. (Ar-

guably, the operating system should check for this, but

many do not, and in any case the error may not be de-

tectable at that level.)

Using Aegis, you can add a simple checksum to your

history files which will detect many cases of corruption

such as this, for all of the commonly used history tools.

Note: it cannot detect all corruptions (nothing can) but it

will detect more than many operating systems will.

You don’t need to use this technique with SCCS or

aesvt(1), they already have checksums in their files.

4.7.1. General Method

In general, you need to do three things:

1. You need to create some kind of checksum of your

history file each time you modify it. Something like

md5sum(1) from the GNU Fileutils would be good.

Store the checksum in a file next to the history file.

This would be done in the history_create_command

and history_put_command fields of the project

aegis.conf file.

2. Each time the file is read, you need to verify the

file’s checksum. Use the same checksum utility as

before, and then compare it using, say, cmp(1); it it

fails (either an IO error, or the checksum doesn’t

compare equal) then don’t proceed with the history

file access. You may need to repair or replace the

disk. You will need to restore from backup (yester-

day’s backup, see below). This would be done at the

beginning of the history_create_command, history_-

put_command, history_get_command and history_-

query_command fields of the project aegis.conf file.

3. Because you may not actually interact with the file

for years at a time, you need to check the file finger-

prints much more often. Daily or at least weekly is

suggested. You do this with a cron(1) job run nightly

which compares all of the history files with their

md5sum(1) checksums. Email failures to the system

administrator and the project administrators. By do-

ing this nightly, you not only avoid backing-up cor-

rupted files, you will always know on which backup

16 See also Saltzer, J.H. et al (1981) End-to-end arguments in

system design, http://web.mit.edu/Saltzer/www/publications/-

endtoend/endtoend.pdf

tape the good copy resides − yesterday’s.

4.7.2. Configuration Commands

In order to implement this, you need to modify some

fields of your project aegis.conf file as follows:

history_create_command

You need to test if the history file and its checksum

file exist, and check the checksum if this is the case.

Then, use whichever history tool you choose (see

the previous sections of this chapter). If it suc-

ceeds, run md5sum(1) over the history file (not the

source file) and store the checksum in a file next to

the history tool’s file. Using the same filename plus

a .md5sum extension makes the cron(1) job easier

to write.

history_put_command

You need to test if the file exists (it may, for exam-

ple, be an old project to which you have recently

added this technique) and check the checksum if

this is the case. Then, use your history tool as nor-

mal. If it succeeds, run md5sum(1) over the history

file (not the source file) as in the create case.

history_get_command

You need to test if the file exists (it may, for exam-

ple, be an old project to which you have recently

added this technique) and check the checksum if

this is the case. Then use your history tool as nor-

mal.

history_head_command

This command is only used at aeipass file, immedi-

ately after one of the history_create_command or

history_put_command commands. It is up to you

whether you think you need to add a guard as for

the history_get_command field.

4.7.3. An Alternative

Rather than run md5sum(1) on the history files each time

you modify them, you could use gzip(1) to obtain some

minor compression, but it also provides and Adler32

checksum of the file. For files with long histories, this

can be tedious to unpack every time you need to extract

an old version, but such operations are frequently I/O

bound, and so there may be no perceived slowness by

the user..

4.7.4. Aegis’ Database

In addition to your history files, Aegis maintains a data-

base of file meta-data. In order to add a checksum to the

various file making up the database, turn on the com-

pressed_database project attribute. In addition to com-

pressing the database (a minor savings) it also adds an

Adler32 checksum.

Page 64 (./lib/en/user-guide/c3.4.so) Peter Miller

Aegis User Guide

You can check this in the cron(1) job by using gzcat(1)

sent to /dev/null.

Peter Miller (./lib/en/user-guide/c4.0.so) Page 65

User Guide Aegis

5. The Dependency Maintenance Tool

Aegis can place heavy demands on the dependency

maintenance tool, so it is important that you select an ap-

propriate one. This chapter talks about what features a

dependency maintenance tool requires, and gives exam-

ples of how to use the various alternatives.

5.1. Required Features

The heart of any DMT is an inference engine. This in-

ference engine accepts a goal of what you want it to con-

struct and a set of rules for how to construct things, and

attempts to construct what you asked for given the rules

you specified. This is exactly a description of an expert

system, and the DMT needs to be an expert system for

constructing files. Something like PROLOG is probably

ideal.

Aegis is capable of supporting a wide variety of develop-

ment directory styles. The different development direc-

tory styles place different demands on the dependency

maintenance tool. Development directory styles will be

described in the next section, but here is a quick sum-

mary:

copy of all sources:

This is what CVS does, and what many other VC

tool do. Because you have a complete copy of all

source files, the dependency maintenance tool

only needs to be aware of one directory tree.

copy of everything:

This is a small optimization of the previous case to

cut down the time required for that first build,be-

cause the derived files from the integration build

can be reused.

link all sources

The is an optimization of the "copy all sources"

case, because linking a file is significantly faster

than making a copy of a file. The dependency

maintenance tool only needs to be aware of one di-

rectory tree.

link everything

This is an optimization of the previous case, again

reusing derived files from the integration build, ex-

cept that you need to ensure that your dependency

maintenance tool is configured to remove the de-

rived file outputs of each rule before creating

them, to avoid corrupting the baseline or getting

"permission denied" error.

view path

This is the most efficient development directory

style, and it scales much better than any of the

above, but the dependency maintenance tool must

be able to cope with a hierarchy of parallel source

directory trees. These trees for a "view path", a

list of directories that programs search below to

find the files of interest. The vpath state-
ments of GNU Make are almost, but
not quite, capable of being used
in this way.

5.1.1. View Paths

For the union of all files in a project and all files in a

change (remembering that a change only copies those

files it is modifying, plus it may add or remove files) for

all files you must be able to say to the dependency main-

tenance tool,

"If and only if the file is up-to-date in the

baseline, use the baseline copy of the file,

otherwise construct the file in the develop-

ment directory".

The presence of a source file in the change makes the

copy in the baseline out-of-date.

Most DMTs with this capability implement it by using

some sort of search path, allowing a hierarchy of directo-

ries to be scanned with little or no modification to the

rules.

If your DMT of choice does not provide this functional-

ity, the development_directory_style.source_file_symlink

field of the project configuration file may be set to true,

which tells Aegis to maintain symbolic links in the de-

velopment directory for all source files in the baseline

which are not present in the development directory. (See

aepconf(5) and aeb(1) for more information.) This in-

curs a certain amount of overhead when Aegis maintains

these links, but a similar amount of work is done within

DMTs which have search path functionality.

5.1.2. Dynamic Include File Dependencies

Include file dependencies are very important, because a

change may alter an include file, and all of the sources in

the baseline which use that include file must be recom-

piled.

Consider the example given earlier: the include file de-

scribing the interface definition of a function is copied

into a change and edited, and so is the source file defin-

ing the function. It is essential that all source files in the

baseline which include that file are recompiled, which

will usually result in suitable diagnostic errors if any of

the clients of the altered function have yet to be included

in the change.

There are two ways of handling include file dependen-

cies:

• They can be kept in a file, and the file can be main-

tained by suitable programs (maintaining it manually

Page 66 (./lib/en/user-guide/c4.1.so) Peter Miller

Aegis User Guide

never works, that’s just human nature).

• They can be determined by the DMT when it is scan-

ning the rules to determine what needs updating.

5.1.2.1. Static File

Keeping include dependencies in a file has a number of

advantages:

• Most existing DMTs have the ability to include other

rules files, so that when performing a development build

from a baseline rules file, it could include a dependen-

cies file in the development directory.

• Reading a file is much faster than scanning all of the

source files.

Keeping include dependencies in a file has a number of

disadvantages:

• The file is independent of the DMT, it is either gener-

ated before the DMT is invoked, in which case it may do

more work than is necessary, or it may be invoked after

the DMT (or after the DMT has scanned its rules), in

which case it may well be out-of-date when the DMT

needs it.

For example, the use of gcc −M produces "dot d" files,

which may be merged to construct such an includable

dependency file. This happens after the DMT has read

and applied the rules, but possibly before the DMT has

finished executing.17

• Many tools which can generate this information, such

as the gcc −M option, are triggered by source files, and

are unable to manage a case where it is an include file

which is changing, to include a different set of other in-

clude files. In this case, the inaccurate dependencies file

may contain references to the old set of nested include

files, some of which may no longer exist, This causes the

DMT to incorrectly generate an error stating that the old

include file is missing, when it is actually no longer re-

quired.

If a DMT can only support this kind of include file de-

pendencies, it is not suitable for use with Aegis.

5.1.2.2. Dynamic

In order for a DMT to be suitable for use with Aegis, it

is essential that rules for the DMT may be specified in

such a way that include file dependencies are determined

"on the fly" when the DMT is determining if a given rule

is applicable, and before the rule is applied.

This method suffers from the problem being rather slow;

but this is amenable to some caching and the losses of

17 See the Using Make section for how GNU Make may be

used. It effectively combines both methods: keeping .d files and

dynamically updating them. Because it combines both methods,

it has some of the advantages and disadvantages of both.

performance are not as bad as could be imagined.

This method has the advantage of correctness in all

cases, where a static file may at times be out-of-date.

5.2. Development Directory Style

The project configuration file, usually called aegis.conf,

contains a field called development_directory_style

which controls how the project sources are presented to

the DMT.

See aepconf(5) for a complete description of this field.

There is a corresponding integration_directory_style

field, which defaults to the same value as the

development_directory_style. It is usually a very bad

idea if these two are different.

5.2.1. View Path

By not setting development_directory_style at all the

only source files present in the development directory

are source files being create and/or modified.

By using information provided by the $search_path sub-

stitution, the build can access the unchanged source files

in the branch baseline and deeper branch baselines. The

great thing about this approach is that there are also

"precompiled" object files on the viewpath, so if an ob-

ject file does not need to be compiled (there are no soure

files in the development directory that have anything to

do with it) then the build can simply link the unchanged

object files in the baseline without recompiling.

This build method scales the best, and is the Aegis de-

fault.

The difficulties of finding a DMT which is capable of

coping with a view path means that this is not the only

work area style. All other methods scale less well than a

view path; some scale much less well.

5.2.2. Link the Baseline

The first two sub-fields of interest in the development_-

directory_style are source_file_link and source_file_-

symlink.

source_file_link = true; This field is true if hard links are

to be used for project source files (which are not

part of the change) so that the work area has a

complete set of source files.

source_file_symlink = true; This field is true if symbolic

links are to be used for project source files (which

are not part of the change) so that the work area

has a complete set of source files.

By using these settings, all source files are present in the

development directory. They will be read-only. As you

decide to modify files in the change set, the aecp com-

mand will remove the link and replace it with a read-

Peter Miller (./lib/en/user-guide/c4.6.so) Page 67

User Guide Aegis

write copy of the file.

You need both these sub-fields set, because hard links

are not allowed to cross file system boundaries. Aegis

will use hard links in preference to soft links when it

can.

Maintaining the hard links can be time consuming for

large projects, and add quite a noticeable delay before

builds start doing anything. But see the −assume-sym-

bolic-links option of the aeb(1) command; use it spar-

ingly.

The biggest penalty with this method is that the initial

build for a change set for a large project can be very time

consuming. Recall that the baseline has a complete

"prebuild" already available. To take advantage of these

pre-built derived files, there are a few more sub-fields:

derived_file_copy = true; This field is true if copies are

to be used for non-source files which are present

in the project baseline but which are not present in

the work area, so that the work area has a com-

plete set of derived files.

derived_at_start_only = true; This settign causes the

above fields controling the appearance of derived

files to be acted upon only when the development

directory is created (at aedb(1) time).

Copying files can be very time consuming and also eats

a lot of disk space. If you are prepared to change your

build slightly, it is possible to use the following fields:

derived_file_link = true; This field is true if hard links

are to be used for non-source files which are

present in the project baseline but which are not

present in the work area, so that the work area has

a complete set of derived files.

derived_file_symlink = true; This field is true if sym-

bolic links are to be used for non-source files

which are present in the project baseline but which

are not present in the work area, so that the work

area has a complete set of derived files.

Just as for source files, hard links will be used in prefer-

ence to symbolic links if possible.

Note that every rule in your Makefile (or whatever your

DMT uses) must remove its outputs before doing eny-

thing else, to break the links to the files in the baseline,

otherwise you will corrupt the baseline. Aegis tries very

hard to ensure that the baseline files (and thus the links)

are read-only, so that you get an error from the build if

you forget to break a link.

This development directory style is called "arch style"

after Tom Lord’s arch (tla) which does something very

similar.

If you are placing an existing project under Aegis, do the

above three things one step at a time. First get the

source files available and integrate that. In a second

change set get derived file copies working. In a third

change set (if you do it at all) change the build and use

derived file links.

5.2.3. Copy All Sources

The sub-fields of interest in the development_directory_-

style is source_file_copy.

source_file_copy = true; This field says copies are to be

used for project source files (which are not part of

the change) so that the work area has a complete

set of source files. File modification time attrib-

utes will be preserved.

By using this setting, all source files are present in the

development directory. They will be read-only. As you

decide to modify files in the change set, the aecp com-

mand will remove the file and replace it with a read-

write copy of the file.

Maintaining the copies can be time consuming for large

projects, and add quite a noticeable delay before builds

start doing anything. But see the −assume-symbolic-

links option of the aeb(1) command; use it sparingly

(yes, it applies to copies as well).

The biggest penalty with this method is that the initial

build for a change set for a large project can be very time

consuming. Recall that the baseline has a complete

"prebuild" already available. To take advantage of these

pre-built derived files, there are a few more sub-fields:

derived_file_copy = true; This says copies are to be used

for non-source files which are present in the

project baseline but which are not present in the

work area, so that the work area has a complete set

of derived files.

derived_at_start_only = true; This setting causes the

above fields controlling the appearance of derived

files to be acted upon only when the development

directory is created (at aedb(1) time).

This development directory style is called "CVS style"

after GNU CVS which does something very similar.

5.2.4. Obsolete Features

There are several fields in the aegis.conf file which are

obsolete. Aegis will automatically transfer these to cre-

ate a development_directory_style if you haven’t speci-

fied one.

create_symlinks_before_build: This is like setting both

development_directory_style.source_file_symlink

and development_directory_-

style.derived_file_symlink at the same time.

remove_symlinks_after_build: This is like setting the

development_directory_style.during_build_only field.

Page 68 (./lib/en/user-guide/c4.6.so) Peter Miller

Aegis User Guide

create_symlinks_before_integration_build: This is like

setting both integration_directory_style.source_-

file_symlink and integration_directory_-

style.derived_file_symlink at the same time.

remove_symlinks_after_integration_build: This is like

setting the integration_directory_style.during_build_-

only field.

Aegis will print a warning if you use any of these fields.

Peter Miller (./lib/en/user-guide/c4.2.so) Page 69

User Guide Aegis

5.3. Using Cook

The Cook program is the only dependency maintenance

tool, known to the author, which is sufficiently capable

to supply Aegis’ needs.18 Tools such as cake and GNU

Make are described later. They need a special tweak to

make them work.

This section describes appropriate contents for the

Howto.cook file, input to the cook(1) program. It also

discusses the build_command and integrate_build_-

command and link_baseline and change_file_command

and project_file_command and link_integration_-

directory fields of the configuration file. See aepconf (5)

for more information about this file.

5.3.1. Invoking Cook

The build_command field of the configuration file is

used to invoke the relevant build command. In this case,

it is set as follows

build_command =
"cook −b ${s Howto.cook} −nl\
project=$p change=$c version=$v";

This command tells Cook where to find the recipes. The

${s Howto.cook} expands to a path into the base-

line during development if the file is not in the change.

Look in aesub(5) for more information about command

substitutions.

The recipes which follow will all remove their targets

before constructing them, which qualifies them for the

next entry in the configuration file:

link_integration_directory = true;

The links must be removed first, otherwise the baseline

would cease to be self-consistent.

5.3.2. The Recipe File

The file containing the recipes is called Howto.cook and

is given to Cook on the command line.

The following items are preamble to the rest of the file;

they ask Aegis for the source files of the project and

change so that Cook can determine what needs to be

18 The version in use when writing this section was 1.5. All

versions from 1.3 onwards are known to work with the recipes

described here.

compiled and linked.

project_files =
[collect_lines aelpf

−p [project] −c [change]];
change_files =

[collect_lines aelcf
−p [project] −c [change]];

source_files =
[stringset [project_files]

[change_files]];

This example continues the one from chapter 3, and thus

has a single executable to be linked from all the object

files

object_files =
[fromto %.y %.o [match_mask %.y

[source_files]]]
[fromto %.l %.o [match_mask %.l

[source_files]]]
[fromto %.c %.o [match_mask %.c

[source_files]]]
;

It is necessary to determine if this is a development

build, and thus has the baseline for additional ingredients

searches, or an integration build, which does not. The

version supplied by Aegis will tell us this information,

because it will be major.minor.Cchange for development

builds and major.minor.Ddelta for integration builds.

if [match_mask %1C%2 [version]] then
{

baseline = [collect aegis −cd −bl
−p [project]];

search_list = . [baseline];
}

The search_list variable in Cook is the list of directories

to search for dependencies; it defaults to only the current

directory. The resolve builtin function of Cook may be

used to ask Cook for the name of the file actually used to

resolve dependencies, so that recipe bodies may refer-

ence the appropriate file:

example: [object_files]
{

[cc] −o example
[resolve [object_files]]
−ly −ll;

}

This recipe says that to Cook the example program, you

need the object files determined earlier, and them link

them together. Object files which were up to date in the

baseline are used wherever possible, but files which were

out of date are constructed in the current directory and

those will be linked.

5.3.3. The Recipe for C

Next we need to tell Cook how to manage C sources.

Page 70 (./lib/en/user-guide/c4.2.so) Peter Miller

Aegis User Guide

On the surface, this is a simple recipe:

%.o: %.c
{
rm %.o;
[cc] [cc_flags] −c %.c;

}

Unfortunately it has forgotten about finding the include

file dependencies. The Cook package includes a pro-

gram called c_incl which is used to find them. The

recipe now becomes

%.o: %.c: [collect c_incl −eia %.c]
{
rm %.o;
[cc] [cc_flags] −c %.c;

}

The file may not always be present to be removed (caus-

ing a fatal error), and it is irritating to execute a redun-

dant command, so the remove is mangled to look like

this:

%.o: %.c: [collect c_incl −eia %.c]
{
if [exists %.o] then
rm %.o

set clearstat;
[cc] [cc_flags] −c %.c;

}

The "set clearstat" clause tells Cook that the command

will invalidate parts of its stat cache, and to look at the

command for what to invalidate.

Another thing this recipe needs is to use the baseline for

include files not in a change, and so the recipe is altered

again:

%.o: %.c: [collect c_incl −eia
[prepost "−I" "" [search_list]]
%.c]

{
if [exists %.o] then

rm %.o
set clearstat;

[cc] [cc_flags] [prepost "−I" ""
[search_list]] −c %.c;

}

See the Cook Reference Manual for a description of the

prepost builtin function, and other Cook details.

There is one last change that must be made to this recipe,

it must use the resolve function to reference the appro-

priate file once Cook has found it on the search list:

%.o: %.c: [collect c_incl −eia
[prepost "−I" "" [search_list]]

[resolve %.c]]
{

if [exists %.o] then
rm %.o

set clearstat;
[cc] [cc_flags] [prepost "−I" ""

[search_list]] −c [resolve %.c];
}

Only use this last recipe for C sources, the others are

only shown so that the derivation of the recipe is clear;

while it is very similar to the original, it looks daunting

at first.

5.3.3.1. C Include Semantics

The semantics of C include directives make the

#include "filename"

directive dangerous in a project developed with the

Aegis program and Cook.

Depending on the age of your compiler, whether it is

AT&T traditional C or newer ANSI C, this form of di-

rective will search first in the current directory and then

along the search path, or in the directory of the including

file and then along the search path.

The first case is fairly benign, except that compilers are

rapidly becoming ANSI C compliant, and an operating

system upgrade could result in a nasty surprise.

The second case is bad news. If the source file is in the

baseline and the include file is in the change, you don’t

want the source file to use the include file in the base-

line.

Always use the

#include <filename>

form of the include directive, and set the include search

path explicitly on the command line used by Cook.

Cook is able to dynamically adapt to include file depen-

dencies, because they are not static. The presence of an

include file in a change means that any file which in-

cludes this include file, whether that source file is in the

baseline or in the change, must have a dependency on

the change’s include file. Potentially, files in the base-

line will need to be recompiled, and the object file stored

in the change, not the baseline. Subsequent linking

needs to pick up the object file in the change, not from

the baseline.

5.3.4. The Recipe for Yacc

Having explained the complexities of the recipes in the

above section about C, the recipe for yacc will be given

Peter Miller (./lib/en/user-guide/c4.2.so) Page 71

User Guide Aegis

without delay:

%.c %.h: %.y
{
if [exists %.c] then
rm %.c

set clearstat;
if [exists %.h] then
rm %.h
set clearstat;

[yacc] [yacc_flags] −d
[resolve %.y];

mv y.tab.c %.c;
mv y.tab.h %.h;

}

This recipe could be jazzed up to cope with the listing

file, too, if that was desired, but this is sufficient to work

with the example.

Cook’s ability to cope with transitive dependencies will

pick up the generated .c file and construct the necessary

.o file.

5.3.5. The Recipe for Lex

The recipe for lex is vary similar to the recipe for yacc.

%.c: %.l
{
if [exists %.c] then
rm %.c

set clearstat;
[lex] [lex_flags] −d [resolve %.l];
mv lex.yy.c %.c;

}

Cook’s ability to cope with transitive dependencies will

pick up the generated .c file and construct the necessary

.o file.

