
Aegis

A Project Change Supervisor

Peter Miller

Australian Geological Survey Org anisation

ABSTRACT

Many CASE systems attempt to provide everything, including bubble charts, source

control and compilers; even if you don’t like one of the tools, you are stuck with it. In

contrast, UNIX1 utilities provide many components of a CASE system − compilers,

editors, dependency maintenance tools (such as make), and source control tools (such as

RCS). You may substitute the tool of your choice if you don’t like the ones supplied with

the system. Aegis adds software configuration management to these tools. True to UNIX

philosophy, Aegis does not dictate the choice of any of the other tools (although it may

stretch them to their limits).

1. Introduction

Aegis performs some of the tasks increasingly

referred to as software configuration management

(SCM). It supervises the development of changes

to a project and the integration of those changes

back into the master source of the project.

There are existing programs, such as RCS or

CVS, which could do some of this task. The

difference is that Aegis does not allow changes to

be unconditionally added to the master source. It

enforces a number of requirements, each designed

to ensure that the project does not "go backwards"

because of a change.

The word aegis was chosen as the name because

of its meaning:

aegis (ee.j.iz) n., a protection, a defence.

In Greek mythology, the god Zeus had a shield

called Aegis, which provided a supernatural

defence. While Aegis does not claim supernatural

powers, it does provide a way of managing

changes to a software project and a solution to

many of the problems encountered when a team

of developers write software. Some common

examples of these problems include:

1. UNIX is a trademark of Bell Laboratories.

• bugs which refuse to die;

• lost changes, from developers "tripping

over" each other;

• not knowing who changed the source, or

why;

• using the wrong versions of the sources to

build the project;

• not having a working copy to demonstrate

to anxious management, or anxious

customers.

While Aegis can help solve these problems, and

many others, it cannot solve every problem, it is

not a silver bullet.

2. What is SCM?

Software configuration management (SCM) is a

large and increasingly complex discipline. It can

be briefly described as consisting of a number of

parts, which include:

Manifest Control

It is necessary to know what all the source

files of a project are, and where they can be

found. It is also necessary to know when

they were added or removed.



- 2 -

Version Control

It is necessary to know which version of each

source file is used. It is necessary to be able

to recreate earlier versions of the project from

this information.

Build Control

It is necessary to know how to construct the

object of the project from the source files.

Change Control

It is necessary to know who performed each

change and when, who initiated each change

and why.

Quality Control

It is necessary to know that the changes made

to your project meet your quality criteria. It

is essential that changes do not "break" an

otherwise working project.

The last item on this list is frequently absent from

SCM systems, and is a major focus of Aegis’

design.

2.1 Development Model The master

source of a project, and all the implications

flowing from it, such as object files and

executables, and all the tests, is called a baseline,

to use common SCM terminology.

Aegis is designed to try to ensure that the baseline

always works, where "works" is defined as

passing all the tests in the baseline.

All file history tools include two functions: you

can "check out" a file for editing, and you "check

in" the file when you are finished. The concept

may be generalized for sets of files. The problem

with using such a simple process is that the

"check in" is unconditional. Aegis breaks the

"check in" into several steps, so that inadequate or

defective alterations to the baseline are far less

likely.

In Aegis, the unit of change to the baseline is, un-

originally, called a change. Each change must be

atomic, it must leave the baseline in a working

state, and must not depend on any other change

being performed simultaneously. For example,

when the interface to a function is altered, the

change must also include alterations to every call

of that function.

Aegis tracks all the source files included in a

change, and sufficient history information for

each file so that when a change is finished, an

algorithm similar to that used in RCS-Merge or

CVS-Update may be employed to resolve any

problems caused by the ability to simultaneously

include the same source file in several different

changes.

Developers may not directly edit the baseline.

The baseline is updated by a user called the

integrator, who integrates the baseline with the

change, and then validates the result, before

accepting it as the new baseline.

3. Change Control

Change control in Aegis is implemented as six

states which a change must pass through. Various

criteria must be met to leave one state and

advance to the next. See Figure 1 for an overview

of the change states.

3.1 Awaiting Development Not all

members of the team may create changes. This is

controlled by an access list, and thus may be as

restricted or open as your project requires. Once

a change has been created, it is in the awaiting

development state. A change consists of little

more than a description in this state.