5.3.6. Recipes for Documents

You can format documents, such as user guides and

manual entries with Aegis and Cook, and the recipes are

similar to the ones above.

%.ps: %.ms: [collect c_incl −r −eia
[prepost "−I" "" [search_list]]
[resolve %.ms]]

{
if [exists %.ps] then
rm %.ps

set clearstat;
roffpp [prepost "−I" ""
[search_list]] [resolve %.ms]
| groff −p −t −ms
> [target];

}

This recipe says to run the document through groff, with

the pic(1) and tbl(1) filters, use the ms(7) macro pack-

age, to produce PostScript output. The roffpp program

comes with Cook, and is like soelim(1) but it accepts in-

clude search path options on the command line.

Manual entries may be handled in a similar way

%.cat: %.man: [collect c_incl −r −eia
[prepost "−I" "" [search_list]]
[resolve %.man]]

{
if [exists %.cat] then

rm %.cat
set clearstat;

roffpp [prepost "−I" ""
[search_list]] [resolve %.man]
| groff −Tascii −t −man
> [target];

}

5.3.7. Templates

The lib/config.example/cook file in the Aegis distribution

contains all of the above commands, so that you may

readily insert them into your project configuration file.

Page 72 (./lib/en/user-guide/c4.3.so) Peter Miller

Aegis User Guide

5.4. Using Cake

This section describes how to use cake as the depen-

dency maintenance tool. The cake package was pub-

lished in the comp.sources.unix USENET newsgroup

volume 12, around February 1988, and is thus easily ac-

cessible from the many archives around the internet.

It does not have a search path of any form, not

ev en something like VPATH . It does, however, hav e fa-

cilities for dynamic include file dependencies.

5.4.1. Invoking Cake

The build_command field of the configuration file is

used to invoke the relevant build command. In this case,

it is set as follows

build_command =
"cake −f ${s Cakefile} \
−DPROJECT=$p −DCHANGE=$c \
−DVERSION=$v";

This command tells cake where to find the rules. The

${s Cakefile} expands to a path into the baseline

during development if the file is not in the change. Look

in aesub(5) for more information about command substi-

tutions.

The rules which follow will all remove their targets be-

fore constructing them, which qualifies them for the next

entry in the configuration file:

link_integration_directory = true;

The links must be removed first, otherwise the baseline

would be corrupted by integration builds.

Another field to be set in this file is

development_directory_style =
{

source_file_symlink = true;
};

which tells Aegis to maintain symbolic links between the

development directory and the baseline. This also re-

quires that rules remove their targets before constructing

them, to ensure that rules do not attempt to write their re-

sults onto the read-only versions in the baseline.

5.4.2. The Rules File

The file containing the rules is called Cakefile and is

given to cake on the command line.

The following items are preamble to the rest of the file;

they ask Aegis for the source files of the project and

change so that cake can determine what needs to be

compiled and linked.

#define project_files \
[[aelpf −p PROJECT \

−c CHANGE]];
#define change_files \

[[aelcf −p PROJECT \
−c CHANGE]];

#define source_files \
project_files change_files

#define CC gcc
#define CFLAGS −O

This example parallels the one from chapter 3, and thus

has a single executable to be linked from all the object

files

#define object_files \
[[sub −i X.c %.o source_files]] \
[[sub −i X.y %.o source_files]] \
[[sub −i X.l %.o source_files]]

Constructing the program is straightforward

example: object_files
rm −f example
CC −o example object_files

This rule says that to construct the example program,

you need the object files determined earlier, and them

link them together. Object files which were up to date in

the baseline are used wherever possible, but files which

were out of date are constructed in the current directory

and those will be linked.

5.4.3. The Rule for C

Next we need to tell cake how to manage C sources. On

the surface, this is a simple rule:

%.o: %.c
CC CFLAGS −c %.c

paralleling that found in most makes, however it needs to

delete the target first, and to avoid deleting the .o file

whenever cake thinks it is transitive.

%.o!: %.c
rm −f %.o
CC CFLAGS −c %.c

The −f option to the rm command is because the file

does not always exist.

Unfortunately this rule omits finding the include file de-

pendencies. The cake package includes a program called

ccincl which is used to find them. The rule now be-

comes

%.o!: %.c* [[ccincl %.c]]
rm −f %.o
CC CFLAGS −c %.c

This rule is a little quirky about include files which do

not yet exist, but must be constructed by some other rule.

Peter Miller (./lib/en/user-guide/c4.3.so) Page 73

User Guide Aegis

You may want to use gcc −MM instead, which is almost

as quirky when used with cake. Another alternative,

used by the author with far more success, is to use the

c_incl program from the cook package, mentioned in an

earlier section. The gcc −MM understands C include se-

mantics perfectly, the c_incl command caches its results

and thus goes faster, so you will need to figure which

you most want.

5.4.3.1. Include Directives

Unlike cook described in an earlier section, using cake

as described here allows you to continue using the

#include "filename"

form of the include directive. This is because the devel-

opment directory appears, to the compiler, to be a com-

plete copy of the baseline.

5.4.4. The Rule for Yacc

Having explained the complexities of the rules in the

above section about C, the rule for yacc will be given

without delay:

#define YACC yacc
#define YFLAGS

%.c! %.h!: %.y if exist %.y
rm −f %.c %.h y.tab.c y.tab.h
YACC YFLAGS −d %.y
mv y.tab.c %.c
mv y.tab.h %.h

This rule could be jazzed up to cope with the listing file,

too, if that was desired, but this is sufficient to work with

the example.

Cake’s ability to cope with transitive dependencies will

pick up the generated .c file and construct the necessary

.o file.

5.4.5. The Rule for Lex

The rule for lex is vary similar to the rule for yacc.

#define LEX lex
#define LFLAGS

%.c!: %.l if exist %.l
rm −f %.c
LEX LFLAGS %.l
mv lex.yy.c %.c

Cake’s ability to cope with transitive dependencies will

pick up the generated .c file and construct the necessary

.o file.

5.4.6. Rules for Documents

You can format documents, such as user guides and

manual entries with Aegis and cake, and the rules are

similar to the ones above.

%.ps!: %.ms* [[soincl %.ms]]
rm −f %.ps
groff −s −p −t −ms %.ms > %.ps

This rule says to run the document through groff, with

the soelim(1) and pic(1) and tbl(1) filters, use the ms(7)

macro package, to produce PostScript output.

This suffers from many of the problems with include

files which need to be generated, as does the C rule,

above. You may want to use c_incl −r from the cook

package, rather than the soincl supplied by the cake

package.

Manual entries may be handled in a similar way

%.cat!: %.man* [[soincl %.man]]
rm −f %.cat
groff −Tascii −s −t −man %.man \

> %.cat

5.5. Using Make

The make(1) program exists in many forms, usually one

is available with each

version. The one used in the writing of this section is

GNU Make 3.70, available by anonymous FTP from

your nearest GNU archive site. GNU Make was chosen

because it was the most powerful, it is widely available

(usually for little or no cost) and discussion of the alter-

natives (SunOS make, BSD 4.3 make, etc), would not be

universally applicable. "Plain vanilla" make (with no

transitive closure, no pattern rules, no functions) is not

sufficiently capable to satisfy the demands placed on it

by Aegis.

With the introduction of the development_directory_style

field of the project configuration file, any project which

is currently using a "plain vanilla" make may continue to

use it, and still manage the project using Aegis.

As mentioned earlier in this chapter, make is not really

sufficient, because it lacks dynamic include dependen-

cies. However, GNU Make has a form of dynamic in-

clude dependencies, and it has a few quirks, but mostly

works well.

The other feature lacking in make is a search path.

While GNU Make has functionality called VPATH , the

implementation leaves something to be desired, and

can’t be used for the search path functionality required

by Aegis. Because of this, the development_directory_-

style.source_file_symlink field of the project configura-

tion file is set to true so that Aegis will arrange for the

development directory to be full of symbolic links, mak-

ing it appear that the entire project source is in each

change’s dev elopment directory.

Page 74 (./lib/en/user-guide/c4.4.so) Peter Miller

Aegis User Guide

5.5.1. Invoking Make

The build_command field of the project configuration

file is used to invoke the relevant build command. In this

case, it is set as follows

build_command =
"gmake −f ${s Makefile} project=$p \
change=$c version=$v";

This command tells make where to find the rules. The

${s Makefile} expands to a path into the baseline

during development if the file is not in the change. Look

in aesub(5) for more information about command substi-

tutions.

The rules which follow will all remove their targets be-

fore constructing them, which qualifies them for the next

entry in the configuration file:

link_integration_directory = true;

The files must be removed first, otherwise the baseline

would be corrupted by integration builds (or even by de-

veloper builds, if your aren’t using a separate user for the

project owner).

Note: if you are migrating an existing project do not set

this field; only set it after you have changed all of the

Make rules. If in doubt, don’t set this field.

Another field to be set in this file is

development_directory_style =
{

source_file_symlink = true;
};

which tells Aegis to maintain symbolic links between the

development directory and the baseline for source files

(but not derived files). See aepconf(5) for more informa-

tion.

5.5.2. The Rule File

The file containing the rules is called Makefile and is

given to make on the command line.

The following items are preamble to the rest of the file;

they ask Aegis for the source files of the project and

change so that make can determine what needs to be

compiled and linked.

project_files := \
$(shell aelpf −p $(project) \
−c $(change))

change_files := \
$(shell aelcf −p $(project) \
−c $(change))

source_files := \
$(sort $(project_files) \
$(change_files))

CC := gcc
CFLAGS := −O

This example parallels the one from chapter 3, and thus

has a single executable to be linked from all the object

files

object_files := \
$(patsubst %.y,%.o,$(filter \

%.y,$(source_files))) \
$(patsubst %.l,%.o,$(filter \

%.l,$(source_files))) \
$(patsubst %.c,%.o,$(filter \

%.c,$(source_files)))

Constructing the program is straightforward, remember-

ing to remove the target first.

example: $(object_files)
rm −f example
$(CC) −o example $(object_files) \

−ly −ll

This rule says that to make the example program, you

need the object files determined earlier, and them link

them together. Object files which were up to date in the

baseline are used wherever possible, but files which were

out of date are constructed in the current directory and

those will be linked.

5.5.3. The Rule for C

Next we need to tell make how to manage C sources.

On the surface, this is a simple rule:

%.o: %.c
$(CC) $(CFLAGS) −c $*.c

This example matches the built-in rule for most makes.

But it forgets to remove the target before constructing it.

%.o: %.c
rm −f $*.o
$(CC) $(CFLAGS) −c $*.c

The target may not yet exist, hence the −f option.

Something missing from this rule is finding the include

file dependencies. The GNU Make User Guide de-

scribes a method for obtaining include file dependencies.

A set of dependency files are constructed, one per .c file.

%.d: %.c
rm −f %.d
$(CC) $(CFLAGS) −MM $*.c \
| sed ’s/ˆ\(.*\).o :/\1.o \1.d :/’ \
> $*.d

These dependency files are then included into the Make-

file to inform GNU Make of the dependencies.

include $(patsubst \
%.o,%.d,$(object_files))

GNU Make has the property of making sure all its in-

clude files are up-to-date. If any are not, they are made,

and then GNU Make starts over, and re-reads the Make-

file and the include files from scratch, before proceeding

with the operation requested. In this case, it means that

Peter Miller (./lib/en/user-guide/c4.4.so) Page 75

User Guide Aegis

our dependency construction rule will be applied before

any of the sources are constructed.

This method is occasionally quirky about absent include

files which you have yet to write, or which are generated

and don’t yet exist, but this is usually easily corrected,

though you do need to watch out for things which will

stall an integration.

The −MM option to the $(CC) command means that this

rule requires the gcc program in order to work correctly.

It may be possible to use c_incl(1) from cook, or

ccincl(1) from cake to build the dependency lists in-

stead; but they don’t understand the conditional prepro-

cessing as well as gcc does.

This method also suffers when heterogeneous develop-

ment is performed. If you include different files, de-

pending on the environment being compiled within, the

.d files may be incorrect, and GNU Make has no way of

knowing this.

5.5.3.1. Include Directives

Unlike cook described in an earlier section, using GNU

Make as described here allows you to continue using the

#include "filename"

form of the include directive. This is because the devel-

opment directory appears, to the compiler, to be a com-

plete copy of the baseline.

5.5.4. The Rule for Yacc

Having explained the complexities of the rules in the

above section about C, the rule for yacc will be given

without delay:

%.c %.h: %.y
rm −f $*.c $*.h y.tab.c y.tab.h
$(YACC) $(YFLAGS) −d $*.y
mv y.tab.c $*.c
mv y.tab.h $*.h

This rule could be jazzed up to cope with the listing file,

too, if that was desired, but this is sufficient to work with

the example.

GNU Make’s ability to cope with transitive closure will

pick up the generated .c file and construct the necessary

.o file.

To prevent GNU Make throwing away the transitive

files, and thus slowing things down in some cases, make

them precious:

.PRECIOUS: \
$(patsubst %.y,%.c,$(filter \
%.y,$(source_files))) \

$(patsubst %.y,%.h,$(filter \
%.y,$(source_files)))

5.5.5. The Rule for Lex

The rule for lex is vary similar to the rule for yacc.

%.c: %.l
rm −f $*.c lex.yy.c
$(LEX) $(LFLAGS) $*.l
mv lex.yy.c $*.c

GNU Make’s ability to cope with transitive closure will

pick up the generated .c file and construct the necessary

.o file.

To prevent GNU Make throwing away the transitive

files, and thus slowing things down in some cases, make

them precious:

.PRECIOUS: \
$(patsubst %.l,%.c,$(filter \

%.l,$(source_files)))

5.5.6. Rules for Documents

You can format documents, such as user guides and

manual entries with Aegis and GNU Make, and the rules

are similar to the ones above.

%.ps: %.ms
rm −f $*.ps
groff −p −t −ms $*.ms > $*.ps

This rule says to run the document through groff, with

the pic(1) and tbl(1) filters, use the ms(7) macro pack-

age, to produce PostScript output.

This omits include file dependencies. If this is important

to you, the c_incl program from cook can be used to find

them. Filtering its output can then produce the necessary

dependency files to be included, rather like the C rules,

above.

Manual entries may be handled in a similar way

%.cat: %.man
rm $*.cat
groff −Tascii −s −t −man $*.man \

> $*.cat

5.5.7. Other Makes

All of the above discussion assumes that GNU Make and

GCC are used. If you do not want to do this, or may not

do this because of internal company politics, it is possi-

ble to perform all of the automated features manually.

This may, howev er, rapidly become spectacularly te-

dious. For example: if a user needs to copy the Makefile

into their change for any reason, they will need to con-

stantly use aed(1) to "catch up" with integrations into

the baseline.

Reviewers are also affected: they must check that each

change to the Makefile accurately reflects the object list

and the dependencies of each source file.

Page 76 (./lib/en/user-guide/c4.4.so) Peter Miller

Aegis User Guide

5.5.8. Templates

The lib/config.example/make file in the Aegis distribu-

tion contains all of the above commands, so that you

may readily insert them into your project configuration

file.

5.5.9. GNU Make VPATH Patch

Version 3.76 and later of GNU Make include this patch,

so you don’t need to read this section unless you have

GNU Make 3.75 or earlier.

There is a patch available for GNU Make 3.75 and ear-

lier which gives it improved VPATH semantics. At the

time it was not maintained by the same person who

maintained GNU Make. Since then, the maintaier

changed, and the patch has been incorporated.

The patch is the work of Paul D. Smith

<psmith@BayNetworks.com> and may be fetched By

Anonymous FTP from

Host: ftp.wellfleet.com

Dir: /netman/psmith/gmake

File: vpath+.README

File: vpath+.patch.version

The version numbers track the GNU Make version num-

bers.

For a description of the VPATH problem, and how this

patch addresses it, see the README file referenced.

5.5.10. GNU Make’s VPATH+

In theory, using GNU Make 3.76 or later (or a suitable

patched earlier version) is similar to using Cook. The

project configuration file now requires

link_integration_directory = false;

which is the default. The Makefile now requires

VPATH . bl

Assuming that bl is a symbolic link to the baseline. The

.d files continue to be used.

Peter Miller (./lib/en/user-guide/c4.5.so) Page 77

User Guide Aegis

5.6. Building Executable Scripts

Aegis treats source files as, well, source files. This

means that it forgets any executable bits (and any other

mode bits) you may set on the file. Usually, this isn’t a

problem − except for scripts.

So, just how do you get Aegis to give you an executable

script? Well, you add a build rule. However, since it

can’t depend on itself, it needs to depend on something

else.

Using a Cook example, we could write

bin/%: script/%.sh
{

/* copy the script */
cp script/%.sh bin/%;
/* make it executable */
chmod a+rx bin/%;
/* syntax check */
bash −n bin/%;

}

There is a small amout of value-added here: we did a

syntax check along the way, which catches all sorts of

problems.

The same technique also works for Perl

bin/%: script/%.pl
{

cp script/%.pl bin/%;
chmod a+rx bin/%;
perl −cw bin/%;

}

The same technique also works for TCL

bin/%: script/%.tcl
{

cp script/%.rcl bin/%;
chmod a+rx bin/%;
procheck −nologo bin/%;

}

The procheck(1) command is part of the TclPro package.

Many tools have a similar options.

You can also combine this with GNU Autoconf to pro-

duce architecture specific shell scripts from architecture

neutral sources.

/* vim: set ts=8 sw=4 et : */

5.7. GNU Autoconf

If your projects uses GNU Make, GNU Autoconf and

GNU Automake, here is a quick and simple method to

import your project into Aegis and have it running fairly

quickly.

5.7.1. The Sources

Once you have create and Aegis project to, your first

change set should simply contain all of the source files,

without removing or adding anything. The only addi-

tonal file is the Aegis project configuration file, usually

called aegis.conf and usually located in the top-level di-

rectory.

Follow the directions in the section, above, on using

Make for how to fill out this file.

Note that if you are working from a tarball, they usually

contain several derived file. That is, files which are not

primary sourec files, but are instead derived from other

files. This is a convenience for the end-user but a nui-

sance at this point. Exanple of derived files in source

tarballs include configure, Makefile.in, con-
fig.h.in, etc. You will need to exclude them form

the first change set.

In this first change set, you don’t even try to build any-

thing.

build_command = "exit 0";

Which will allow the Aegis process to complete.

5.7.2. Building

You actually get your project to buld in the second

change set. Once you have started development, you

will see all of the source files in the development direc-

tory (well, symlinks to them).

In order to get you build to work, you have to bootstrap

the Makefile. Using the usual GNU tool chain, this

file is generated from Makefile.in which is in turn

generated from Makefile.am, and this is not

presently in the development directory.

This is done by creating a new primary source file called

makefile at the top level

$ aenf makefile
$

and setting its contents to be

include Makefile

ifndef srcdir

bogus−default−target: Makefile
$(MAKE) $(MAKEFLAGS) $(MAKECMDGOALS)

Makefile: configure Makefile.in config.h.in
rm −f config.cache
./configure

configure: configure.ac
autoconf

config.h.in: configure.ac
autoheader

Page 78 (./lib/en/user-guide/c4.7.so) Peter Miller

Aegis User Guide

Makefile.in: Makefile.am
automake

endif

This works because make(1) looks for makefile be-

fore Makefile, but also because our bootstrapping

makefile includes the real Makefile if it exists, and

the real file’s rules will take precedence. At this point,

GNU Make has a very useful feature: it will rebuild in-

clude files which are out-of-date before it does anything

else. In oue new dev elopment directory, this will result

in the necessary files being automagically generated and

then acted upon.

Things that can go wrong: many projects include files

such as install-sh and missing and mkinstalldirs in the

directibution. You will need to include rules for these

files in the conditonal part of your bootstrapping make-
file rules.

AUTOMAKE_DIR=/usr/share/automake−1.7

install−sh: $(AUTOMAKE_DIR)/install−sh
cp $ˆ $@

missing: $(AUTOMAKE_DIR)/missing
cp $ˆ $@

mkinstalldirs: $(AUTOMAKE_DIR)/mkinstalldirs
cp $ˆ $@

You will have to tell the configure rule that it depends on

these files as well.

Other things that can go wrong: some projects use differ-

ent rules for constructing the config.h file. You

should read the generated Makefile.in file for how,

and duplicate into the bootstrapping makefile file.

You may also need a rule for the aclocal.m4 file, and

tell the configure rule it depends on it.

There is a template makefile installed in the /usr/lo-

cal/share/config.example directory.

Now you can set the build command field of the project

configuration file:

build_command =
"make "
"project=$project "
"change=$change "
"version=$version";

Aegis watches the eist status of the build command. Be

aw are that many build systems which use recursive make

report false positives, because the exist status of the sub-

make is often ignored by the top-level Makefile. This

means that Aegis may think your project compiles when,

in fact, it does not.

If, while trying to get it to build, you discover more de-

rived files which should not be primary source files, sim-

ply use the aerm(1) command. The aeclean(1)

command may come in handly, too.

Once this second change set builds, integrate it via the

usual Aegis process.

5.7.3. Testing

If the project you are importing has tests, they are proba-

bly executed by saying

$ make check
lots of output

$

or something similar. Aegis expects each test to be in a

separate shell script. Usually this is simple enough to

arrange. See the chapter on Testing for some hints.

5.7.4. An Optimization

The first build in a new dev elopment directory can be

quite time consuming. It is possible to short-ciruit this

by using the pre-built object files in the baseline. To do

this, use the following setting in the project configura-

tion file:

development_directory_style =
{

source_file_symlink = true;
derived_file_copy = true;
derived_at_start_only = true;

};

This causes Aegis to copy all of the derived file into your

development directory at aedb time. This is usually

much faster than compiling and linking all over again.

5.7.5. Signed-off-by

It is possible to get the Aegis process to automatically

append Signed-off-by lines to the change descrip-

tion. Set the following field in the project configuration

file:

signed_off_by = true;

Only open source projects should use this field. The

OSDL definition of the Developer’s Certificate of Origin

1.0 can be found at http://www.osdl.org/newsroom/-

press_releases/2004/2004_05_24_dco.html and is de-

fined to mean:

"By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by

me and I have the right to submit it under the open

source license indicated in the file; or

(b) The contribution is based upon previous work that, to

the best of my knowledge, is covered under an appropri-

ate open source license and I have the right under that li-

cense to submit that work with modifications, whether

created in whole or in part by me, under the same open

source license (unless I am permitted to submit under a

Peter Miller (./lib/en/user-guide/c4.7.so) Page 79

User Guide Aegis

different license), as indicated in the file; or

(c) The contribution was provided directly to me by

some other person who certified (a), (b) or (c) and I have

not modified it."

5.7.6. Importing the Next Upstream Tarball

If you are using Aegis to track your local changes, but

the master sourecs are elsewhere, you will need to track

upstream changes when they are released.

It is tempting to use the aetar(1) command, but it will

not be able to detect derived files which have been added

to the tarball. You will need to uppack the tarball and re-

move them manually.

Create a change set in the usual way, and aecd(1) into it.

Copy the entire project into your change set, because

you don’t yet know what the tarball will want to change

(and it will include unchanged files).

$ aecd
$ aecp .
$

(Yes, that dot is part of the command.) Now you can un-

pack the tarball. You need to strip off the leading direc-

tory somehow (most polite projects use a prefix). The

author uses the tardy(1) command, like this:

$ zcat project−x.y.tar.gz | \
tardy −rp project−x.y −now | \
tar xf −

$

It pays to change that the tarball is the shape you expect

before running this command.

At this point you have to once again remove all of the

files which are in the tarball, but which are not primary

source files, such as configure and Makefile.in and the

like.

$ rm −f configure Makefile.in config.h.in etc

$ rm −f aegis.log
$

It is useful if you place the rm(1) command in a shell

script, and tell Aegis it is a source file, because you will

have to do this every time.

Now you can have Aegis add any new files by using the

follwoing command:

$ aenf .
$

(Yes, that dot is part of the command.) Note that if there

are no new files, this command will give you an error,

this is expected.

You will have to work out moved and removed files for

yourself, and use the aemv(1) and aerm(1) commands.

At this point you should remove all the files which were

present in the tarball but which dod not actually change

from the change set. The follwoing command does this

quickly and simply:

$ aecpu −unchanged
$

You change set now contains the minimum set of differ-

ences. Go ahead and complete it using the usual Aegis

process.

5.7.7. Importing the Next Upstream Patch

In contrast to tarballs, patches tend to be far easier to

cope with. In general, all that is necessary is to use the

aepatch(1) command, something like this:

$ aepatch −receive −file project−x.y.diff
$

which will create a change set, check-out only those file

the patch alters, and copes with creates and removes au-

tomagically.

There are two problems with this method. The largest

problem is patches whicg contains diff for derived fiels

as well. This is unfortunately very common.

The simplest way of coping with this is to add the

aepatch −trojan option, which will leave the change in

the being developed state, where you can examine it and

use the aenfu(1) command for any derived files it in-

sisted on creating as primary source files.

The second problem is much simpler: if a patch only

contains new files, Aegis can’t work out how much of

the leading path it should ignore on the filenames in the

patch. You will need to use the aepatch −remove-prefix

option in this case.

5.8. No Build Required

For some projects, particularly web sites and those writ-

ten exclusively in interpreted languages, it may not be

necessary to ever actually build your project.

For this kind of project you add the following line to the

project configuration file:

build_command = "exit 0";

For a project configured in this way, the aede(1) and

aeipass(1) commands will not check that a build has

been performed.

5.8.1. Why This May Not Be Such A Good Idea

It isn’t always desirable to configure a project this way,

ev en when it may initialy appear to be a good idea.

Web sites:

You can use the build stage to check the HTML

files against the relevant standards and DTDs.

Page 80 (./lib/en/user-guide/c4.8.so) Peter Miller

Aegis User Guide

You can also check that all of you (internal) links

are valid, and don’t point to non-existant pages or

anchors. Sometimes, if you have the space, you

can resolve server side includes, to make it faster

for Apache, by serving static pages.

Interpreted Languages:

A whole lot of simple errors, such as syntax er-

rors, can be caught by a static check of the source

files. For example, the perl −c option can syn-

tax check your Perl files without executing them.

See also the GNU awk −lint option, the

Python built-in compile() function, and the

php −l (lower case L) option. You can also

check that all include files referenced actually ex-

ist.

Documentation:

Many systems allow documentation to be ex-

tracted from the source files, and turned into

HTML or PDF files (e.g. Doxygen). This is a

sensable thing to do at build time.

Peter Miller (./lib/en/user-guide/c8.0.so) Page 81

User Guide Aegis

6. The Difference Tools

This chapter describes the difference commands in the

project configuration file. Usually these commands are

used by the aegis −DIFFerence command when differ-

encing files, but they may be used to accomplish some

other things.

The default setting is for Aegis to reject filenames which

contain shell special characters. This ensures that file-

names may be substituted into the commands without

worrying about whether this is safe. If you set the

shell_safe_filenames field of the project aegis.conf file to

false, you will need to surround filenames with the

${quote filename} substitution. This will only quote

filenames which actually need to be quoted, so users

usually will not notice. This command applies to all of

the various filenames in the sections which follow.

6.1. Binary Files

Aegis doesn’t particularly care whether your files are bi-

nary or text. However, your difference and merge tools

certainly will. In general, you need format-specific dif-

ference and merge tools for each of the file formats used

in your project. Unfortunately, most vendors of software

which make use of proprietary file formats do not supply

difference and merge tools.

The simplest compromise is to treat all files as text, with

manual repairs for binary files.

A more elegant solution is to use a shell script invoked

by the diff_command in the project aegis.conf file. This

shell script examines the file to determine the file format,

and then runs the appropriate difference tool. Similar

considerations apply to the merge_command field.

Please note that this support is not present in Aegis itself

because (a) it would cause code bloat, and (b) it is en-

tirely possible to do with a shell script launched by

diff_command.

6.2. Interfacing

The diff command is configured by a field of the project

configuration file (aegis.conf).

6.2.1. diff_command

This command is used by aed(1) to produce a difference

listing when file in the development directory was origi-

nally copied from the current version in the baseline19.

All of the command substitutions described in aesub(5)

are available. In addition, the following substitutions are

also available:

19 Or this is logically the case.

${ORiginal}

The absolute path name of a file containing the

version originally copied. Usually in the baseline.

${Input}

The absolute path name of the edited version of

the file. Usually in the development directory.

${Output}

The absolute path name of the file in which to

write the difference listing. Usually in the devel-

opment directory.

An exit status of 0 means successful, even of the files

differ (and they usually do). An exit status which is non-

zero means something is wrong.

The non-zero exit status may be used to overload this

command with extra tests, such as line length limits.

The difference files must be produced in addition to

these extra tests.

6.2.2. merge_command

This command is used by aed(1) to produce a difference

listing when file in the development directory is out of

date compared to the current version in the baseline.

All of the command substitutions described in aesub(5)

are available. In addition, the following substitutions are

also available:

${ORiginal}

The absolute path name of a file containing the

version originally copied. Usually in a temporary

file.

${Most_Recent}

The absolute path name of a file containing the

most recent version. Usually in the baseline.

${Input}

The absolute path name of the edited version of

the file. Usually in the development directory.

Aegis usually moves the source file aside, so that

the output can replace the source file.

${Output}

The absolute path name of the file in which to

write the difference listing. Usually in the devel-

opment directory. This is usually the name of a

change source file.

An exit status of 0 means successful, even of the files

differ (and they usually do). An exit status which is non-

zero means something is wrong.

6.3. When No Diff is Required

It is possible to configure a project to omit the diff step

Page 82 (./lib/en/user-guide/c8.1.so) Peter Miller

Aegis User Guide

as unnecessary, by the following setting:

diff_command = "exit 0";

This disables all generation, checking and validation of

difference files for each change source file. The merge

functions of the aediff(1) command are unaffected by

this setting.

Peter Miller (./lib/en/user-guide/c8.2.so) Page 83

User Guide Aegis

6.4. Using diff and merge

These two tools are available with most flavours of

UNIX, but often in a very limited form. One severe lim-

itation is the diff3(1) command, which often can only

cope with 200 lines of differences. The best alternative

is to use GNU diff, which has context differences avail-

able, and a far more robust diff3(1) implementation.

See the earlier Interfacing section for substitution de-

tails.

6.4.1. diff_command

The entry in the configuration file looks like this:

diff_command =
"set +e; diff −c $original "
"$input > $output; test $? −le 1";

This needs a little explanation:

• This command is always executed with the shell’s −e

option enabled, causing the shell to exit on the first error.

The "set +e" turns this off.

• The diff (1) command exits with a status of 0 if the files

are identical, and a status of 1 if they differ. Any other

status means something horrible happened. The "test"

command is used to change this to the exit status aegis

expects.

The −c option says to produce a context diff. You may

choose to use the −u option, to produce uni-diffs, if your

diff command supports it.

You may also wish to consider ignoring white space in

comparisons, as these tend to be cosmetic changes and

not very interesting to code reviewers. The −b option of

GNU Diff will ignore changes to the amount of white

space, and the −w option will ignore white space alto-

gether.

Binary files will often cause modern versions of GNU

Diff to exit with an exit status of 2, which is probably

reasonable most of the time. If your project contains bi-

nary files, you may want to treat all files as text files.

Use the GNU Diff −a option in this case.

A useful alternative, available with more recent versions

of GNU Diff, is the −U option. This is a more compact

form than the −c option, and is able to give the whole

file as context.

diff_command =
"set +e; diff −U999999 $original "
"$input > $output; test $? −le 1";

The exit status must once again be taylored, however the

output will be the whole source for context, with

changes marked by ‘+’ and ‘−’ in the left margin. This,

reviewers need only search for /ˆ[−+]/ in order to see

all edit made to the file.

6.4.2. merge_command

Note: The merge(1) command is better than this use of

the diff3(1) command. See the RCS chapter for more de-

tails.

The entry in the configuration file looks like this:

merge_command =
"(diff3 −e $MostRecent $original \
$input | sed −e ’/ˆw$$/d’ −e \
’/ˆq$$/d’; echo ’1,$$p’) | ed − \
$MostRecent > $output";

This needs a lot of explanation.

• The diff3(1) command is used to produce an edit script

that will incorporate into $MostRecent, all the changes

between $original and $input. You may want the −a op-

tion, to treat all files as ACSII.

• The sed(1) command is used to remove the "write" and

"quit" commands from the generated edit script.

• The ed(1) command is used to apply the generated edit

script to the $MostRecent file, and print the results on

the standard output, which are redirected into the $out-

put file.

6.5. Using fhist

The fhist program by David I. Bell also comes with two

other utilities, fcomp and fmerge, which use the same

minimal difference algorithm.

See the earlier Interfacing section for substitution de-

tails.

6.5.1. diff_command

The entry in the configuration file looks like this:

diff_command =
"fcomp −w $original $input "
"−o $output";

The −w option produces an output of the entire file, with

insertions and deletions marked by "change bars" in the

left margin. This is superior to context difference, as it

shows the entire file as context.

For more information, see the fcomp(1) manual entry.

6.5.2. merge_command

The entry in the configuration file looks like this:

merge_command =
"fmerge $original $MostRecent \
$input −o $output −c /dev/null";

The output of this command is similar to the output of

the merge_command in the last section. Conflicts are

marked in the output. For more information, see the

fmerge(1) manual entry.

Page 84 (./lib/en/user-guide/c5.0.so) Peter Miller

Aegis User Guide

7. The Project Attributes

The project attributes are manipulated using the aepa(1)

command. This command reads a project attributes file

to set the project attributes. This file can be thought of

as having several sections, each of which will be covered

by this chapter. You should see the aepattr(5) manual

entry for more details.

7.1. Description and Access

The description field is a string which contains a de-

scription of the project. Large amounts of prose are not

required; a single line is sufficient.

The default_development_directory
P field is a string

which contains the pathname of where to place new de-

velopment directories. The pathname must be absolute.

This field is only consulted if the uconf(5) field of the

same name is not set. Defaults to $HOME.

The umask field is an integer which is set to the file per-

mission mode mask. See umask(2) for more informa-

tion. This value will always be OR’ed with 022, because

aegis is paranoid.

7.2. Notification Commands

The develop_end_notify_command field is a string

which contains a command to be used to notify that a

change requires reviewing. All of the substitutions de-

scribed in aesub(5) are available. This field is optional,

if it is not specified no notification will be issued. This

command could also be used to notify other management

systems, such as progress and defect tracking, in addi-

tion to notifying users.

The develop_end_undo_notify_command field is a string

containing a command used to notify that a change has

been withdrawn from review for further development.

All of the substitutions described in aesub(5) are avail-

able. This field is optional, if it is not specified no notifi-

cation will be issued. This command could also be used

to notify other management systems, such as progress

and defect tracking, in addition to notifying users.

The re view_pass_notify_command field is a string con-

taining the command to notify that the review has

passed. All of the substitutions described in aesub(5) are

available. This field is optional, if it is not specified no

notification will be issued. This command could also be

used to notify other management systems, such as

progress and defect tracking, in addition to notifying

users.

The re view_pass_undo_notify_command field is a string

containing the command to notify that a review pass has

has been rescinded. All of the substitutions described in

aesub(5) are available. This field is optional, and

defaults to the develop_end_notify_command field if not

specified. If neither is specified, no notification will be

issued. This command could also be used to notify other

management systems, such as progress and defect track-

ing, in addition to notifying users.

The re view_fail_notify_command field is a string con-

taining the command to notify that the review has failed.

All of the substitutions described in aesub(5) are avail-

able. This field is optional, if it is not specified no notifi-

cation will be issued. This command could also be used

to notify other management systems, such as progress

and defect tracking, in addition to notifying users.

The integrate_pass_notify_command field is a string

containing the command to notify that the integration

has passed. All of the substitutions described in ae-

sub(5) are available. This field is optional, if it is not

specified no notification will be issued. This command

could also be used to notify other management systems,

such as progress and defect tracking, in addition to noti-

fying users.

The integrate_fail_notify_command field is a string con-

taining the command to notify that the integration has

failed. All of the substitutions described in aesub(5) are

available. This field is optional, if it is not specified no

notification will be issued. This command could also be

used to notify other management systems, such as

progress and defect tracking, in addition to notifying

users.

7.2.1. Notification by email

The aegis command is distributed with a set of shell

scripts to perform these notifications by email. They are

installed into the /usr/local/lib directory, by default; the

actual installed directory at your site is available as the

${DATa_DIRectory} substitution. The entries in the

Peter Miller (./lib/en/user-guide/c5.0.so) Page 85

User Guide Aegis

project attribute file look like this:

develop_end_notify_command =
"$sh $datadir/de.sh $project $change";

develop_end_undo_notify_command =
"$sh $datadir/deu.sh $project $change";

review_pass_notify_command =
"$sh $datadir/rp.sh $project $change \
$developer $reviewer";

review_pass_undo_notify_command =
"$sh $datadir/rpu.sh $project $change \
$developer";

review_fail_notify_command =
"$sh $datadir/rf.sh $project $change \
$developer $reviewer";

integrate_pass_notify_command =
"$sh $datadir/ip.sh $project $change \
$developer $reviewer $integrator";

integrate_fail_notify_command =
"$sh $datadir/if.sh $project $change \
$developer $reviewer $integrator";

Please note: the exit status of all these commands will be

ignored.

7.2.2. Notification by USENET

The aegis command is distributed with a set of shell

scripts to perform these notifications by USENET. They

are installed into the /usr/local/lib directory, by default;

the actual installed directory at your site is available as

the ${DATa_DIRectory} substitution. The entries in the

project attribute file look like this:

develop_end_notify_command =
"$sh $datadir/de.inews.sh $p $c alt.$p";

develop_end_undo_notify_command =
"$sh $datadir/deu.inews.sh $p $c alt.$p";

review_pass_notify_command =
"$sh $datadir/rp.inews.sh $p $c alt.$p";

review_pass_undo_notify_command =
"$sh $datadir/rpu.inews.sh $p $c alt.$p";

review_fail_notify_command =
"$sh $datadir/rf.inews.sh $p $c alt.$p";

integrate_pass_notify_command =
"$sh $datadir/ip.inews.sh $p $c alt.$p";

integrate_fail_notify_command =
"$sh $datadir/if.inews.sh $p $c alt.$p";

The last argument to each command is the newsgroup to

post the article in, you may want to use some other

group. Note that "$p" is an abbreviation for "$project"

and "$c" is an abbreviation for "$change".

7.3. Exemption Controls

The developer_may_review field is a boolean. If this

field is true, then a developer may review her own

change. This is probably only a good idea for projects of

less than 3 people. The idea is for as many people as

possible to critically examine a change.

The developer_may_integrate field is a boolean. If this

field is true, then a developer may integrate her own

change. This is probably only a good idea for projects of

less than 3 people. The idea is for as many people as

possible to critically examine a change.

The re viewer_may_integrate field is a boolean. If this

field is true, then a reviewer may integrate a change she

reviewed. This is probably only a good idea for projects

of less than 3 people. The idea is for as many people as

possible to critically examine a change.

The developers_may_create_changes field is a boolean.

If this field is true then developers may create changes,

in addition to administrators. This tends to be a very

useful thing, since developers find most of the bugs.

The default_test_exemption field is a boolean. This field

contains what to do when a change is created with no

test exemption specified. The default is "false", i.e. no

testing exemption, tests must be provided.

This kind of blanket exemption should only be set when

a project has absolutely no functionality available from

the command line; examples include X11 programs.

The program could possibly be improved by providing

access to the functionality from the command line, thus

allowing tests to be written.

7.3.1. One Person Projects

The entries in the project attributes file for a one person

project look like this:

developer_may_review = true;
developer_may_integrate = true;
reviewer_may_integrate = true;
developers_may_create_changes = true;

All of the staff roles (administrator, dev eloper, reviewer

and integrator) are all set to be the same user.

7.3.2. Two Person Projects

A two person project has the opportunity for each to re-

view the other’s work.

The entries in the project attributes file for a two person

project look like this:

developer_may_review = false;
developer_may_integrate = true;
reviewer_may_integrate = true;
developers_may_create_changes = true;

All of the staff roles (developer, reviewer and integrator)

are all set to allow both users.

7.3.3. Larger Projects

Once you have 3 or more staff on a project, you can as-

sign all of the roles to separate people. The idea is for

the greatest number of eyes to see each change and de-

tect flaws before they reach the baseline.

Page 86 (./lib/en/user-guide/c5.0.so) Peter Miller

Aegis User Guide

The entries in the project attributes file for a three person

project look like this:

developer_may_review = false;
developer_may_integrate = false;
reviewer_may_integrate = false;
developers_may_create_changes = true;

For smaller teams, everyone may be a reviewer. As the

teams get larger, the more experienced staff are often the

reviewers, rather than everyone.

7.3.4. RSS Feeds

Aegis has the ability to publish RSS 2.0 items to an RSS

channel when changesets transition to a new state. This

is an optional feature that must be enabled and config-

ured via the project-specific attributes.

Project administrators can configure each change of state

to cause an RSS item to be added to a specified RSS

channel. Each transition is individually controlled, al-

lowing each transition to be recorded in separate chan-

nels, or all transitions in the same channel, or some com-

bination thereof.

Generating RSS items for particular state transitions is

enabled by the rss:feedfilename project-specific attibute.

The format of this attribute is:

name = "rss:feedfilename−<filename>";
value = "<state> [<state> <state>]";

The name part of this attribute includes a filename,

which is the name of the RSS feed file (channel) to

which the item is to be added. The value part of the at-

tribute is a space-separated list of states that will cause

an RSS item to be added to the specified file. For exam-

ple,

name = "rss:feedfilename−foo.xml";
value = "awaiting_review

awaiting_integration";

will cause items to be added to the channel stored in the

file "foo.xml" when a changeset transitions into the

aw aiting_review and awaiting_integration states.

The channel description can be specified using the

rss:feeddescription attribute. The format of this attribute

is:

name = "rss:feeddescription−<filenane>";
value = "<Some description>";

For example,

name = "rss:feeddescription−foo.xml";
value = "This is a description";

will cause the <description> sub-element of the <chan-

nel> element stored in the file foo.xml to have the value

"This is a description". If this attribute is not used, the

default description is: "Feed of changes in state..."

The channel title can be specified using the rss:feedtitle

attribute. The format of this attribute is:

name = "rss:feedtitle−<filename>";
value = <Some title>;

For example,

name = "rss:feedtitle−foo.xml";
value = "This is a title";

will cause the <title> sub-element of the <channel> ele-

ment stored in the file foo.xml to have the value "Project

...: This is a title" The title will always start with the

word "Project" and the project name. If this attribute is

supplied, this default title is appended with the test pro-

vided.

The channel language can be specified using the

rss:feedlanguage attribute. The format of this attribute

is:

name = "rss:feedlanguage−filename";
value = "language";

For example,

name = "rss:feedlanguage−foo.xml";
value = "en−AU";

will cause the <language> sub-element of the <channel>

element stored in the file foo.xml to have the value en-

AU If not specified, the default value of the language

sub-element is "en-US".