3.2 Being Developed Not all members of

the team may develop changes. This is controlled

by an access list, and thus may be as open or

restricted as your project requires.

A variety of methods may be used to assign

changes to developers, but at some point, either

from receiving instructions to do so, or browsing

and finding one, a developer assigns a change to

herself. Once a change is assigned to a developer,

a dev elopment directory is created for it, and it

advances to the being developed state.

This state is the coal face. Project source files can

be edited in this state only. Source files which are

to be edited are copied from the baseline into the

development directory.2 Aegis is used to copy the

files, so that it knows which files are being

modified by this change. Files can also be created

or deleted by a change. Again, Aegis is used to

do this, so that it knows what is happening. You

don’t hav e to issue two commands this way, one

to tell UNIX to do it, and another to tell Aegis that

you have done it.

Build Once you have edited the source files, the

change must be built. Building is the process of

manipulating or translating the source files in

2. Only those files which are to be edited need to be

copied. The baseline acts as a cache for object files not

present in the development directory.



- 3 -

new

change

aw aiting

development

develop

begin

being

developed

develop

end

being

reviewed

review

pass

aw aiting

integration

integrate

begin

being

integrated

integrate

pass

completed

new

change

undo

develop

begin

undo

develop

end

undo

develop

end

undo

integrate

begin

undo

review

fail

review

pass

undo

integrate

fail

Figure 1: Change States and Transitions

some way to produce the object of the project.

For programs this usually means compiling the

source files and linking them into an executable

program. The build is performed via Aegis, so

that it can look at the exit status and know if the

build succeeded or not. A successful build is a

requirement for leaving the being developed state

and advancing to the next.

There are no facilities in Aegis for describing how

to build the project. Instead, Aegis delegates this

task to a dependency maintenance tool (DMT).

This delegation is stored as a UNIX command to

be performed when a build is requested. There is

no provision for Aegis to understand any

dependencies, as these are expected to be

described in the DMT’s configuration file, itself a

source file of the project.

Typically a DMT is a program like make(1),

however this old-faithful is not able to cope with

the demands placed upon it by Aegis.3 The major

problem is the two-directory structure used: when

the DMT is looking for files, it must first search in

the development directory and then in the

baseline. It is best if the DMT can do this

transparently, because it makes the rules much

easier to write. The cook program, also written

by the author, is a DMT known to work with

Aegis.

Test Each change must be accompanied by at

least one test. Except for the way tests are

created, so that Aegis knows they are tests rather

than ordinary source files, they are treated

identically to source files: they may be modified

and even deleted by later changes, by the same

commands as used for non-test source files, and

they are subject to the same process.

Tests are Bourne shell scripts. They are executed

via Aegis so that it can examine the exit status,

and know if each test has passed or failed.

Having tests, and passing them, is a requirement

for leaving the being developed state and

advancing to the next.

As changes are integrated into the baseline, the

tests which accompany each change accumulate

into a regression test suite. A dev eloper may

optionally run all or part of this regression test

suite to make sure that her change has not broken

any existing functionality. Because this

regression test suite grows steadily, it is not

practical to run all of it for every change; so Aegis

is designed to make it relatively easy to run a

(hopefully representative) subset.

Difference Once a change builds and tests

successfully, it is differenced . This is the process

of creating files showing the difference between

the baseline and the development directory, for

each file in the change. This allows reviewers to

examine all the edits made by the developer, not

just the ones they can find. The difference

3. Even GNU Make 3.65 is not up to the task; the VPATH

semantics are too limited.



- 4 -

command is configurable, as appropriate for each

project.

Conflicts This difference stage is also where

problems with out-of-date files are resolved. If

two dev elopers copy the same revision of the

same file into two different changes, one of them

will be integrated into the baseline before the

other, hence the possibility of one or more files

being out-of-date. A three-way merge between

the common ancestor, the file in the development

directory, and the current file in the baseline, is

performed.4 This produces a merge of the two

competing edits, which the developer should then

examine to make sure the automatic merge has

produced sensible results. This merge tool is also

configurable, as appropriate for each project. The

out-of-date file is then marked as up-to-date, and

the change will require another build and test, to

ensure that the merge has not broken anything.