7.3.4.1. Serving RSS Channels

aeget is able to serve up RSS channels, with an appropri-

ate URL. An example URL is

http://somehost/cgi−bin/aeget/proj.1.0/?rss+foo.xml

The key aspect of the URL shown is the "?rss+foo.xml"

modifier. "foo.xml" should obviously be replaced with

the name of your RSS channel feed (that is, the filename

specified with the "rss:feedfilename" project-specified

attribute(s).

In order to read the RSS channels, it is recommended to

point your RSS aggregator of choice to the appropriate

URL. In order to make determining the URL easy, aeget

will also place "RSS" icons next to the individual state

links on the main project web page ("proj.1.0/?menu") if

there is an RSS channel configured to include that

changeset state.

7.3.4.2. Links in RSS Channels

Links within RSS feed files are stored using a place-

holder ("@@SCRIPTNAME@@") instead of the serv-

ing script in URLs. This is done because the code that

knows about hte URL of a particular installation is en-

capsulated within aeget.

Peter Miller (./lib/en/user-guide/c5.0.so) Page 87

User Guide Aegis

The placeholder is replaced with the real scriptname

when the file is served by aeget.

Page 88 (./lib/en/user-guide/c11.0.so) Peter Miller

Aegis User Guide

8. Testing

This chapter discusses testing, and using Aegis to man-

age your tests and testing.

8.1. Why Bother?

Writing tests is extra work, compared to the way many

small (and some not-so-small) software shops operate.

For this reason, the testing requirement may be turned

off.

The win is that the tests hang around forever, catching

minor and major slips before they become embarrassing

"features" in a released product. Prevention is cheaper

than cure in this case, the tests save work down the track.

All of the "extra work" of writing tests is a long-term

win, where old problems never again reappear. All of

the "extra work" of reviewing changes means that an-

other pair of eyes sees the code and finds potential prob-

lems before they manifest themselves in shipped prod-

uct. All of the "extra work" of integration ensures that

the baseline always works, and is always self-consistent.

All of the "extra work" of having a baseline and separate

development directories allows multiple parallel devel-

opment, with no inter-developer interference; and the

baseline always works, it is never in an "in-between"

state. In each case, not doing this "extra work" is a false

economy.

The existence of these tests, though, is what determines

which projects are most suited to Aegis and which are

not. It should be noted that suitability is a continuous

scale, not black-and-white. With effort and resources,

almost anything fits.

8.1.1. Projects for which Aegis’ Testing is Most Suit-

able

Projects most suited to supervision by Aegis are straight

programs. What the non-systems-programmers out there

call "tools" and sometimes "applications". These are

programs which take a pile of input, chew on it, and emit

a pile of output. The tests can then compare actual out-

puts with expected outputs.

As an example, you could be writing a sed(1) look-alike,

a public domain clone of the

sed utility. You could write tests which exercise every

feature (insertion, deletion, etc.) and generate the ex-

pected output with the real

sed. You write the code, and run the tests; you can im-

mediately see if the output matches expectations.

This is a simple example. More complex examples ex-

ist, such as Aegis itself. The Aegis program is used to

supervise its own development. Tests consist of se-

quences of commands and expected results are tested for.

Other types of software have been developed using

Aegis: compilers and interpreters, client-server model

software, magnetic tape utilities, graphics software such

as a ray-tracer. The range is vast, but it is not all types of

software.

8.1.2. Projects for which Aegis’ Testing is Useful

For many years there have been full-screen applications

on text terminals. In more recent times there is increas-

ing use of graphical interfaces.

In developing these types of programs it is still possible

to use Aegis, but several options need to be explored.

8.1.2.1. Testing Via Emulators

There are screen emulators for both full-screen text and

X11 available. Using these emulators, it is possible to

test the user interface, and test via the user interface. As

yet, the author knows of no freely available emulators

suitable for testing via Aegis. If you find one, please let

me know.

8.1.2.2. Limited Testing

You may choose to use Aegis simply for its ability to

provide controlled access to a large source. You still get

the history and change mechanisms, the baseline model,

the enforced review. You simply don’t test all changes,

because figuring out what is on the screen, and testing it

against expectations, is too hard.

If the program has a command line interface, in addition

to the full-screen or GUI interface, the functionality ac-

cessible from the command line may be tested using

Aegis.

It is possible that "limited testing" actually means "no

testing", if you have no functionality accessible from the

command line.

8.1.2.3. Testing Mode

Another alternative is to provide hooks into your pro-

gram allowing you to substitute a file for user input, and

to be able to trigger the dump of a "screen image". The

simulated user input can then be fed to the program, and

the screen dump (in some terminal-independent form)

can be compared against expectations.

This is easier for full-screen applications, than for X11

applications. You need to judge the cost-benefit trade-

off. Cost of development, cost of storage space for X11

images, cost of not testing.

8.1.2.4. Manual Tests

The Aegis program provides a manual test facility. It

was originally intended for programs which required

Peter Miller (./lib/en/user-guide/c11.1.so) Page 89

User Guide Aegis

some physical action from a user, such as "unplug Ether-

net cable now" or "mount tape XG356B now". It can

also be used to have a user confirm that some on-screen

activity has happened.

The problem with manual tests is that they simply don’t

happen. It is far more pleasant to say "run the automatic

tests" and go for a cup of coffee, than to wait while the

computer thinks of mindless things to ask you to do.

This is human nature: if it can be automated, it is more

likely to happen.

8.1.2.5. Unit Tests

Many folks think of testing as taking the final product

and testing it. It is also possible to build specialized unit

tests, which exercise specific portions of the code.

These tests can then be administrated by Aegis, even if

the full-blown GUI cannot be.

8.1.3. Projects for which Aegis’ Testing is Least Use-

ful

Another class of software is things like operating system

kernels and firmware; things which are "stand alone".

This isolated nature makes it the most difficult to test: to

test it you want to provide physical input and watch the

physical output. By its very nature, it is hard to put into

a shell script, and thus hard to write an Aegis test for.

The above chapter was written in 1991. At this writing

(1999) there are projects like ×Linux and operating sys-

tems like VxWorks. These are all embedded, and all

have excellent network and download support. It is en-

tirely possible (with design support!) to write automati-

cally testable embedded systems.

8.1.3.1. Operating Systems

It is not impossible, just that few of us hav e the resources

to do it. You need to have a test system and a testing

system: the test system has all of its input and outputs

connected to the outputs and inputs of the testing system.

That is, the testing system controls and drives the test

system, and watches what happens.

For example, in the olden days before everyone had PC

and graphics terminals, there were only serial interfaces

available. Many operating system vendors tested their

products by using computers connected to each serial

line to simulate "user input". The system can be re-

booted this way, and using dual-ported disks allows dif-

ferent versions of a kernel to be tried, or other test condi-

tions created.

For software houses which write kernels, or device dri-

vers for kernels, or some other kernel work, this is bad

news: the Aegis program is probably not for you. It is

possible, but there may be more cost-effective

development strategies. Of course, you could always use

the rest of Aegis, and ignore the testing part.

However, Aegis has been used quite successfully to de-

velop Linux kernel modules. With suitable sudo(1) con-

figuration to permit access to insmod(1) &co, developers

can write test scripts which load device drivers, try them

out, and unload them again, all without universal root ac-

cess.

Also, the advent of modern tools, such as VMware,

which allow one operating system to "host" another, may

also permit straightforward testing of kernels and operat-

ing systems.

8.1.3.2. Firmware

Firmware is a similar deal: you need some way to down-

load the code to be tested into the test system, and write-

protect it to simulate ROM, and have the necessary hard-

ware to drive the inputs and watch the outputs.

As you can see, this is generally not available to run-of-

the-mill software houses, but then they rarely write

firmware, either. Those that do write firmware usually

have the download capabilities, and some kind of remote

operation facility.

However, this omits the possibility of not only cross

compiling your code for the target system, but also com-

piling your code to run natively on the build system.

The firmware (in the host incarnation) then falls into one

of the categories above, and may be readily tested. This

does not relieve you of also testing the firmware, but it

increases the probability that the firmware isn’t com-

pletely useless before you download it.

By using an object oriented language, such as C++, the

polymorphism necessary to cope with multiple environ-

ments can be elegantly hidden behind a pure abstract

base class. Alternatively, by using a consistent API, you

can accomplish the necessary sleight-of-hand at link

time.

The unit test method mentioned earlier is also very use-

ful for firmware, even if the device "as a whole" cannot

be tested.

Page 90 (./lib/en/user-guide/c11.2.so) Peter Miller

Aegis User Guide

8.2. Writing Tests

This section describes a number of general guidelines for

writing better tests, and some pitfalls to be avoided.

There are also a number of suggestions for portability of

tests in specific scripting languages; this will definitely

be important if you are writing software to publish on

WWW or for FTP. Portability is often required within

an organization, also. Examples include a change in

company policy from one 386

to another (e.g. company doesn’t like Linux, now you

must use AT&T’s SVR4 offering), or the development

team use gcc until the company finds out and forces you

to use the prototype-less compiler supplied with the op-

erating system, or even that the software being devel-

oped must run under both

and Windows NT.

Note, also, that when using Aegis’ heterogeneous build

support, portability will again feature prominently.

8.2.1. Contributors

I’d like to thank Steven Knight <knight@baldmt.com>

for writing portions of this information.

If other readers have additional testing techniques, or use

other scripting languages, contributions are welcome.

8.2.2. General Guidelines

This section lists a number of general guidelines for all

aegis tests, regardless of implementation language. Use

this section to guide how you write tests if the scripting

language you choose is not specifically covered in

greater detail below.

8.2.2.1. Choice of Scripting Language

The aegis program uses the test_command field of the

project aegis.conf file to specify how tests are executed.

The default value of the test_command field:

test_command = "$shell $file_name";

specifies that tests be Bourne shell scripts. You may,

however, change the value of test_command to specify

some other scripting language interpreter, which allows

you to write your test scripts in whatever scripting lan-

guage is appropriate for your project. The Perl or

Python scripting languages, for example, could be used

to create test scripts that are portable to systems other

than

systems.

This means that if you can write it in your scripting lan-

guage of choice, you can test it. This includes such

things as client-server model interfaces, and multi-user

synchronization testing.

8.2.2.2. No Execute Permission

Under aegis, script files do not have execute permission

set, so they should always be invoked by passing the

script file to the interpreter, not executing the test di-

rectly:

sh filename

perl filename

8.2.2.3. No Command-Line Arguments

Tests should not expect command line arguments. Tests

are not passed the name of the project nor the number of

the change.

8.2.2.4. Identifying the Scripting Language

Even though aegis does not execute the test script di-

rectly, it is a good idea to put some indication of its

scripting language into the test script. See the sections

below for suggested "magic number" identification of

scripts in various languages.

8.2.2.5. Current Directory

Tests are always run with the current directory set to ei-

ther the development directory of the change under test

when testing a change, or the integration directory when

integrating a change, or the baseline when performing

independent tests.

A test must not make assumptions about where it is be-

ing executed from, except to the extent that it is some-

where a build has been performed. A test must not as-

sume that the current directory is writable, and must not

try to write to it, as this could damage the source code of

a change under development, potentially destroying

weeks of work.

8.2.2.6. Check Exit Status and Return Values

A test script should check the exit status or return value

of every single command or function call, even those

which cannot fail. Checking the exit status or return

value of every statement in the script ensures that strange

permission settings, or disk space problems, will cause

the test to fail, rather than plow on and produce spurious

results. See the sections below for specific suggestions

on checking exit status or return values in various script-

ing languages.

8.2.2.7. Temporary Directory

Tests should create a temporary subdirectory in the oper-

ating system’s temporary directory (typically /tmp on

systems) and then change its working directory (cd) to

this directory. This isolates any vandalism that the pro-

gram under test may indulge in, and serves as a place to

write temporary files.

Peter Miller (./lib/en/user-guide/c11.2.so) Page 91

User Guide Aegis

At the end of the test, it is sufficient to change directory

out of the temporary subdirectory and then remove the

entire temporary subdirectory hierarchy, rather than track

and remove all test files which may or may not be cre-

ated.

Some

systems provide other temporary directories, such as

/var/tmp, which may provide a better location for a tem-

porary subdirectory for testing (more file system space

available, administrator preference, etc.). Test scripts

wishing to accomodate alternate temporary directories

should use the TMPDIR environment variable (or some

other environment variable appropriate to the operating

system hosting the tests) as the location for creating their

temporary subdirectory, with /tmp as a reasonable de-

fault if TMPDIR is not set.

8.2.2.8. Trap Interrupts

Test scripts should catch appropriate interrupts (1 2 3

and 15 on

systems) and cause the test to fail. The interrupt handler

should perform any cleanup the test requires, such as re-

moving the temporary subdirectory.

8.2.2.9. PAGER

If the program under test invokes pagers on its output, a

la more(1) et al, it should be coded to use the PAGER

environment variable. Tests of such programs should al-

ways set PAGER to cat so that tests always behave the

same, irrespective of inv ocation method (either by aegis

or from the command line).

8.2.2.10. Auxiliary Files

If a test requires extra files as input or output to a com-

mand, it must construct them itself from in-line data.

(See the sections below for more specific information

about how to use in-line data in various scripting lan-

guages to create files.)

It is almost impossible to determine the location of an

auxiliary file, if that auxiliary file is part of the project

source. It could be in either the change under test or the

baseline.

8.2.2.11. New Test Templates

Regardless of your choice of scripting language, it is

possible to specify most of the repetitious items above in

a file template used every time a user creates a new test.

See the aent(1) command for more information.

Having the machine do it for you means that you are

more likely to do it.

8.2.3. Bourne Shell

The Bourne shell is available on all flavors of the

operating system, which allows Bourne shell scripts to

be written portably across those systems. Here are some

specific guidelines for writing aegis tests using Bourne

shell scripts.

8.2.3.1. Magic Number

Some indication that the test is a Bourne shell script is a

good idea. While many systems accept that a first line

starting with a colon is a Bourne shell "magic number", a

more widely understood "magic number" is

#! /bin/sh

as the first line of the script file.

8.2.3.2. Check Exit Status

A Bourne shell test script should check the exit status of

ev ery single command, even those which cannot fail. Do

not rely on, or use, the set −e shell option (it provides no

ability to clean up on error).

Checking the exit status involves testing the contents of

the $? shell variable. Do not use an if statement

wrapped around an execution of the program under test

as this will miss core dumps and other terminations

caused by signals.

8.2.3.3. Temporary Directory

Bourne shell test scripts should create a temporary sub-

directory in /tmp (or the directory specified by the TM-

PDIR environment variable) and then cd into this direc-

tory. At the end of the test, or on interrupt, the script

should cd out of the temporary subdirectory and then rm

−rf it.

8.2.3.4. Trap Interrupts

Use the trap statement to catch interrupts 1 2 3 and 15

and cause the test to fail. This should perform any

cleanup the test requires, such as removing the tempo-

rary directory.

8.2.3.5. Auxiliary Files

If a test requires extra files as input or output to a com-

mand, it must construct them itself, using here docu-

ments:

cat <<EOF >file
contents
of the
file
EOF

See sh(1) for more information.

Page 92 (./lib/en/user-guide/c11.2.so) Peter Miller

Aegis User Guide

8.2.3.6. [test]

You should always use the test command, rather than the

square bracket form, as many systems do not have the

square bracket form, if you publish to USENET or for

FTP.

8.2.3.7. Other Bourne Shell Portability Issues

The above list covers the most common Bourne shell is-

sues that are relevant to most aegis tests. The documen-

tation for the GNU autoconf utility, howev er, contains a

more exhaustive list of Bourne shell portability issues. If

you want (or need) to make your tests as portable as pos-

sible, see the documentation for GNU autoconf.

8.2.4. Perl

Perl is a popular open-source scripting language avail-

able on a number of operating systems. Here are some

specific guidelines for writing aegis tests using Perl

scripts.

8.2.4.1. Magic Number

Some indication that the test is a Perl script is a good

idea. Because Perl is not installed in the same location

on all

systems, a first-line "magic number" such as:

#! /usr/local/bin/perl

that hard-codes the Perl path name will not be portable if

you publish your tests.

If the env(1) program is available, a more portable

"magic number" for Perl is:

#! /usr/bin/env perl

8.2.4.2. Check Return Values

A Perl test script should check the return value from

ev ery subroutine, even those which cannot fail.

A Perl test script should also check the exit status of

ev ery command it executes. Checking the exit status in-

volves testing the contents of the $? variable. See the

Perl documentation on "Predefined Variables" for de-

tails.

8.2.4.3. Temporary Directory

Perl test scripts should create a temporary subdirectory

in /tmp (or the directory specified by the $ENV{TM-

PDIR} environment variable) and then chdir into this di-

rectory. At the end of the test, or on interrupt, the script

should chdir out of the temporary subdirectory and then

remove it and its hierarchy. A portable way to do this

within a Perl script:

use File::Find;
finddepth(sub { if (−d $_) {

rmdir($_)
} else {

unlink($_)
} },
$dir);

8.2.4.4. Trap Interrupts

Use Perl’s $SIG hash to catch interrupts for HUP, INT,

QUIT and TERM and cause the test to fail. This should

perform any cleanup the test requires, such as removing

the temporary directory. A very simple example:

$SIG{HUP} =
$SIG{INT} =
$SIG{QUIT} =
$SIG{TERM} =

sub { &cleanup; exit(2) };

8.2.4.5. Auxiliary Files

If a test requires extra files as input or output to a com-

mand, it must construct them itself, using in-line data

such as here documents See the Perl documentation for

more information.

8.2.4.6. Exit Values

Aegis expects tests to exit with a status of 0 for success,

1 for failure, and 2 for no result. The following code

fragment will map all failed (non-zero) exit values to an

exit status of 1, regardless of what Perl module called

exit:

END { $? = 1 if $? }

A more complete example could check conditions and

set the exit status to 2 to indicate NO RESULT.

8.2.4.7. Modules

Perl supports the ability to re-use modules of common

routines, and to search several directories for modules.

This makes it convenient to write modules to share code

among the tests in a project.

Any modules that are used by your test scripts (other

than the standard modules included by Perl) should be

checked in to the project as source files. Test scripts

should then import the module(s) via the normal Perl

mechanism:

use MyTest;

When a test is run, the module file may actually be in the

baseline directory, not the development or integration di-

rectories. To make sure that the test invocation finds the

module, the test_command field in the project aegis.conf

file should use the Perl −I option to search first the local

Peter Miller (./lib/en/user-guide/c11.2.so) Page 93

User Guide Aegis

directory and then the baseline:

test_command =
"perl −I. −I${BaseLine} \
${File_Name}"

or, alternatively, if you had created your Perl test mod-

ules in a subdirectory named aux:

test_command =
"perl −I./aux −I${BaseLine}/aux \
${File_Name}"

For details on the conventions involved in writing your

own modules, consult the Perl documentation or other

reference work.

Actually, you need to use the ${search_path} substitu-

tion. I’ll have to fix this one day.

8.2.4.8. The Test::Cmd Module

A Test::Cmd module is available on CPAN (the Compre-

hensive Perl Archive Network) that makes it easy to

write Perl scripts that conform to aegis test requirements.

The Test::Cmd module supports most of the guidelines

mentioned above, including creating a temporary subdi-

rectory, cleaning up the temporary subdirectory on exit

or interrupt, writing auxiliary files from in-line contents,

and provides methods for exiting on success, failure, or

no result. The following example illustrates some of its

capabilities:

#! /usr/bin/env perl
use Test::Cmd;
$test = Test::Cmd−>new(prog

=> ’program_under_test’,
workdir => ’’);

$ret = $test−>write(’aux_file’, <<EOF);
contents of file
EOF
$test−>no_result(! $ret =>

sub { print STDERR
"Couldn’t write file: $!\\n"});

$test−>run(args => ’aux_file’);
$test−>fail($? != 0);
$test−>pass;

The various methods supplied by the Test::Cmd module

have a number of options to control their behavior.

The Test::Cmd module manipulates file and path names

using the operating-system-independent File::Spec mod-

ule, so the Test::Cmd module can be used to write tests

that are portable to any operating system that runs Perl

and the program under test.

The Test::Cmd module is available on CPAN. See the

module’s documentation for details.

8.2.4.9. The Test and Test::Harness Modules

Perl supplies two modules, Test and Test::Harness, to

support its own testing infrastructure. Perl’s tests use

different conventions than aegis tests; specifically, Perl

tests do not use the exit status to indicate the success or

failure of the test, like aegis expects. The Test::Harness

module expects that Perl tests report the success or fail-

ure of individual sub-tests on standard output, and al-

ways exit with a status of 0 to indicate the script tested

ev erything it was supposed to.

This difference makes it awkward to use the Test and

Test::Harness modules for aegis tests. In some circum-

stances, though, you may be forced to write tests using

the Test and Test::Harness modules − for example, if you

use aegis to develop a Perl module for distribution − but

still wish to have the tests conform to aegis conventions

during development.

This can be done by writing each test to use an environ-

ment variable to control whether its exit status should

conform to aegis or Perl conventions. This is easy when

using the Test module to write tests, as its onfail method

provides an appropriate place to set the exit status to

non-zero if the appropriate environment variable is set.

The following code fragment at or near the beginning of

each Perl test script accomplishes this:

use Test;
BEGIN { plan tests => 3,

onfail => sub {
$? = 1 if $ENV{AEGIS_TEST}
}

}

(See the documentation for the Test module for informa-

tion about using it to write tests.)

There then needs to be a wrapper Perl script around the

execution of the tests to set the environment variable.

The following script (called mytest.pl for the sake of ex-

ample) sets the AEGIS_TEST environment variable ex-

pected by the previous code fragment:

use Test::Harness;
$ENV{AEGIS_TEST} = 1;
open STDOUT, ">/dev/null" || exit (2);
runtests(@ARGV);
END { $? = 1 if $?;

print STDERR $?
? "FAILED" : "PASSED",
"\n"; }

It also makes its output more nearly conform to aegis’

examples by redirecting standard output to /dev/null and

restricting its reporting of results to a simple FAILED or

PASSED on standard error output.

The last piece of the puzzle is to modify the test_com-

mand field of the project aegis.conf file to have the

mytest.pl script call the test script:

test_command =
"perl −I. −I${BaseLine} mytest.pl \
${File_Name}"

Page 94 (./lib/en/user-guide/c11.2.so) Peter Miller

Aegis User Guide

The Test and Test::Harness modules are part of the stan-

dard Perl distribution and do not need to be downloaded

from anywhere. Because these modules are part of the

standard distribution, they can be used by test scripts

without being checked in to the project.

8.2.4.10. Granularity By Steven Knight

<knight@baldmt.com>

The granularity of Perl and Aegis tests mesh very well at

the individual test file (.t) level. Aegis and Test::Harness

are simply different harnesses that expect slightly differ-

ent conventions from the tests they execute: Aegis uses

the exit code to communicate an aggregate pass/fail/no

result status, Test::Harness examines the output from

tests to decide if a failure occurred.

It’s actually pretty easy to accomodate both conventions.

You can do this as easily as setting the test_command

variable in the project configuration file to something

like the following:

test_command =
"perl −MTest::Harness −e ’runtests(\"$fn\"); \
END {$$? = 1 if $$? }’";

In reality, you’ll likely need to add variable expansions

to generate −I or other Perl options for the full Aegis

search path. The END block takes care of mapping any

non-zero Test::Harness exit code to the ’1’ that Aegis ex-

pects to indicate a failure.

The only thing you really lose here is the Test::Harness

aggregation of results and timing at the end of a multi-

test run. This is more than offset by having Aegis track

which tests need to be run for a given change.

Alternatively, you can execute the .t files directly, not

through Test::Harness::runtests. This is easily accomo-

dated using the onfail method from the standard Perl

Test module in each test. Here’s a standard opening

block for .t tests

use Test;
BEGIN { $| = 1; plan tests => 19,

onfail => sub { $? = 1 if $ENV{AEGIS_TEST} }
}
END {print "not ok 1\n" unless $loaded;}
use Test::Cmd;
$loaded = 1;
ok(1);

That’s it (modulo specifying the appropriate number of

tests). My .t tests now use the proper exit status to report

a failure back to Aegis. The only other piece is configur-

ing the project’s "test_command" value to set the

AEGIS_TEST environment variable.

You can also use an intermediate script that also redi-

rects the tests’s STDOUT to /dev/null, if you are used to

and like the coarser PASSED/FAILED status.

8.2.5. Batch Testing

The usual “test_command” field of the project aegis.conf

file runs a single test at a time. When you have a multi-

CPU machine, or are able to distribute the testing load

across a range of machines, it is often desirable to do so.

The “batch_test_command” of the project configuration

file is for this purpose. See aepconf(5) for more infor-

mation.

Peter Miller (./lib/en/user-guide/c9.0.so) Page 95

User Guide Aegis

9. Branching

This chapter describes the concept of branching imple-

mented by Aegis. The process described in previous

chapters makes changes to a project’s master source.

Baseline

1 2 3

Branching generalizes this change model, by allowing

the baseline to be treated as a change, or the ability to

treat a change as a baseline.

Trunk Baseline

Branch 1
1.1 1.2

Since branchs are sometimes considered as a changes it

is useful to expand on the differences. A branch, or

trunk, baseline may have children which are either

changes or deeper branches. From this perspective the

difference is that nothing may be modified directly in a

branch. A branch is an integrated baseline with all the

associated protection. To modify a branch one must open

a change under that branch.

Looking upward from a change under a branch, its par-

ent is the branch baseline, and its grandparent is the

parent of the branch. We will see this used later when

we talk about ending a branch.

A significant feature of Aegis branches is that, because

they are an extension of the change concept, they are ex-

pected to end, and be integrated back into their baseline,

or parent ,in time.

The most common case of this is in project releases.

A branch in the being developed state may have changes

made to it, and/or deeper branches. This may recurse to

any lev el. Once a branch is complete, no further deeper

branches may be created from that branch.

9.1. How To Use Branching

To access a project branch, the project name has the

branch appended, separated by a dot or a hyphen. For

example: branch 1 of project "aegis" is referred to as

"aegis.1". To reference changes on this branch, use this

compound project name wherever you would normally

use a project name.

Traditional 2-level project release names are obtained by

using a further level of branching. For example: by cre-

ating branch 0 of project "aegis.1", there would be a

branch accessed as project "aegis.1.0".

By default, these two lev el of project branching are cre-

ated automatically when the aenpr(1) command is used.

You need to use the −VERSion option to make this

deeper or shallower, or hav e different numbering.

Command Branches Created

aenpr foo foo, foo.1,

foo.1.0

aenpr foo −vers

2.4.1

foo, foo.2,

foo.2.4, foo.2.4.1

aenpr foo.7 foo, foo.7

fooaegis −npr foo

−vers −

The last is a special case, to enable a project to be cre-

ated with no default branches (it’s also hard to get the

empty string past the alias).

To add branching and release level management to an

existing project on uses the aenbr(1) command at any

level. Say we already have foo.1.0, which represents

version 1.0 of our software. One method of release level

management would be to integrate foo.1.0 into its parent

foo.1 and then do aenbr −p foo.1 would create foo.1.1

representing version 1.1. Eventually we might want to

make a major version release and would integrate foo.1

into its parent foo and then do aenbr −p foo, which

would create foo.2. Then if we do aenbr −p foo.2 we

create foo.2.0, for development of version 2.0 of our

software.

9.2. Transition Using aenrls

To convert a project from the old-style to the new

branching style, use the aenrls(1) command.

If you give no second project name, the new name is

generated by removing the numeric suffixes. If you did

not give a −VERSion option, the numeric suffixes will

be used to determine the next version, by adding one to

the previous minor version number. The new project is

then created rather like the aenpr(1) command.

The files of the old project are copied across as an im-

plicit change on the newly created branch within the new

project. If the new project name already exists, and is a

new-style project, the aenrls(1) command will attempt to

make the appropriate numbered branches. If the new

project already exists and is an old-style project, or it ex-

ists and the branch number(s) are already in use, aen-

rls(1) will emit an error and fail. The aenrls(1) com-

mand only works on old-style projects, and always con-

verts them to new style projects.

Planning you branch numbers is essential. If you want

to use 3-level branch numbers (e.g. "aegis.2.3.1") at

some time in the future, then you must use 3-level ver-

sion numbers all the way through (e.g. "aegis.2.3.0").

This is because change numbers and branch numbers

come from the same common pool of numbers. Once

change one has been used (e.g. "aegis.2.3.C001"), then

Page 96 (./lib/en/user-guide/c9.0.so) Peter Miller

Aegis User Guide

branch one is no longer available (e.g.

"aegis.2.3.1.C042" conflicts).

9.3. Cross Branch Merge

From time to time you will want to merge the changes

from one branch into a change. This may be done using

a cross-branch merge. This is done by specifying the

−BRanch option to the aegis −diff −merge-only com-

mand.

The most common cross branch merge is when the

project’s files are out-of-date. Because it is not possible

to use aegis −diff −merge-only directly on the branch,

this must be in a change on the branch. As a short-cut,

the branch may be specified using the −grandparent op-

tion.

9.4. Multiple Branch Development

It is very common for a bug fix to need to be applied to

more than one branch at once. The change could be ap-

plied to the common ancestor branch, however this may

not be effective in the branch immediately. An alterna-

tive is to use the aegis −clone command, which can be

used to identically reproduce a change on another

branch.

9.5. Hierarchy of Projects

It would be nice if there was some way to use one

project as a sort of "super change" to a "super project",

so that large teams (say 1000 people) could work as lots

of small teams (say 100 people). As a small team gets

their chunk ready, using the facilities provided to-date by

Aegis, the small team’s baseline is treated as a change to

be made to the large team baseline.

This idea can be extended quite naturally to any depth of

layering.

After reading Tr ansaction Oriented Configuration Man-

agement: A Case Study Peter Fieler, Grace Downey,

CMU/SEI-90-TR-23, this is not a new idea. It also pro-

vides some ideas for how to do branching sensibly, and

was influential in the design of Aegis’ branching.

9.5.1. Fundamentals

Aegis has everything you need to have a super project

and a number of sub-projects. All you need to do is cre-

ate an active branch for each sub-project. Each branch

gets a separate baseline, viz

% aenpr gizmo.0.1
project "gizmo": created
project "gizmo.0": created
project "gizmo.0.1": created
%

Now, for each of your desired sub-projects, create an-

other branch

aenbr −p gizmo.0.1 1 # for the foo project

aenbr −p gizmo.0.1 2 # for the bar project

aenbr −p gizmo.0.1 3 # for the baz project

Now, the guys on the foo project set their

AEGIS_PROJECT environment variable to to

gizmo.0.1.1, the bar guys use gizmo.0.1.2, and baz uses

gizmo.0.1.3. From the developer’s point of view they are

separate projects. From one level up, though, they are

just part of a bigger project.

It helps if you design and implement the build system

first. You do this as a change set on the common parent

branch. Once it is completed each branch can inherit it

from the common parent. This makes integration easier,

when it comes time to integrate the sub-projects together.

9.5.2. Incremental Integration

It is very common that not all of the sub-projects will be

ready to be integrated at the same time. This is the nor-

mal situation with Aegis branching, and is handled

cleanly and simply.

In Aegis each branch is literally a change, all the way

down into the internal data structures. Just as each

change gets its own development directory, each branch

gets its own baseline. Just as a development directory

inherits everything its doesn’t hav e from the baseline, so

branches inherit everything they don’t hav e from their

parent branch (or ultimately from the trunk). Just as you

incrementally integrate changes into a branch, you incre-

mentally integrate branches into their parent.

The branches only influence each other when they are

integrated, just as changes only influence each other

when they are integrated.

There are times when a branch being integrated into its

parent is found to be inadequate. Aegis provides a sim-

ple mechanism to “bounce” a branch integration. Recall

that, for Aegis, branches are the same as changes. Just

as you “develop end” a change (see aede(1) for more in-

formation) you also aede a branch when development on

it is completed.

Once a branch has develop-end (stops being an active

branch), it is reviewed as a normal change, and inte-

grated as a normal change. If integration failed, it re-

turns to “being developed” and becomes an active

branch once again, until the next aede. As you can see,

it is as easy to bounce a branch integration as it is to

bounce a change integration.

An unsuccessful branch integration leaves the repository

unchanged, just as an unsuccessful change integration

leaves it unchanged.

Peter Miller (./lib/en/user-guide/c9.1.so) Page 97

User Guide Aegis

9.5.3. Super-Project Branching

In many real-world situations it is very important to be

able to branch at any point in the past history of the

super-project to fix (integration specific) bugs or to cus-

tomize more the older states of the super-project.

You can create a branch at any time, on any active

branch or active branch ancestor. You can populate that

branch with historical versions (from any other branch,

actually, not just the ancestral line). The method is a lit-

tle fussy − you can’t aecp into a branch directly, you

need to do this via a change to that branch. Files not

changed by a change on a branch are inherited from the

current (i.e. active) state of the parent branch. See the

section on Insulation, above.

9.5.4. Super-Project Testing

Many folks see Aegis’ testing features as useful for unit

testing individual files or change sets. For large projects,

it is common that a specific test tool will be written.

However, even large scale integration testing is possible

using Aegis.

You can change the test command from being a shell

script to being anything to you want − see the test_com-

mand field in aepconf(5). Or run the test tool from the

shell script. If the integration tests can be automated, it

makes sense to preserve them in the repository − they

are some of the most valuable regression tests for devel-

opers, because they describe correct behavior outside the

“box” the developer usually works in.

9.5.5. The Next Cycle

Once you have a fully-integrated product, what happens

on the next cycle? Well, first you may want to finish

gizmo.0.1 and integrate it into gizmo.0, and then aenbr

−p gizmo.0 2

Then what? Same deal as before, but anything not

changed in one of the sub-project branches gets inherited

from the ancestor.

aenbr −p gizmo.0.2 1 # for the foo project

aenbr −p gizmo.0.2 2 # for the bar project

aenbr −p gizmo.0.2 3 # for the baz project

Most folks find doing the whole mega-project-build

ev ery time tiresome − so don’t. Temporarily (via a

change set) hack the build configuration to build only the

bit you want − obviously a different hack on each sub-

project’s branch. Just remember to un-hack it (via an-

other change set) before you integrate the sub-project.

9.5.6. Bug Fixing

The aeclone(1) command lets you clone a change set

from one branch to another. So if you have a bug fix that

needs to be done on each active branch you can clone it

(once you have it fixed the first time). You still have to

build review and integrate n times (branches often differ

non-trivially). Providing it isn’t already in use, you can

ev en ask for the same change number on each branch −

handy for syncing with an external bug tracking system.

Alternatively, fix bugs in the common ancestor, and the

sub-projects will inherit the fix the next time they inte-

grate something on their branch (assuming they aren’t

insulated against it).

9.6. Conflict Resolution

A dev elopment directory becomes out of date, compared

to the project, when another change is integrated which

has a file in common. This situation is detected automat-

ically by aede(1) and you resolve it using aed(1), usually

with something like the −merge-only option. Addition-

ally, you can see if you have an out-of-date file from the

change files listing, because it will show you the current

baseline version in parentheses if you are out-of-date.

Aegis implements branches as very long changes, with

sub-changes. A side effect of this is that a branch can

become out-of-date in the same way that a development

director becomes out of date. When it comes time to

aede(1) the branch, you will be told if there are any out-

of-date files. Additionally, the project files listing will

show out of date files in exactly the same way that the

change file listing does.

9.6.1. Cross Branch Merge

However, unlike a simple change, if you attempt to use

the aed −merge-only command in the branch baseline,

you will get an error message! How, then, do you re-

solve the apparent impasse?

The aed(1) command has a number of options designed

for just this purpose.

• The −branch option may be used to specify another

branch of the same project, as a source of the file to be

differenced against. This is almost what you need.

• The −grandparent option is a special case of the

−branch option, and it means the parent branch of

project.

• The −trunk option is also a special case of the

−branch option, and it means the base branch from

which the entire branch tree springs.

By creating a new change on the out-of-date branch, and

copying in the out-of-date files, you have almost every-

thing required. All that is necessary is to perform a

cross-branch merge against the project grandparent, and

the necessary merging will be performed. In addition

Aegis will remember that it was a cross-branch merge,

and once aeipass completes successfully, the branch will

be up-to-date once more.

Page 98 (./lib/en/user-guide/c9.2.so) Peter Miller

Aegis User Guide

Create a new change on the out-of-date branch

Use a simple aecp command to copy the out-of-date

files. (Do not use any −branch or −delta options.)

Use the “aed −merge-only −grandparent” command

to perform the merge.

At this point, if you use the “ael cf” command, you

will notice that this file is tagged in the listing with

the new branch edit origin, to be used during aeipass.

If it isn’t, you have made a mistake.

As usual, use your favourite editor to check the

merge results, and resolve any conflicts.

Build and test as usual.

Complete the change as usual.

Once aeipass is successful, the branch will be up-to-

date (for the files in the change).

9.6.2. Insulation

One of the stated benefits of using a branch is the insu-

lating effects which branches can provide. However,

when you have multiple simultaneous active branches,

that insulation will inevitably lead to out-of-date branch

files. Now that how to merge them has been described,

when should you merge?

In a simple change’s dev elopment directory, there are

times when an aeipass will result in all developers need-

ing to recompile. Depending on what files you are

working on, it may be that you need to merge some of

your change files immediately, or aecp an earlier version

of the files which changed in the project.

Branches can also suffer from exactly the same prob-

lems, and are mended by exactly the same alternatives.

9.6.2.1. Branch Insulated Against Project

If you created a branch to insulate the work being done

on the branch from other activities in the project, it fol-

lows that when such build problems occurred, you would

use an “aecp −delta” command to continue insulating.

This action defers the labour of merging until towards

the end of the branch development, sometimes with a

quite visible schedule impact.

9.6.2.2. Project Insulated Against Branch

If you created a branch to insulate the project from work

being done in the branch, it follows that you would do a

cross branch immediately.

This action amortizes the labour of merging across the

life of the branch, often with a number of small delays

and less schedule impact.

9.6.2.3. Mix ’n’ Match

Of course, we usually have both these motives, and some

more besides, so the answer is usually “it depends”.

9.7. Ending A Branch

“OK, I give up. I do not understand the ending of

branches.”

Usually, you end development of a branch the same way

you end development of a simple change. In this exam-

ple, branch example.1.42 will be ended:

% aede −p example 1 −c 42
aegis: project "example.1": change 42:
file "fubar" in the baseline has changed
since the last ’aegis −DIFFerence’ com-
mand, you need to do a merge
%

Oops. Something went wrong. Don’t panic!

I’m going to assume, for the purposes of explanation,

that there have been changes in one of the ancestor

branches, and thus require a merge, just like file fubar,

above.

You need to bring file fubar up-to-date. How? You do it

in a change set, like everything else.

At his point you need to do 5 things: (1) create a new

change on example.1.42, (2) copy fubar into it, (3)

merge fubar with branch "example.1" (4) end develop-

ment of the change and integrate it, and (5) now you can

end example.1.42

The −GrandParent option is a special case of the

−BRanch option. You are actually doing a cross-branch

merge, just up-and-down rather than sideways.

% aem −gp fubar

%

And manually fix any conflicts... naturally.

At this point, have a look at the file listing, it will show

you something you have nev er seen before − it will show

you what it is going to set the branch’s edit_number_ori-

gin to for each file, at aeipass.

% ael cf
Type Action Edit File Name
−−−−−− −−−−−− −−−−−−− −−−−−−−−−−−
source modify 1.3 fubar

{cross 1.2}

Now finish the change as usual... aeb, aed, aede, aer-

pass, aeib, ..., aeipass nothing special here.

One small tip: merge the files one at a time. It makes

keeping track of where you are up to much easier.

Now you can end development of the branch, because all

of the files are up-to-date.

Peter Miller (./lib/en/user-guide/c9.3.so) Page 99

User Guide Aegis

In some cases, Aegis has detected a logical conflict

where you, the human, know there is none. Remember

that the aem command saves the old version of the file

with a ,B suffix (‘B’ for backup). If you have a file like

this, just use

% mv fubar,B fubar

%

to discard everything from the ancestor branch, and use

the current branch.

Page 100 (./lib/en/user-guide/c6.0.so) Peter Miller

Aegis User Guide

10. Tips and Traps

This chapter contains hints for how to use the aegis pro-

gram more efficiently and documents a number of pit-

falls you may encounter.

This chapter is at present very "ad hoc" with no particu-

lar ordering. Fortunately, it is, as yet, rather small. The

final size of this chapter is expected to be quite large.

10.1. Renaming Include Files

Renaming include files can be a disaster, either finding

all of the clients, or making sure the new copy is used

rather than the old copy still in the baseline.

Aegis provides some assistance. When the aemv(1)

command is used, a file in the development directory is

created in the old location, filled with garbage. Com-

piles will fail very diagnostically, and you can change

the reference in the source file, probably after aecp(1)ing

it first.

If you are moving an include file from one directory to

another, but leaving the basename unchanged, create a

link20 between the new and old names, but only in the

development directory (i.e. replacing the "garbage" file

aegis created for you). Create the link after aemv(1) has

succeeded. This insulates you from a number of nasty

Catch-22 situations in writing the dependency mainte-

nance tool’s rules file.

10.2. Symbolic Links

If you are on a flavor of

which has symbolic links, it is often useful to create a

symbolic link from the development directory to the

baseline. This can make browsing the baseline very sim-

ple.

Assuming that the project and change defaults are appro-

priate, the following command

ln −s ‘aegis −cd −bl‘ bl

is all that is required to create a symbolic link called bl

pointing to the baseline. Note that the aecd alias is inap-

propriate in this case.

This can be done automatically for every change, by

placing the line

develop_begin_command =
"ln −s $baseline bl";

into the project configuration file.

20 A hard link uses fewer disk blocks. Symbolic links survive

the subject file being deleted and recreated.

10.3. User Setup

There are a number of things which users of aegis can do

to make it more useful, or more user friendly. This sec-

tion describes just a few of them.

10.3.1. The .cshrc or .profile files

The aliases for the various user commands used through-

out this manual are obtained by appending a line of the

form

. /usr/local/share/profile

to the .profile file in the user’s home directory, if they

use the sh(1) shell or the bash(1) shell.

If the user uses the csh(1) shell, append a line of the

form

source /usr/local/share/cshrc

to the .cshrc file in the user’s home directory.

These days, many systems also provide an /etc/profile.d

directory, which has symbolic links to the start-up scripts

for various packages. These are run automatically for all

users. If your system has such a thing, arrange for sym-

bolic links

ln −s /usr/local/share/profile \
/etc/profile.d/aegis.sh

ln −s /usr/local/share/cshrc \
/etc/profile.d/aegis.csh

and you will not need to edit every user’s .cshrc or .pro-

file file.

10.3.2. The AEGIS_PATH environment variable

If users wish to use aegis for their own projects, in addi-

tion to the "system" projects, the AEGIS_PATH environ-

ment variable forms a colon separated search path of

aegis "library" directories. The /usr/local/lib directory is

always implicitly added to this list.