3.3 Being Reviewed Once the files are up-

to-date, built and tested, the developer may

advance the change to the being reviewed state.

At this point, all the source files in the change are

locked, preventing any other changes with files in

common from advancing to the being reviewed

state. If any change file is already locked, the

developer will be told to try again later.

The style of review is not dictated by Aegis. The

only requirement is that an authorised user tell

Aegis that the review passed or failed. Not all

members of the team may review changes. This

is controlled by an access list, and thus may be as

restricted or open as your project requires.

A number of review schemes have been observed.

Tw o extremes are presented here:

• A single team member is responsible for

coordinating all reviews. Each review is

performed by a panel of four team members

in addition to the developer of the change.

Only the review coordinator, after receiving

the paperwork from the review panel, may

pass or fail reviews.

• Any dev eloper may review any change; this

is done informally. Aegis prevents a

developer from reviewing her own change,

to avoid an obvious conflict of interests.

Many other review styles are possible, but the one

best for your project will probably fall between

4. This is the same algorithm as used by CVS-Update and

RCS-Merge.

these extremes.

Reviewers know sev eral things about a change in

the being reviewed state, because of the

requirements for getting there.

• The change is known to build successfully.

• The change is known to have tests and to

have passed them.

• The source files in the change are known to

be up-to-date with respect to the baseline.

This allows reviewers to concentrate on

completeness of the code, completeness of the

tests, and standards issues, etc.

If a change fails review, it is returned to the being

developed state for further work by the original

developer. The reviewer is not responsible for

fixing problems found by the review.

3.4 Awaiting Integration Once a change

passes review it is advanced to the awaiting

integration state. This state is a queue. Only one

change at a time is integrated into the baseline,

ev en though all changes in this state have no files

in common. This allows clear indications of

which change is at fault, should the integrator

discover that there are problems. See Figure 2 for

a diagram of how files flow through this model.

3.5 Being Integrated Not all members of

the team may integrate changes. This is

controlled by an access list, and thus may be as

open or restricted as your project requires.

To integrate a change with the baseline, an

integration directory is created by copying the

baseline, or more usually creating a logical copy

using links. The change is then applied to this

integration directory.

The integration copy is then built and tested. This

is to ensure that it was not just some quirk of the

developer’s environment that allowed the change

to get this far,5 and also to have all files in the new

baseline consistent with each other.

The integrator may choose to run a representative

subset of the regression test suite, in addition to

the tests which accompanied the change.

In addition to rejecting a change because it fails to

build or test, an integrator may also act as a

5. For example, a weird environment variable setting, or a

bogus cc command in the PATH which always exits

success.



- 5 -

baseline

development

directory

integrator

integrate

begin

integration

directory

integrate

pass

development

directory

Figure 2: Flow of Files through the Model

reviewer; this is a good place to watch the

watchers, and monitor the quality of reviews.

Integrators may thus veto a change even though it

builds and tests successfully.

If a change fails integration, the integration

directory is removed, and the change is returned

to the being developed state for further work by

the original developer. The integrator is not

responsible for fixing any problems found.

3.6 Completed Once a change builds and

tests successfully, it may be advanced to the

completed state. The file histories are updated at

this point, and the file locks released. The old

baseline is removed, and the integration directory

is renamed to be the baseline. The development

directory is also removed.

Unlike earlier states, a change in this state cannot

be reversed. If you subsequently wish to remove

the change, you will need to create another

change and repeat the whole process with all edits

in reverse.

A change consists of a description and a list of

files and versions in this state. A full history of

state transitions has been kept, including who

performed them and when.

4. Quality Control

Quality is addressed in a number of ways. As you

can see from the above description of how Aegis

manages change control, the mandatory testing

and reviewing are steps in this direction. Exactly

what is tested or reviewed is up to you, but the

places exist in the process for them to be done.

They can be as elaborate or simple as your project

requires. Note that there is more to software

quality than these two items, and they are not the

only places where tests and reviews can take

place.