The user should not create this library directory, but let

aegis do this for itself (otherwise you will get an error

message).

The AEGIS_PATH environment variable should be set in

the .cshrc or .profile files in the user’s home directory.

Typical setting is

setenv AEGIS_PATH ˜/lib/aegis

and this is the default used in the /usr/local/share/cshrc

file.

10.3.3. The .aegisrc file

The .aegisrc file in the user’s home directory contains a

number of useful fields. See aeuconf (5) for more infor-

mation.

Peter Miller (./lib/en/user-guide/c6.0.so) Page 101

User Guide Aegis

10.3.4. The defaulting mechanism

In order for you to specify the minimum possible infor-

mation on the command line, aegis has been designed to

work most of it out itself.

The default project is the project which you are working

on changes for, if there is only one, otherwise it is

gleaned from the .aegisrc file. The command line over-

rides any default.

The default change is the one you are working on within

the (default or specified) project, if there is only one.

The command line overrides any default.

10.4. The Project Owner

For the greatest protection from accidental change, it is

best if the project is owned by a

account which is none of the staff. This account is often

named the same as the project, or sometimes there is a

single umbrella account for all projects.

When an aegis project is created, the owner is the user

creating the project, and the group is the user’s default

group. The creating user is installed as the project’s first

administrator.

A new project administrator should be created − an ac-

tual user account. The

password should then be disabled on the project account

− it will never be necessary to use it again.21

The user nominated as project administrator many then

assign all of the other staff roles. Aegis takes care of en-

suring that the baseline is owned by the project account,

not any of the other staff, while development directories

always belong to the developer (but the group will al-

ways be the project group, irrespective of the developer’s

default group).

All of the staff working on a project should be members

of the project’s group, to be able to browse the baseline,

for reviewers to be able to review changes. This use of

groups means that projects may be as secure or open as

desired.

10.5. USENET Publication Standards

If you are writing software to publish on USENET, a

number of the source newsgroups have publication stan-

dards. This section describes ways of generating the fol-

lowing files, required by many of the newsgroups’ mod-

erators:

Makefile How to build the distribu-

tion.

21 Unless bugs in aegis corrupt the database, in which case re-

pairs can be accomplished as the project account using a text edi-

tor.

CHANGES What happened for this

distribution.

patchlevel.h An identification of this

distribution.

Each of these files may be generated from information

known to aegis, with the aid of some fairly simple shell

scripts.

10.5.1. CHANGES

Write this section.

Look in the aux/CHANGES.sh file included in the aegis

distribution for an example of one way to do this.

10.5.2. Makefile

Write this section.

Look in the aux/Makefile.sh and aux/Makefile.awk files

included in the aegis distribution for an example of one

way to do this.

10.5.3. patchlevel.h

Write this section.

Look in the aux/Howto.cook file included in the aegis

distribution for an example of one way to do this.

10.5.4. Building Patch Files

The patch program by Larry Wall is one of the enduring

marvels of USENET. This section describes how to

build input files for this miracle program.

Write this section.

Look in the aux/patches.sh file included in the aegis dis-

tribution for an example of one way to do this.

Page 102 (./lib/en/user-guide/c6.1.so) Peter Miller

Aegis User Guide

10.6. Heterogeneous Development

The aegis program has support for heterogeneous devel-

opment. It will enforce that each change be built and

tested on each of a list of architectures. It determines

which architecture it is currently executing on by using

the uname(2) system call.

The uname(2) system call can yield uneven results, de-

pending on the operating systems vendor’s interpretation

of what it should return22. To cope with this, each re-

quired architecture for a project is specified as a name

and a pattern.

The name is used by aegis internally, and is also avail-

able in the ${ARCHitecture} substitution (see aesub(5)

for more information).

The patterns are simple shell file name patterns (see

sh(1) for more information) matched against the output

of the uname(2) system call.

The result of uname(2) has four fields of interest: sys-

name, release, version and machine. These are stitched

together with hyphens to form an architecture variant to

be matched by the pattern.

For example, a system the author commonly uses is

"SunOS-4.1.3-8-sun4m" which matches the

"SunOS-4.1*-*-sun4*" pattern. A solaris system, a very

different beast, matches the "SunOS-5.*-*-sun4*" pat-

tern. Sun’s 386 version of Solaris matches the

"SunOS-5.*-*-i86pc" pattern. A convex system matches

the "ConvexOS-*-10.*-convex" pattern.

10.6.1. Project aegis.conf File

To require a project to build and test on each of these ar-

chitectures, the architecture field of the project

aegis.conf file is set. See aepconf(5) for more details on

this file. The above examples of architectures could be

represented as

architecture =
[
{
name = "sun4";
pattern = "SunOS−4.1*−*−sun4*";

},
{
name = "sun5";
pattern = "SunOS−5.*−*−sun4*";

},

22 For example, SCO 3.2 returns the nodename in the sysname

field, when it should place "SCO" there; Convex and Pyramid

scramble it even worse.

{
name = "sun5pc";
pattern = "SunOS−5.*−*−i86pc";

},
{

name = "convex";
pattern = "ConvexOS−*−10.*−*";

}
];

This would require that all changes build and test on

each of the "sun4", "sun5", "sun5pc" and "convex" archi-

tectures.

It is also possible to have optional architectures. This

may be used to recognise an environment, but not man-

date that it be built every time.

{
name = "solaris−8−sparc";
pattern = "SunOS−5.8*−*−sun4*";
mode = optional;

},

However, once an architecture name appears in a

change’s architecture list, it is mandatory for that

change.

If the architecture field does not appear in the project

aegis.conf file, it defaults to

architecture =
[

{
name = "unspecified";
pattern = "*";

}
];

Setting the architectures is usually done as part of the

first change of a project, but it also may be done to exist-

ing projects. This information is kept in the project

aegis.conf file, rather than as a project attribute, because

it requires that the DMT configuration file and the tests

have corresponding details (see below).

The lib/config.example/architecture file in the

Aegis distribution contains many architecture variations,

so that you may readily insert them into your project

configuration file.

10.6.2. Change Attribute

The architecture attribute is inherited by each new

change. A project administrator may subsequently edit

the change attributes to grant exemptions for specific ar-

chitectures. See aeca(1) for how to do this.

A build must be successfully performed on each of the

target architectures. Similarly, the tests must be per-

formed successfully on each. These requirements are

because there is often conditional code present to cope

with the vagaries of each architecture, and this needs to

Peter Miller (./lib/en/user-guide/c6.1.so) Page 103

User Guide Aegis

be compiled and tested in each case.

This multiple build and test requirement includes both

development and integration states of each change.

10.6.3. Network Files

This method of heterogeneous development assumes that

the baseline and development directories are available as

the same pathname in all target architectures. With soft-

ware such as NFS, this does not present a great problem,

however NFS locking must also work.

There is also an assumption that all the hosts remotely

mounting NFS file systems will agree on the time, be-

cause aegis uses time stamps to record that various tasks

have been performed. Software such as timed(8) is re-

quired23.

10.6.4. DMT Implications

This method of heterogeneous development assumes that

the baseline will have a copy of all object files for all tar-

get architectures simultaneously.

This means that the configuration file for the DMT will

need to distinguish all the variations of the object files in

some way. The easiest method is to have a separate ob-

ject tree for each architecture24. To facilitate this, there

is an ${ARCHitecture} substitution available, which may

then be passed to the DMT using the build_command

field of the project aegis.conf file.

The architecture name used by aegis needs to be used by

the DMT, so that both aegis and the DMT can agree on

which architecture is currently targeted.

10.6.4.1. Cook Example

As and example of how to do this, the cook recipes from

the DMT chapter are modified as appropriate. First, the

build_command field of the project aegis.conf file is

changed to include the ${ARCHitecture} substitution:

build_command =
"cook −b ${s Howto.cook} \
project=$p change=$c \
version=$v arch=’$arch’ −nl";

Second, the C recipe must be changed to include the ar-

23 Some sites manage by running rdate(8) from cron(8) every

15 minutes.
24 A tree the same shape as the source tree makes navigation

easier, and users need not think of file names unique across all

directories.

chitecture in the path of the result:

[arch]/%.o: %.c: [collect c_incl
−eia [prepost "−I" ""
[search_list]] [resolve %.c]]

{
if [not [exists [arch]]] then

mkdir [arch]
set clearstat;

if [exists [target]] then
rm [target]

set clearstat;
[cc] [cc_flags] [prepost "−I"

"" [search_list]] −c
[resolve %.c];

mv %.o [target];
}

Third, the link recipe must be changed to include the ar-

chitecture in the name of the result:

[arch]/example: [object_files]
{

if [not [exists [arch]]] then
mkdir [arch]

set clearstat;
if [exists [target]] then

rm [target]
set clearstat;

[cc] −o [target] [resolve
[object_files]] −ly −ll;

}

The method used to determine the object_files
variable is the same as before, but the object file names

now include the architecture:

object_files =
[fromto %.y [arch]/%.o

[match_mask %.y [source_files]]]
[fromto %.l [arch]/%.o

[match_mask %.l [source_files]]]
[fromto %.c [arch]/%.o

[match_mask %.c [source_files]]]
;

Note that the form of these recipes precludes performing

a build in each target architecture simultaneously, be-

cause intermediate files in the recipes may clash. How-

ev er, aegis prevents simultaneous build, for this and

other reasons.

10.6.5. Test Implications

Tests will need to know in which directory the relevant

binary files reside. The test_command field of the

project aegis.conf file may be changed from the default

test_command =
"$shell $file_name";

to pass the architecture name to the test

test_command =
"$shell $file_name $arch";

This will make the architecture name available as $1

Page 104 (./lib/en/user-guide/c6.1.so) Peter Miller

Aegis User Guide

within the shell script. Tests should fail elegantly when

the architecture name is not given, or should assume a

sensible default.

10.6.6. Cross Compiling

If you are cross compiling to a number of different target

architectures, you would not use aegis’ heterogeneous

development support, since it depends on the uname(2)

system call, which would tell it nothing useful when

cross compiling. In this case, simply write the DMT

configuration file to cross compile to all architectures in

ev ery build.

10.6.7. File Version by Architecture

There is no intention of ever providing the facility where

a project source file may have different versions depend-

ing on the architecture, but all of these versions overload

the same file name25.

The same effect may be achieved by naming files by ar-

chitecture, and using the DMT to compile and link those

files in the appropriate architecture.

This has the advantage of making it clear that several

variations of a file exist, one for each architecture, rather

than hiding several related but independent source files

behind the one file name.

10.7. Reminders

This section documents some scripts available for re-

minding users of changes which require their attention.

These scripts are installed into the /usr/local/share/re-

mind directory, and may be run by cron(8) at appropriate

intervals. You will almost certainly want to customize

them for your site.

10.7.1. Awaiting Development

The /usr/local/share/remind/awt_dvlp.sh script takes a

project name as argument. It is placed in the project

leader’s per-user crontab. It is suggested that this script

be run weekly, at 8AM on Monday. This script will send

all developers of the named project email if there are any

changes in the awaiting development state in the named

project. No mail is sent if there are no changes outstand-

ing.

10.7.2. Being Developed

The /usr/local/share/remind/bng_dvlpd.sh script takes

no arguments. It is placed in each user’s per-user

crontab. It is suggested that this script be run weekly, at

8AM on Monday. This script takes no arguments, and

sends email to the user if they hav e any changes in the

25 Some other SCM tools provide a repository with this facil-

ity.

being developed or being integrated states. No mail is

sent if there are no changes outstanding.

10.7.3. Being Reviewed

The /usr/local/share/remind/bng_rvwd.sh script takes a

project name as argument. It is placed in the project

leader’s per-user crontab. It is suggested that this script

be run daily at 8AM. This script will send all reviewers

of the named project email if there are any changes in

the being reviewed state in the named project. No mail

is sent if there are no changes outstanding.

10.7.4. Awaiting Integration

The /usr/local/share/remind/awt_intgrtn.sh script takes a

project name as argument. It is placed in the project

leader’s per-user crontab. It is suggested that this script

be run daily at 8AM. This script will send all integrators

of the named project email if there are any changes in

the awaiting integration state in the named project. No

mail is sent if there are no changes outstanding.

Peter Miller (./lib/en/user-guide/c10.0.so) Page 105

User Guide Aegis

11. Geographically Distributed Development

This chapter describes various methods of collabora-

tively developing software using Aegis, where the col-

laborating sites are separated by administrative domains

or even large physical distances.

While many Open Source projects on the Internet typify

such development, this chapter will also describe tech-

niques suitable for commercial enterprises who do not

wish to compromise their intellectual property.

11.1. Introduction

The core of the distribution method is the aedist(1) com-

mand. In its simplest form, the command

aedist −send | aedist −receive

will clone a change set locally. This may appear less

than useful (after all, the aeclone(1) command already

exists) until you consider situations such as

aedist −send | e−mail | aedist −receive

where e-mail represents the sending, transport and re-

ceiving of e-mail. In this example, the change set would

be reproduced on the e-mail recipient’s system, rather

than locally. Similar mechanisms are also possible for

web distribution.

11.1.1. Risk Reduction

Receiving change sets in the mail, however, comes with

a number of risks:

• You can’t just commit it to your repository, because

it may not even compile.

• Even if it does compile, you want to run some tests

on it first, to make sure it is working and doesn’t

break anything.

• Finally, you would always check it out, to make sure

it was appropriate, and didn’t do more subtle damage

to the source.

While these are normal concerns for distributing source

over the Internet, and also internally within companies,

they are the heart of the process employed by Aegis. All

of these checks and balances are already present. The

receive side simply creates a normal Aegis change, and

applies the normal Aegis process to it.

• The change set format is unpacked into a private

work area, not directly into the repository. This is a

normal Aegis function.

• The change set is then confirmed to build against the

repository. All implications flowing from the change

are exercised. Build inconsistencies will flag the

change for attention by a human, and the change set

will not be committed to the repository. This is a

normal Aegis function.

• The change set is tested. If it came accompanied by

tests, these are run. Also, relevant tests from the

repository are run. Test inconsistencies will flag the

change for attention by a human, and the change set

will not be committed to the repository. This is a

normal Aegis function.

• Once the change set satisfies these requirements, it

must still be reviewed by a human before being com-

mitted, to validate the change set for suitability and

completeness. This is a normal Aegis function.

11.1.2. What to Send

While there are many risks involved in receiving change

sets, there also problems in figuring out what to send.

At the core of Aegis’ design is a transaction. Think of

the source files as rows in a database table, and each

change-set as a transaction against that table. The build

step represents maintaining referential integrity of the

database, but also represents an input validation step, as

does the review. And like databases, the transactions are

all-or-nothing affairs, it is not possible to commit “half”

a transaction.

As you can see, Aegis changes are already elegantly val-

idated, recorded and tracked, and ideally suited to being

packaged and sent to remote repositories.

11.1.3. Methods and Topologies

In distributed systems such as described in this chapter,

there are two clear methods of distribution:

• The “push” method has the change set producer auto-

matically send the change-set to a registered list of in-

terested consumers. This is supported by Aegis and

aedist.

• The “pull” method has the change set producer make

the change sets available for interested consumers to

come and collect. This is supported by Aegis and

aedist.

These are two ends of a continuum, and it is possible and

common for a mix-and-match approach to be taken.

There are also many ways of arranging how distribution

is accomplished, and many of the distribution arrange-

ments (commonly called topologies, when you draw the

graphs) are supported by Aegis and aedist:

• The star topology has a central master repository, sur-

rounded by contributing satellite repositories. The

satellites are almost always “push” model, however

the central master could be either “push” or “pull”

model.

Page 106 (./lib/en/user-guide/c10.0.so) Peter Miller

Aegis User Guide

• The snowflake topology is like a hierarchical star

topology, with contributors feeding staging posts,

which eventually feed the master repository. Common

for large Open Source Internet projects. To wards the

master repository is almost always “push” model, and

aw ay from the master is almost always “pull” model.

• The network topology is your basic anarchic au-

tonomous collective, with change sets flying about

peer-to-peer with no particular structure. Often done

as a “push” model through an e-mail mailing list.

All of these topologies, and any mixture you can dream

up, are supported by Aegis and aedist. The choice of the

right topology depends on your project and your team.

11.1.4. The Rest of this Chapter

Aegis is the ideal medium for hosting distributed

projects, for all the above reasons, and the rest of this

chapter describes a number of different ways of doing

this:

The second section will describe how to perform

these actions manually, both send and receive, as this

demonstrates the method efficiently, and represents a

majority of the use made of the mechanism.

The third section will show how to automate e-mail

distribution and receipt. Automated e-mail distribu-

tion is probably the next most common use.

The fourth section will show how to configure distri-

bution and receipt using World Wide Web servers

and browsers.

The fifth section deals with security issues, such as

validating messages and coping with duplicate

storms.

11.2. Manual Operation

This section describes how to use aedist manually, in or-

der to send and receive change sets.

11.2.1. Manual Send

In order to send a change set to another site, it must be

packaged in a form which captures all of the change’s at-

tributes and the contents of the change’s files. This

package must be compressed and encoded in a form

which will survive the various mail transport agents it

must pass through, and then given to the local mail trans-

port agent. This is done by a single command

% aedist −send −c number | \
mail joe.blow@example.com

%

All of the usual Aegis command line options are avail-

able, so you could specify the project on the command

line if you needed to.

This command will send the sources from the develop-

ment directory, if the change is not yet completed. This

is useful for collaboration between developers, but it

isn’t reviewed and integrated, so beware.

It is more usual to send a change which has been com-

pleted. In this case the version of the file which was

committed is sent. If necessary, the history files will be

consulted to reconstruct this information. See the “Auto-

matic Send” section, below, for more discussion of this.

There are many options for customizing the e-mail mes-

sage sent to joe.blow@example.com, see aedist(1)

for more information.

11.2.2. Sending Baselines

In order to send the entire contents of the repository to

someone, you use a very similar command:

% aedist −send −baseline | \
mail joe.blow@example.com

%

This can be a very large change set, because it is all files

of the project.

11.2.3. Sending Branches

There are times when remote developers are not inter-

ested in a blow-by-blow update of your repository. In-

stead they want to have updates from time to time. In or-

der to send them the current state of your active dev elop-

ment branch, in this example “example.4.2”, you would

use a command of the form

% aedist −send −p example.4 −c 2 | \
mail joe.blow@example.com

%

Notice how the correspondence between branches and

change sets is exploited. The baseline of a branch is the

development directory of the “super change” is repre-

sents.

Branch change sets like this are smaller than whole base-

lines, because they include only the files altered by this

branch, rather then the state of every file in the project.

11.2.4. Manual Receive

The simplest form of receiving a change set is to save it

from your e-mail program into a file, and then

% aedist −receive −file filename

...lots of information...

%

where filename is where you saved the e-mail message.

If your e-mail program is able to write to a pipe, you can

use a simpler form. This example uses the Rand Mail

Peter Miller (./lib/en/user-guide/c10.1.so) Page 107

User Guide Aegis

Handler’s show(1) command:

% show | aedist −receive
...lots of information...

%

Each of these examples assumes that you have used the

same project name locally as that of the sender (it’s

stored in the package). If this isn’t the case, you will

need to use the −project option to tell aedist which

project to apply the change to.

The actions performed by aedist on receive are not quite

a mirror of what it does on send. In particular, send usu-

ally extracts its information from the repository, but re-

ceive does not put the change set directly into the repos-

itory.

On receipt of a change set, aedist creates a new change

with its own development directory, and unpacks the

change set into it, in much the same way as a change

would normally be performed by a developer. (Indeed,

the receiver must be an authorized developer.)

Once the change is unpacked, it goes through the usual

development cycle of build, difference and test. If any

portion of this fails, aedist will stop with a suitable error

message. If all goes well, development of the change

will end, and it will be left in the being reviewed state.

At this point, a local reviewer must examine the change,

and it proceeds through the change integration process as

normal.

If there is a problem with the change, it can be dealt with

as you would with any other defective change − by de-

veloping it some more. Or you can email the sender

telling them the problem and use aedbu(1) and aencu(1)

to entirely discard the change.

11.2.5. Getting Started

In order to receive a change, you must have a project to

receive it into. Also, changes tend to be the difference

between an existing repository and what it is to become.

You need some way to get the starting point of the differ-

ences before you can apply any differences. This section

describes one way of doing this.

You start by creating a normal Aegis project in the usual

way. That is covered earlier in this User Guide. It helps

greatly if you give your local project exactly the same

name as the remote project. It doesn’t need the same

pathname for the project directory, just the same project

name.

Once you have this project created, request the remote

repository send you a “baseline” change, as described

above. Once you have received this, and it is integrated

successfully, you are ready to receive and apply change

sets. This is an inherently “pull” activity, as the source

may never hav e heard of you before. The initial baseline

may arrive by e-mail, or floppy disk, or you may retrieve

it from the web, it all depends how the project is being

managed.

You will be warned about "potential trojan horse" files in

the baseline change set. This is normal, because you are

receiving all project configurations file, build files and

test files. All of these contain executable commands that

will be executed. Cav eat emptor. Make sure you trust

the source.

11.3. Sneaker Net

Another common method of transporting data, some-

times a quite large amount of it, is to write it onto trans-

portable media and carry it.

To write a change set onto a floppy, you would use com-

mands such as

% mount /mnt/floppy
% aedist −send −no-base64 \

−o /mnt/floppy/change.set

% umount /mnt/floppy
%

The above command assumes the floppy is pre-format-

ted, and that there is a user-permitting line in the

/etc/fstab file, as is common for many Linux distribu-

tions. The change.set can be any filename you like, but

is usually project-name and change-number related.

It takes a very sizable change set to fail to fit on a

1.44MB floppy, because they are compressed (and

change sets exceeding 8MB of source are rare, even for

huge projects). The −no-base64 option is used to

avoid the MIME base 64 encoding, which is necessary

for e-mail, not not necessary in this case. The receive

side will automatically figure out there is no MIME base

64 encoding.

Reading the change set is just as simple, as it closely fol-

lows the other commands for receiving commands sets.

% mount /mnt/floppy
% aedist −rec −f /mnt/floppy/change.set

...lots of output...

% umount /mnt/floppy
%

This technique will work for any of the disks available

these days including floppies, Zip, Jaz, etc.

11.4. Automatic Operation

This section describes how to use aedist to automatically

send change sets via e-mail.

11.4.1. Sending

Change sets can be sent automatically when a change

passes integration. You do this by setting the integrate_-

pass_notify_command field of the project attributes.

Page 108 (./lib/en/user-guide/c10.2.so) Peter Miller

Aegis User Guide

In this example, the “example” project sends all integra-

tions to all the addresses on the example-develop-
ers mailing list. (The mailing list is maintained outside

of Aegis, e.g. by Majordomo.) The relevant attribute

(edited by using the aepa(1) command) looks like this:

integrate_pass_notify_command =
"aedist −p $project −c $change | \
mail example−users";

Please note that project attributes are inherited by

branches when they are created. If you don’t want all

branches to broadcast all changes, you need to remember

to clear this project attribute from the branch once the

branch has been created. Alternatively, use the $ver-
sion substitution to decide who to send the change to.

11.4.2. Receiving

write this section

You need to set up an e-mail alias, with a wrapper

around it − you probably don’t want "daemon" as a reg-

istered developer.

While aedist(1) makes every attempt to spot potential

trojan attacks, you really, really want PGP validation (or

similar industrial strength digital signatures) before you

accept this kind of input.

11.5. World Wide Web

This section describes how to use aeget(1) and aedist(1)

to transport change sets using the World Wide Web.

This requires configuration of the web server to package

and send the change sets, and configuration of the

browser to receive and unpack the change sets. You can

also automatically track a remote site, efficiently down-

loading and applying new change sets as they appear.

11.5.1. Server

Aegis has a read-only web interface to its database, it is

a web server CGI interface. If you are running Apache,

or similar, all you have to do is copy (or symlink, if you

have symlinks enabled) the /usr/local/bin/aeget file into

the web server’s cgi-bin directory. For example, the de-

fault Apache install would need the following command:

ln −s /usr/local/bin/aeget /var/www/cgi−bin/aeget

11.5.2. Browser

You need to set the appropriate mailcap entry, so that

application/aegis-change-set is handled by

aedist −receive.

Edit the /etc/mailcap file, and add the lines

Aegis
application/aegis−change−set;/usr/local/bin/aedist −receive −f %s

You may need to restart your web browser for this to

take effect.

11.5.3. Hands-Free Tracking

Clients of sites using a web server, such as the various

developers in an open sourec project, it is possible to au-

tomatically "replay" change sets on the server which

have not yet been incorporated at your site.

The command

aedist −replay −f name-of-web-server

will automatically download any remote change sets not

present in the local repository. It downloads them by us-

ing the aedist(1) command. It uses commands of the

form

aedist −receive −f url-of-change-set

to download the change sets, which have to go through

all of the usual Aegis process before vecoming part of

your local repository. This includes code review, unless

you have configured the develop_end_action field of the

project configuration to be goto_awaiting_development.

If you add this command to a crontab(1) entry, you can

check to see if there are change sets to synchronize with

once a day, or however often you set the line to run.

11.6. Security

This section deals with security issues. Security isn’t

just “keep the bad guys out”, it actually covers availabil-

ity, integrity and confidentiality.

Av ailability:

refers to the system being available for use by

authorised users. Denial of service and

crashes are examples of bad things in this area.

Integrity:

refers to the system being in a known good

state. Corrupted change sets and un-buildable

repositories are examples of bad things in this

area.

Confidentiality:

refers to the system being available only to au-

thorised users. For many Open Source

projects, this isn’t a large concern, but for cor-

porate users of Aegis, non-disclosure of

change-sets as they cross the Internet is a seri-

ous requirement.

As you can see, a strategy of “keep the bad guys out” is

necessary, but not sufficient, to satisfy security.

This section covers the above security issues, as applied

to the use of aedist to move change sets around.

Peter Miller (./lib/en/user-guide/c10.4.so) Page 109

User Guide Aegis

11.6.1. Trojan Horses

“A Trojan horse is an apparently useful program contain-

ing hidden functions that can exploit the privileges of the

user [running the program], with a resulting security

threat. A Trojan horse does things that the program user

did not intend26.”

In order to forestall this threat, aedist will cease develop-

ment of the change if it detects the potential for a Trojan

horse. These include...

• Changing the project aegis.conf file. This file con-

tains the build command and the difference com-

mands, both of which would be run before a reviewer

had a chance to confirm they were acceptable.

• Changing any of the files named in the tro-

jan_horse_suspect field of the project aegis.conf file.

This lets you cover things like the build tool’s configu-

ration file (e.g. the Makefile or the cookbook), and any

scripts or code generators which would be run by the

build.

This isn’t exhaustive protection, and it depends on keep-

ing the trojan horse suspect list up-to-date. (It accepts

patterns, so it’s not too onerous.) For better protection,

you need to validate the sender and the message.

11.6.2. PGP

PGP can be used to validate that the source of a change

set distribution is really someone you trust.

anyone want to advise me what to put here?

11.6.3. Sorcerer’s Apprentice

In a push system, with a central master server and a col-

lection of contributors, all of which are using automatic

send, as described above, a potential explosion of redun-

dant messages is possible. Viz:

• Contributor integrates a change, which is dispatched

to the master server.

• Maintainer integrates the change set into the master

repository.

• Master repository automatically dispatches the change

set to all of the contributors.

• Each of the contributors receives and integrates the

change, each of which are dispatched to the master

server.

• The master server is inundated with change sets it al-

ready has.

• If these change sets were to be integrated, the storm

repeats, growing exponentially every time it goes

around the loop.

26 Summers, Rita C., Secure Computing Threats and Safe-

guards, McGraw-Hill, 1997.

To prevent this, aedist does several things...

• Before the change is built, an aecpu −unchanged is

run. If there is nothing left, the change is abandoned,

because you already have it. (This doesn’t always

work, because propagation delays may try to re verse a

subsequent local change.)

• When a change set is sent, an RFC 822 style header is

added to the description. This includes From and

Date. When a change set is received, a Received line

is added. Too many Received lines causes the change

set to be dropped − for a star topology the maximum

is 2. (This doesn’t always work, because the descrip-

tion could be edited to rip it off again.) (This doesn’t

always work, because the maintainer may edit it in

some ways before comitting it, and forget to rip off

(enough of) the header.) (This doesn’t always work,

because hierarchical topologies will group change sets

together.) (This doesn’t always work, because a base-

line pull will group change sets together.)

• Set the description to indicate it was received by

aedist? Use this to influence the decision to send it off

again at integrate pass? How?

11.7. Patches

In the open source community, patches are common way

of sharing enhancements to software. This was particu-

larly common before the World Wide Web, and usenet

was the more common medium of distribution. Patches

also have the advantage of being fairly small and usually

tansportable by email with few problems.

11.7.1. Send

If you are participating in an open source project, and

using Aegis to manage your development, the aepatch

−send command may be used to construct a patch to

send to the other developers.

It is very similar in operation to the aedist(1) command,

however it is intended for non-Aegis-using recipients.

To send a change to someone (a completed change, or

one in progress) simply use a command such as

% aepatch −send −c number | \
mail joe.blow@example.com

%

to send your change as a patch. Note that it will be com-

pressed (using GNU Zip) and encoded (using MIME

base 64), which produces small files which are going to

survive email transport.

11.7.2. Receive

The simplest way of receiving a patch and turn it into a

change set is to save it from your e-mail program into a

Page 110 (./lib/en/user-guide/c10.5.so) Peter Miller

Aegis User Guide

file, and then

% aepatch −receive −file filename

...lots of information...

%

where filename is where you saved the e-mail message.

If your e-mail program is able to write to a pipe, you can

use a simpler form. This example uses the Rand Mail

Handler’s show(1) command:

% show | aepatch −receive
...lots of information...

%

Each of these examples assumes that you have already

set the project name, either via aeuconf(5) or ae_p(1), or

you could use the −project option.

The actions performed by aepatch on receive are not

quite a mirror of what it does on send. In particular,

send usually extracts its information from the repository,

but receive does not put the change set directly into the

repository.

On receipt of a change set, aepatch creates a new change

with its own development directory, copies the files into

it, and applies the patch to the files. The receiver must

be an authorized developer.

Once the patch is applied, it goes through the usual de-

velopment cycle of build, difference and test. If any por-

tion of this fails, aepatch will stop with a suitable error

message. If all goes well, development of the change

will end, and it will be left in the being reviewed state.

At this point, a local reviewer must examine the change,

and it proceeds through the change integration process as

normal.

If there is a problem with the change, it can be dealt with

as you would with any other defective change − by de-

veloping it some more. Or you can email the sender

telling them the problem and use aedbu(1) and aencu(1)

to entirely discard the change.

11.7.3. Limitations

Despite a great similarity of command line operations

and operation, the aepatch command should not be

thought of as an equivalent for the aedist command, or a

replacement for it.

The information provided by aedist −send is sufficiently

complete to recreate the change set at the remote end.

No information is lost. In contrast, the aepatch −send

command is limited to that information a patch file (see

the patch(1) command, from the GNU Diff utils). There

is no guarantee that the aepatch −send output will be

given to aepatch −receive; it must work with patch(1),

and similar tools.

Conversely, there is no guarantee that the input to

aepatch −receive came from aepatch −send. It can and

must be able to cope with the outout of a simple diff −r

−N −c command, with no additional information.

All this means, use aedist wherever possible. The

aepatch command is to simplify and streamline commu-

nication with non-Aegis developers.

Peter Miller (./lib/en/user-guide/c12.0.so) Page 111

User Guide Aegis

12. Further Reading

This chapter contains information about books, articles

or web sites relevant to some aspect of Aegis or using

Aegis. These references should not be taken as endore-

ments.

If I’ve missed a good reference, it isn’t personal, but I

can’t and haven’t read everything out there. Email me

the information and I’ll add it to this chapter (no adver-

tising, please).

12.1. Software Configuration Management

Eaton, D. (1995), Configuration Management Frequently

Asked Questions, http://www.daveeaton.com/scm/CM-

FA Q.html

This is an essential first-stop for information

about Software Configuration Management. It

has an excellent book list.

Pool, D., CM Today, http://www.cmtoday.com/

This is a configuration management portal site,

with news and other links.

12.2. Reviewing

Baldwin, J. (1992), An Abbreviated C++ Code Inspec-

tion Checklist, http://www2.ics.hawaii.edu/˜john-

son/FTR/Bib/Baldwin92.html

This web page talks about C++ code inspec-

tions with some useful suggestions about how to

conduct (rather formal) reviews and some for

C++ constructs to watch out for.

Page 112 (./lib/en/user-guide/cA.0.so) Peter Miller

Aegis User Guide

13. Appendix A: New Project Quick Reference

For those of you too impatient to read a whole great big

document about how to use the aegis program, this ap-

pendix gives a quick look at how to place a project under

aegis.

The style here is an itemized list. It does not try to be

exhaustive. For exact details on how to use the various

aegis commands, you should see the manual pages, ditto

for the formats and contents of some files.

Probably the quickest start of all is to copy an already

existing project. The project used in chapter 2 is com-

plete, assuming you use the author’s “cook” dependency

maintenance tool. The entirety of this example may be

found, if slightly obfuscated, in the aegis source file

test/00/t0011a.sh distributed with aegis.

13.1. Create the Project

The aenpr command is used to create a project. You

must supply the name on the command line. The name

should be ten characters or less, six characters or less if

you want version numbers included.

The user who creates the project is the owner of the

project, and is set as the administrator. The default

group of the user who created the project is used as the

project’s group.

You may want to have a user account which owns the

project. You must create the project as this user, and

then use the aena and aera commands to add an appro-

priate administrator, and remove the owning user as an

administrator. After this, the password for the owning

user may be disabled, because the aegis program will, at

appropriate times, set file ownership to reflect project

ownership or execute commands on behalf of the project

owner as the project owner.

13.1.1. Add the Staff

The aend command is used to add developers. The

aenrv command is used to add reviewers. The aeni

command is used to add integrators. These commands

may only be performed by a project administrator.

You will still have to do this, even if the person who cre-

ated the project will be among these people, or even be

all of these people.

13.1.2. Project Attributes

The aepa command is used to change project attributes.

These attributes include the description of the project,

and booleans controlling whether, for example, develop-

ers may review their own work.

The project attributes file is described in the aepattr(5)

manual entry.

13.2. Create Change One

The aenc command is used to create a new change. You

will need to construct a change attributes file with your

favorite text editor before running this command.

The change attributes file is described in the aecattr(5)

manual entry.

13.3. Develop Change One

This is the most grueling step. Indeed, the integration

step will probably reveal things you missed, and you

may return to the being developed

state several times.

One of the people you nominated as a developer will

have to use the aedb command to commence develop-

ment of the first change. The aecd command can be

used to change directory into the just-created develop-

ment directory.

Add files to the change. The aenf command is used to

create new files. If you don’t use aenf then the aegis

program has no way of knowing whether that file lying

there in the development directory is significant to the

project, or just a shopping list of the groceries you forgot

to buy yesterday.

One particular new file which must be created by this

change is the project configuration file, usually called

aegis.conf but can be named something else. This file

tells Aegis what history mechanism you wish to use,

what dependency maintenance command to use, what

file difference tools to use, and much more. The aep-

conf(5) manual entry describes this file.

If you are going to use the “cook” dependency mainte-

nance tool, another new file you will need to create in

this change is the “Howto.cook” file. Some other tool

will want some other rules file.

You probably have a prototype or some other “seed” you

have sort-of working. Create new files for each source

file and then copy the files from wherever they are now

into the development directory.

Use the aeb command to build the change. It will need

to build cleanly before it can advance to the next step.

Use the aed command to difference the change. It will

need to difference cleanly before it can advance to the

next step.

Use the aent command to add new tests to the command.

It will need to have tests before it can advance to the

next step.

Peter Miller (./lib/en/user-guide/cA.0.so) Page 113

User Guide Aegis

Most existing projects don’t hav e formal tests. These

tests will form a regression test-bed, used to make sure

that future changes never compromise existing function-

ality.

Use the aet command to test the change. It will need to

test cleanly before it can advance to the next step.

Once the change builds, differences and tests cleanly, use

the aede command to end development.

13.4. Review The Change

One of the people nominated as reviewers will have to

run the aerpass command to say that the change passed

review.

The aegis program does not mandate any particular re-

view mechanism: you could use a single peer to do the

review, you could use a panel, you could set the project

so that developers may review their own work effectively

eliminating the review step. In projects with as few as

two people, it is always beneficial for someone other

than the developer to review changes. It is even benefi-

cial for the developer herself to review the next day.

Should a reviewer actually want to see the change, the

aecd command may be used to change directory to the

development directory of the change. The difference

files all end with a “comma D” suffix, so the

more ‘find . −name "*,D" −print | sort‘

command may be used to search them out and see them.

This is probably fairly useless for the first change, but is

vital for all subsequent changes. There is a supplied

alias for this command, it is aedmore and there is a simi-

lar aedless alias if you prefer the less(1) command.

There are some facts that a reviewer knows because oth-

erwise the change would not be in the “being reviewed”

state: • the change compiles cleanly, • the change passes

all of its tests. Other information about the change may

be obtained using the “change_details” variation of the

ael command.

The aerfail command may also be used by reviewers to

fail reviews and return a change to the developer for fur-

ther work; the reviewer must supply a reason for the

change history to record for all time. Similarly, the

aedeu command may be used by the developer to re-

sume development of a change at any time before it is

integrated; no stated reason is required.

13.5. Integrate the Change

A person nominated as an project integrator then inte-

grates the change. This involves making a copy of the

integration directory, applying the modifications de-

scribed by the change to this integration directory, then

building and testing all over again.

This re-build and re-test is to ensure that no special as-

pect of the developers environment influenced the suc-

cess up to this point, such as a unique environment vari-

able setting. The re-build also ensures that all of the

files in the baseline, remembering that this includes

source files and all other intermediate files required by

the build process, remain consistent with each other, that

the baseline is self-consistent. The definition of the

baseline is that it passes its own tests, so the tests are run

on the baseline.

Use the aeib command to begin integration.

The aeb command is used to build the integration copy

of the change.

The aet command is used to test the integration copy of

the change.

On later changes, the integration may also require the

aet −bl command to test the change against the baseline.

This tests ensures that the test fails against the baseline.

This failure is to ensure that bug fixes are accompanied

by tests which reproduce the bug initially, and that the

change has fixed it. New functionality, naturally, will

not be present in the old baseline, and so tests of new

functionality will also fail against the old baseline.

Later changes may also have the regression tests run, us-

ing the aet −reg command. This can be a very time-con-

suming step for projects with a long history, and thus a

large collection of tests. The aet −suggest command

can also be used to run “representative” sets of existing

tests, but a full regression test run is recommended be-

fore a major release, or, say, weekly if it will complete

over the weekend. This command is also available to de-

velopers, so that they hav e fewer surprises from irate in-

tegrators.

The integrator may use the aeifail command to return a

change to its developer for further work; a reason must

be supplied, and should include relevant excerpts from

the build log in the case of a build failure (not the whole

log!), or a list of the tests which failed for test failures.

The aeipass command may be used to pass an integra-

tion. When the change passes, the file histories are up-

dated. In the case of the first change, the history is cre-

ated, and problems with the project configuration file’s

history commands will be revealed at this point. The in-

tegration won’t pass, and should be failed, so that the de-

veloper may effect repairs. There are rarely problems at

this point for subsequent changes, except for disk space

problems.

Once the history is successfully updated, aegis renames

the integration directory as the baseline, and throws the

old baseline away. The development directory is deleted

at this time, too.

Page 114 (./lib/en/user-guide/cA.0.so) Peter Miller

Aegis User Guide

13.6. What to do Next

There, the first change is completed. The whole cycle

may now be repeated, starting at “Create Change,” for all

subsequent changes, with very few differences.

It is recommended that you read the Change Develop-

ment Cycle

chapter for a full worked example of the first four

changes of an example project, including some of the

twists which occur in real-world use of aegis.

Remember, too, the definition:

aegis (ee.j.iz) n. a protection, a defence.

It is not always the case that aegis exists to make life

“easier” for the software engineers. The goal is to have a

baseline which always “works”, where “works” is de-

fined as passing all of its own tests. Wherever possible,

the aegis program attempts to be as helpful and as unin-

trusive as possible, but when the “working” definition is

threatened, the aegis program intrudes as necessary.

(Example: you can’t do an integrate pass without the in-

tegration copy building successfully.)

All of the “extra work” of writing tests is a long-term

win, where old problems never again reappear. All of

the “extra work” of reviewing changes means that an-

other pair of eyes sees the code and finds potential prob-

lems before they manifest themselves in shipped prod-

uct. All of the “extra work” of integration ensures that

the baseline always works, and is always self-consistent.

All of the “extra work” of having a baseline and separate

development directories allows multiple parallel devel-

opment, with no inter-developer interference; and the

baseline always works, it is never in an “in-between”

state. In each case, not doing this “extra work” is a false

economy.

Peter Miller (./lib/en/user-guide/cA.0.so) Page 115

User Guide Aegis

14. Appendix B: Glossary

The following is an alphabetical list of terms used in this

document.

administrator

Person responsible for administering a project.

aw aiting_development

The state a change is in immediately after cre-

ation.

aw aiting_integration

The state a change is in after it has passed review

and before it is integrated.

aw aiting review

An optional state a change is in after it is devel-

oped, but before someone has chosen to review it..

baseline

The repository; where the project master source is

kept.

being developed

The state a change is in when it is being worked

on.

being integrated

The state a change is in when it is being integrated

with the baseline.

being reviewed

The state a change is in after it is developed.

change

A collection of files to be applied as a single

atomic alteration of the baseline.

change number

Each change has a unique number identifying it.

completed

The state a change is in after it has been integrated

with the baseline.

delta number

Each time the aeib(1) command is used to start in-

tegrating a change into the baseline a unique num-

ber is assigned. This number is the delta number.

This allows ascending version numbers to be gen-

erated for the baseline, independent of change

numbers, which are inevitably integrated in a dif-

ferent order to their creation.

dependency maintenance tool

A program or programs external to aegis which

may be given a set of rules for how to eff iciently

take a set of source files and process them to pro-

duce the final product.

DMT

Abbreviation of Dependency Maintenance Tool.

develop_begin

The command issued to take a change from the

awaiting development state to the being developed

state. The change will be assigned to the user who

executed the command.

develop_begin_undo

The command issued to take a change from the

being developed state to the awaiting development

state. Any files associated with the change will be

removed from the development directory and their

changes lost.

develop_end

The command issued to take a change from the

being developed state to the being reviewed state,

or optionally to the awaiting reviewed state. The

change must be known to build and test success-

fully.

develop_end_undo

The command issued to take a change from the

being reviewed state back to the being developed

state. The command must be executed by the

original developer.

developer

A member of staff allowed to develop changes.

development directory

Each change is given a unique development direc-

tory in which to edit files and build and test.

history tool

A program to save and restore previous versions of

a file, usually by storing edits between the ver-

sions for efficiency.

integrate_pass

The command used to take a change from the be-

ing integrated state to the completed state. The

change must be known to build and test success-

fully.

integrate_begin

The command used to take a change from the

awaiting integration state to the being integrated

state.

integrate_begin_undo

The command used to take a change from the be-

ing integrated state to the awaiting integration

state.

integrate_fail

The command used to take a change from the be-

ing integrated state back to the being developed

state.

Page 116 (./lib/en/user-guide/cB.0.so) Peter Miller

Aegis User Guide

integration

The process of merging the baseline with the de-

velopment directory to form a new baseline. This

includes building and testing the merged directory,

before replacing the original baseline with the new

merged version.

integration directory

The directory used during integration to merge the

existing baseline with a change’s development di-

rectory.

integrator

A staff member who performs integrations.

new_change

The command used to create new changes.

new_change_undo

The command used to destroy changes.

review_begin

The command used to take a change from the

awaiting review state to the being reviewed state.

review_fail

The command used to take a change from the be-

ing reviewed state back to the being developed

state.

review_pass

The command used to take a change from the be-

ing reviewed state to the awaiting integration

state.

reviewer

A person who may review changes and either pass

or fail them (re view_pass or re view_fail respec-

tively).

state

Each change is in one of seven states: awaiting de-

velopment, being developed , awaiting review, be-

ing reviewed , awaiting integration, being inte-

grated or completed .

state transition

The event resulting in a change changing from one

state to another.

Peter Miller (./lib/en/user-guide/cB.0.so) Page 117

User Guide Aegis

15. Appendix D: Why is Aegis Set-Uid-Root?

The goal for aegis is to have a project that "works".

There is a fairly long discussion about this earlier in this

User Guide. One of the first things that must be done to

ensure that a project is not subject to mystery break

downs, is to make sure that the master source of the

project cannot be in any way altered in an unauthorized

fashion. Note this says "cannot", a stronger statement

than "should not".

Aegis is more complicated than, say, set-group-id RCS,

because of the flaw with set-group-id: the baseline is

writable by the entire development team, so if a devel-

oper says "this development process stinks" he can al-

ways bypass it, and write the baseline directly. This is a

very common source of project disasters. To prevent

this, you must have the baseline read-only, and so the

set-group-id trick does not work. (The idea here is that

there is no way to bypass the QA portions of the process.

Sure, set-group-id will prevent accidental edits on the

baseline, if the developers are not members of the group,

but it does not prevent deliberate checkin of unautho-

rized code. Again, the emphasis is on "cannot" rather

than "should not".)

Also, using the set-group-id trick, you need multiple

copies of RCS, one for each project. Aegis can handle

many projects, each with a different owner and group,

with a single set-uid-root executable.

Aegis has no internal model of security, it uses

security, and so becomes each user in turn, so

can determine the permissions.

15.1. Examples

Here are a few examples of the uid changes in common

aegis functions. Unix "permission denied" errors are not

shown, but it should be clear where they would occur.

new change (aenc):

become invoking user and read (edit) the change

attribute file, validate the attribute file, then be-

come the project owner to write the change state

file and the project state file.

develop begin (aedb):

become the project owner and read the project

state file and the change state file, to see if the

change exists and is available for development,

and if the invoking user is on the developer access

control list. Become the invoking user, but set the

default group to the project group, and make a de-

velopment directory. Become the project owner

again, and update the change state file to say who

is developing it and where.

build (aeb):

become the project owner to read the project and

change state files, check that the invoking user is

the developer of the change, and that the change is

in the being developed state. Become the invok-

ing user, but set the default group to the project

group, to invoke the build command. Become the

project owner to update the change state to re-

member the build result (the exit status).

copy file into change (aecp):

become the project owner to read the project and

change state files. Check that the invoking user is

the developer and that the change is in the being

developed state, and that the file is not already in

the change, and that the file exists in the baseline.

Become the invoking user, but set the default

group to the project group, and copy the file from

the baseline into the development directory. Be-

come the project owner, and update the change

state file to remember that the file is included in

the change.

integrate fail (aeifail):

become the project owner to read the project and

change state files. Check that in invoking user is

the integrator of the change, and that the change is

in the being integrated state. Become the integra-

tor to collect the integrate fail comments, then be-

come the project owner to delete the integration

directory, then become the developer to make the

development directory writable again. Then be-

come the project owner to write the change state

file, to remember that the change is back in the be-

ing developed state.

integrate pass (aeipass):

become the project owner to read the project and

change state files. Check that in invoking user is

the integrator of the change, and that the change is

in the being integrated state. Make the integration

directory the new baseline directory and remove

the old baseline directory. Write the change and

project states to reflect the new baseline and the

change is in the completed state. Then become

the developer to remove the development direc-

tory.

All the mucking about with default groups is to ensure

that the reviewers, other members of the same group,

have access to the files when it comes time to review the

change. The umask is also set (not shown) so that the

desired level of "other" access is enforced.

As can be seen, each of the uid change either (a) allows

to enforce appropriate security, or (b) uses

Page 118 (./lib/en/user-guide/cD.0.so) Peter Miller

Aegis User Guide

security to ensure that unauthorized tampering of project

files cannot occur. Each project has an owner and a

group: members of the development team obtain read-

only access to the project files by membership to the ap-

propriate group, to actually alter project files requires

that the development procedure embodied by aegis is

carried out. You could have a single account (not a

user’s account, usually, for obvious conflicts of interest)

which owns all project sources, or you could have one

account per project. You can have one group per project,

if you don’t want your various projects to be able to see

each other’s work, or you could have a single group for

all projects.

15.2. Source Details

For implementation details, see the os_become* func-

tions in the aegis/os.c file. The os_become_init
function is called very early in main, in the

aegis/main.c file. After that, all accesses are bracketed

by os_become and os_become_undo function

calls, sometimes indirectly as project_become* or

user_become*, etc, functions. You need to actually

become each user, because root is not root over NFS,

and thus chown tricks do not work, and also because

duplicating kernel permission checking in aegis is a little

non-portable.

Note, also, that most system calls go via the interface de-

scribed in the aegis/glue.h file. This isolates the system

calls for

variants which do not have the seteuid function, or do

not have a correctly working one. The code in the

aegis/glue.c file spawns "proxy" process which uses the

setuid function to become the user and stay that way.

If the seteuid function is available, it is used instead,

making aegis more efficient. This isolation, however,

makes it possible for a system administrator to audit the

aegis code (for trojans) with some degree of confidence.

System calls should be confined to the aegis/log.c,

aegis/pager.c, aegis/os.c and aegis/glue.c files. System

calls anywhere else are probably a Bad Thing.

Peter Miller (./lib/en/user-guide/cI.0.so) Page 119

User Guide Aegis

16. Appendix I: Internationalization and Localiza-

tion

The Aegis source code has been internationalized, which

is the process of modifying the original source code to

permit error messages and other text to be presented in a

language other than the author’s native English. This

was a large and often painful task, but it allows a degree

of customization of error messages and other behaviours

which would not have been otherwise possible. (It also

makes the job of running a spell-checker over the error

messages significantly easier.)

Localization is the process of translating the error mes-

sages and other text into various different languages or

nationalities. This appendix is primarily aimed at local-

izers of Aegis.

16.1. The “.po” Files

The “lib/en/LC_MESSAGES” directory in the source

tree contains the various message files needed to localize

Aegis. You will find a number of “.po” files in this di-

rectory, which translates “programmer cryptic” into Eng-

lish. You will see that each message has a comment at-

tached, describing the message and the context in which

it is used. Many messages also have “substitutions” de-

scribed, which are strings similar to shell variables

which may be substituted into the message − such as the

file name for messages which have something to do with

a specific file.

The substitution mechanism is the same one as is used

for the various commands in the project aegis.conf file,

and so all of the substitutions described in aesub(5) are

available to the translator. Note frequent use of the

plural substitution, which allows grammatically correct

error messages to be issued when faced with the singu-

lar/plural dichotomy. Other substitutions include the lo-

gin name of the executing user, names of projects, num-

ber and state of changes, etc.

Ideally, the task for a translator is to take the .po files

and translate the msgstr lines into the appropriate lan-

guage. The job will, of course, not be that simple and so

references into the code have been included, so that you

can read the code should context be necessary to cor-

rectly translate the message.

16.2. Checking the Code

There are a number of keywords you need to have for the

xgettext program when extracting message strings. The

gettext keyword is not used directly, because of the

substitution mechanism wrapped around it.

i18n error_intl

io_comment_append fatal_intl

report_error verbose_intl

report_error gram_error

rpt_value_error

In general, the etc/Howto.cook file causes the messages

to be extracted into i18n-tmp/*.po for checking during

the build.

16.3. Translators Welcome

If you are able to translate the error messages into an-

other language, please contact Peter Miller

<pmiller@opensource.org.au> and he will tell you how

it is done. (Actually, he’ll point you to this part of the

User Guide. :−)

To translate the error messages, look up the two-letter

abbreviation

(http://www.w3.org/WAI/ER/IG/ert/iso639.htm) of the

language you are going to translate the error messages

to. The rest of these instructions will call it xx.

In the source tree, you will see a directory called

lib/en/LC_MESSAGES which contains some .po files.

These are the text form of the message catalogues. You

can view them with a simple text editor.

Create a new directory for your translations, and copy

the English messages into it.

mkdir lib/xx/LC_MESSAGES
cp lib/en/LC_MESSAGES/*.po \

lib/xx/LC_MESSAGES

Now you need to edit each of the lib/xx/LC_MES-
SAGES/*.po files, replacing the msgstr strings with

suitable translations. Leave the msgid strings and the

comments untranslated. These are text files, you can

edit them with a simple text editor. GNU Emacs has a

PO mode to make this easier.

The GNU Gettext (http://www.gnu.org/directory/get-

text.html) sources have fairly good documentation

(http://www.gnu.org/manual/gettext/index.html) about

this process.

If you want to test your translations, you need to "com-

pile" the text into the binary form used by the get-
text() system call. This is done using the msgfmt(1)

program from the GNU Gettext package. To see your

new translations in action, you create a /usr/lo-
cal/lib/xx/LC_MESSAGES directory and arrange

for the msgfmt(1) output to be placed in it. Some of the

messages are hard to trigger, don’t expect complete test

coverage.

There are almost 600 error messages. If you average 1

message every 2 minutes, this is approximately 20 hours

work. The German translation, for example, required

Page 120 (./lib/en/user-guide/cI.0.so) Peter Miller

Aegis User Guide

around 12 hours.

When you are done translating, email the results to Peter

Miller <pmiller@opensource.org.au> and they will be

included in the next release of Aegis.

/* vim: set ts=8 sw=4 et : */

Peter Miller (./lib/en/user-guide/main.ms) Page 121

User Guide Aegis

.

Page cxxii (./lib/en/user-guide/main.ms) Peter Miller

Aegis User Guide

Table of Contents

1. Introduction . 3

1.1. Year 2000 Status . 3

1.2. What does aegis do? . 3

1.3. Why use aegis? . 3

1.4. How to use this manual . 4

1.5. GNU GPL . 4

2. How Aegis Works . 5

2.1. The Model . 5

2.1.1. The Baseline . 5

2.1.2. The Change Mechanism . 6

2.1.3. Change States . 6

2.1.4. The Software Engineers . 8

2.1.5. The Change Process . 9

2.2. Philosophy . 12

2.2.1. Development . 12

2.2.2. Post Development . 12

2.2.3. Minimalism . 12

2.2.4. Overlap . 12

2.2.5. Design Goals . 12

2.3. Security . 13

2.4. Scalability . 13

2.5. When (not) to use Aegis . 14

2.5.1. Building . 14

2.5.2. Testing . 14

2.5.3. Reviewing . 14

2.6. Further Work . 15

2.6.1. Code Coverage Tool . 15

2.6.2. Virtual File System . 15

3. The Change Development Cycle . 16

3.1. The Developer . 17

3.1.1. Before You Start . 17

3.1.2. The First Change . 17

3.1.3. The Second Change . 23

3.1.4. The Third and Fourth Changes . 28

3.1.5. Developer Command Summary . 40

3.2. The Reviewer . 41

3.2.1. Before You Start . 41

3.2.2. The First Change . 41

3.2.3. The Second Change . 41

3.2.4. Reviewer Command Summary . 43

3.3. The Integrator . 44

3.3.1. Before You Start . 44

3.3.2. The First Change . 44

3.3.3. The Other Changes . 45

3.3.4. Integrator Command Summary . 46

3.3.5. Minimum Integrations . 46

3.4. The Administrator . 47

3.4.1. Before You Start . 47

3.4.2. The First Change . 47

3.4.3. The Second Change . 49

Peter Miller (./lib/en/user-guide/main.ms) Page mi

User Guide Aegis

3.4.4. The Third Change . 49

3.4.5. The Fourth Change . 49

3.4.6. Administrator Command Summary 49

3.5. What to do Next . 51

3.6. Common Questions . 51

3.6.1. Insulation . 51

3.6.2. Partial Check-In . 52

3.6.3. Multiple Active Branches . 52

3.6.4. Collaboration . 52

4. The History Tool . 54

4.1. History File Names . 54

4.2. Interfacing . 54

4.2.1. history_create_command . 54

4.2.2. history_get_command . 54

4.2.3. history_put_command . 54

4.2.4. history_query_command . 54

4.2.5. history_content_limitation . 54

4.2.6. history_tool_trashes_file . 55

4.2.7. Quoting Filenames . 55

4.2.8. Templates . 55

4.3. Using aesvt . 56

4.3.1. history_create_command . 56

4.3.2. history_put_command . 56

4.3.3. history_get_command . 56

4.3.4. history_query_command . 56

4.3.5. Templates . 56

4.3.6. Binary Files . 56

4.4. Using SCCS . 57

4.4.1. history_create_command . 57

4.4.2. history_get_command . 57

4.4.3. history_put_command . 57

4.4.4. history_query_command . 57

4.4.5. Templates . 57

4.4.6. Binary Files . 58

4.5. Using RCS . 59

4.5.1. history_create_command . 59

4.5.2. history_get_command . 59

4.5.3. history_put_command . 59

4.5.4. history_query_command . 60

4.5.5. merge_command . 60

4.5.6. Referential Integrity . 60

4.5.7. Templates . 60

4.5.8. Binary Files . 60

4.5.9. history_put_trashes_files . 61

4.6. Using fhist . 62

4.6.1. history_create_command . 62

4.6.2. history_get_command . 62

4.6.3. history_put_command . 62

4.6.4. history_query_command . 62

4.6.5. Templates . 62

4.6.6. Capabilities . 62

4.6.7. Binary Files . 62

4.7. Detecting History File Corruption . 64

4.7.1. General Method . 64

Page mii (./lib/en/user-guide/main.ms) Peter Miller

Aegis User Guide

4.7.2. Configuration Commands . 64

4.7.3. An Alternative . 64

4.7.4. Aegis’ Database . 64

5. The Dependency Maintenance Tool . 66

5.1. Required Features . 66

5.1.1. View Paths . 66

5.1.2. Dynamic Include File Dependencies 66

5.2. Development Directory Style . 67

5.2.1. View Path . 67

5.2.2. Link the Baseline . 67

5.2.3. Copy All Sources . 68

5.2.4. Obsolete Features . 68

5.3. Using Cook . 70

5.3.1. Invoking Cook . 70

5.3.2. The Recipe File . 70

5.3.3. The Recipe for C . 70

5.3.4. The Recipe for Yacc . 71

5.3.5. The Recipe for Lex . 72

5.3.6. Recipes for Documents . 72

5.3.7. Templates . 72

5.4. Using Cake . 73

5.4.1. Invoking Cake . 73

5.4.2. The Rules File . 73

5.4.3. The Rule for C . 73

5.4.4. The Rule for Yacc . 74

5.4.5. The Rule for Lex . 74

5.4.6. Rules for Documents . 74

5.5. Using Make . 74

5.5.1. Invoking Make . 75

5.5.2. The Rule File . 75

5.5.3. The Rule for C . 75

5.5.4. The Rule for Yacc . 76

5.5.5. The Rule for Lex . 76

5.5.6. Rules for Documents . 76

5.5.7. Other Makes . 76

5.5.8. Templates . 77

5.5.9. GNU Make VPATH Patch . 77

5.5.10. GNU Make’s VPATH+ . 77

5.6. Building Executable Scripts . 78

5.7. GNU Autoconf . 78

5.7.1. The Sources . 78

5.7.2. Building . 78

5.7.3. Testing . 79

5.7.4. An Optimization . 79

5.7.5. Signed-off-by . 79

5.7.6. Importing the Next Upstream Tarball 80

5.7.7. Importing the Next Upstream Patch 80

5.8. No Build Required . 80

5.8.1. Why This May Not Be Such A Good Idea 80

6. The Difference Tools . 82

6.1. Binary Files . 82

6.2. Interfacing . 82

6.2.1. diff_command . 82

6.2.2. merge_command . 82

Peter Miller (./lib/en/user-guide/main.ms) Page miii

User Guide Aegis

6.3. When No Diff is Required . 82

6.4. Using diff and merge . 84

6.4.1. diff_command . 84

6.4.2. merge_command . 84

6.5. Using fhist . 84

6.5.1. diff_command . 84

6.5.2. merge_command . 84

7. The Project Attributes . 85

7.1. Description and Access . 85

7.2. Notification Commands . 85

7.2.1. Notification by email . 85

7.2.2. Notification by USENET . 86

7.3. Exemption Controls . 86

7.3.1. One Person Projects . 86

7.3.2. Two Person Projects . 86

7.3.3. Larger Projects . 86

7.3.4. RSS Feeds . 87

8. Testing . 89

8.1. Why Bother? . 89

8.1.1. Projects for which Aegis’ Testing is Most Suitable 89

8.1.2. Projects for which Aegis’ Testing is Useful 89

8.1.3. Projects for which Aegis’ Testing is Least Useful 90

8.2. Writing Tests . 91

8.2.1. Contributors . 91

8.2.2. General Guidelines . 91

8.2.3. Bourne Shell . 92

8.2.4. Perl . 93

8.2.5. Batch Testing . 95

9. Branching . 96

9.1. How To Use Branching . 96

9.2. Transition Using aenrls . 96

9.3. Cross Branch Merge . 97

9.4. Multiple Branch Development . 97

9.5. Hierarchy of Projects . 97

9.5.1. Fundamentals . 97

9.5.2. Incremental Integration . 97

9.5.3. Super-Project Branching . 98

9.5.4. Super-Project Testing . 98

9.5.5. The Next Cycle . 98

9.5.6. Bug Fixing . 98

9.6. Conflict Resolution . 98

9.6.1. Cross Branch Merge . 98

9.6.2. Insulation . 99

9.7. Ending A Branch . 99

10. Tips and Traps . 101

10.1. Renaming Include Files . 101

10.2. Symbolic Links . 101

10.3. User Setup . 101

10.3.1. The .cshrc or .profile files . 101

10.3.2. The AEGIS_PATH environment variable 101

10.3.3. The .aegisrc file . 101

10.3.4. The defaulting mechanism . 102

10.4. The Project Owner . 102

10.5. USENET Publication Standards . 102

Page miv (./lib/en/user-guide/main.ms) Peter Miller

Aegis User Guide

10.5.1. CHANGES . 102

10.5.2. Makefile . 102

10.5.3. patchlevel.h . 102

10.5.4. Building Patch Files . 102

10.6. Heterogeneous Development . 103

10.6.1. Project aegis.conf File . 103

10.6.2. Change Attribute . 103

10.6.3. Network Files . 104

10.6.4. DMT Implications . 104

10.6.5. Test Implications . 104

10.6.6. Cross Compiling . 105

10.6.7. File Version by Architecture . 105

10.7. Reminders . 105

10.7.1. Awaiting Development . 105

10.7.2. Being Developed . 105

10.7.3. Being Reviewed . 105

10.7.4. Awaiting Integration . 105

11. Geographically Distributed Development . 106

11.1. Introduction . 106

11.1.1. Risk Reduction . 106

11.1.2. What to Send . 106

11.1.3. Methods and Topologies . 106

11.1.4. The Rest of this Chapter . 107

11.2. Manual Operation . 107

11.2.1. Manual Send . 107

11.2.2. Sending Baselines . 107

11.2.3. Sending Branches . 107

11.2.4. Manual Receive . 107

11.2.5. Getting Started . 108

11.3. Sneaker Net . 108

11.4. Automatic Operation . 108

11.4.1. Sending . 108

11.4.2. Receiving . 109

11.5. World Wide Web . 109

11.5.1. Server . 109

11.5.2. Browser . 109

11.5.3. Hands-Free Tracking . 109

11.6. Security . 109

11.6.1. Trojan Horses . 110

11.6.2. PGP . 110

11.6.3. Sorcerer’s Apprentice . 110

11.7. Patches . 110

11.7.1. Send . 110

11.7.2. Receive . 110

11.7.3. Limitations . 111

12. Further Reading . 112

12.1. Software Configuration Management . 112

12.2. Reviewing . 112

13. Appendix A: New Project Quick Reference . 113

13.1. Create the Project . 113

13.1.1. Add the Staff . 113

13.1.2. Project Attributes . 113

13.2. Create Change One . 113

13.3. Develop Change One . 113

Peter Miller (./lib/en/user-guide/main.ms) Page mv

User Guide Aegis

13.4. Review The Change . 114

13.5. Integrate the Change . 114

13.6. What to do Next . 115

14. Appendix B: Glossary . 116

15. Appendix D: Why is Aegis Set-Uid-Root? . 118

15.1. Examples . 118

15.2. Source Details . 119

16. Appendix I: Internationalization and Localization 120

16.1. The “.po” Files . 120

16.2. Checking the Code . 120

16.3. Translators Welcome . 120

Page mvi () Peter Miller