4.1 Does it work? A major advantage of

Aegis is the ability to answer the question "Does

it work?". This question is asked from a number

of perspectives:

• The developer wants to know "does this

change work?". Aegis provides the answer

with tests for each change. Developers

have always tested their code, but Aegis

provides ergonomic advantages, never

forgets to test something, and the tests are

preserved for future use.

• The integrator wants to know "does this

change break anything else?". Aegis

provides the answer with a constantly

growing regression test suite, and also

makes the developer’s own tests available to

the integrator.

• The project leader, and management further

up the tree, want to know "does the project

work?". They want to be able to touch and

feel progress towards the target, and they

want some confidence that the project will

not cease to work at random (but usually

disastrous) times. Aegis provides the

answer here in the form of a baseline which

always works, and is always available for

demonstrations.

The various mandatory tests and validations are

configurable for each project (and in some cases,

for each change). You may use as many or as few

of the safeguards provided by Aegis as you need

for each project.



- 6 -

4.2 No Back Door Another issue is whether

there is a "back door" into the process, so that a

developer who finds the process tedious can avoid

it and just "fix" the baseline directly. With Aegis,

there is no way to circumvent the process.

Access to the baseline is read-only for the

development team, including the integrator.

Access is protected by the UNIX group and umask

mechanisms. A UNIX group and umask is

associated with each project, and any commands

Aegis executes will arrange to have the

appropriate group and umask, to ensure that all

users in that group have access (even if the user

has a different default group).

All developer commands are run as the developer,

and hence have the developer’s permissions. All

integration commands are run as the project

owner who is usually not the integrator (so the

integrator can’t edit, even if she wants to). It is

only ever necessary to login as the project owner

to perform actions beyond Aegis’ scope, such as

recovering after a disk crash.

5. Manifest Control

Aegis remembers where all the source files are.

They are initially created in changes, and only

exist in the baseline after a successful integration.

The location of the baseline and all development

directories are known, and the names of all the

source files in them are known.

6. Version Control

As described above, Aegis delegates the file

history maintenance to the package of your

choice. All Aegis requires is the ability to

determine the latest version number for each file’s

history at integrate pass, so that the random string

(it need not look anything like a number) may be

used later to extract an earlier version, should it

be needed.

The version string for each source file in the

baseline and each development directory is

known, so that the difference and merge facility

described above can work.

In addition, a project version may be specified

when copying files from the baseline into a

change. Thus an earlier version of the project

may be recreated, in order to reproduce a bug, for

example.

7. Build Control

The change control description mentioned that

build control is delegated to the dependency

maintenance tool (DMT) of your choice.

7.1 Capabilities The DMT needs to be able

to cope with the fundamental concept of two

directories. This is a "search path" for every file,

no matter what the file is used for.

The baseline contains all the implications flowing

from the source files, this typically means the

object files from compilations and the linked

executable. It could also include documentation

and manual entries formatted from appropriate

source files.

The development build may thus compile a

minimum of code, and link the rest from the

baseline, minimizing disk usage and compile time

across all developers.

There is a catch: the dependency maintenance

tool must be able to detect when an include file in

the development directory logically invalidates an

object file in the baseline, necessitating re-

compilation of a baseline source file, and leaving

the object file in the development directory for

linking.

Experience has shown that the various

makedepend programs do not work very well.

What is most needed is the ability to determine

the include files "on the fly". This implies the

ability to give DMT rules like

%.o: %.c ‘includes-of %.c‘

$(CC) -c %.c

where includes-of is a program to be invoked

when the rule is matched, rather than when it is

read (note the back quotes).

7.2 Dependencies The DMT is expected to

know all project dependencies. This functionality

is completely delegated, and so Aegis knows

nothing about any dependencies.

The configuration file for the DMT is a project

source file, and therefore is altered by the same

process.



- 7 -

8. Directory Structure

Aegis attempts to dictate as little as possible about

the directory structure of the projects it

supervises. There is one mandatory file, and one

mandatory directory. The mandatory file contains

Aegis’ configuration information for the project,

the mandatory directory contains all tests for the

project. The configuration file, and all tests, are

treated as source files, and are subject to the same

change process.

The source directory tree of each project may be

as deep or as shallow as required.

The placement of project directories is completely

configurable. Each project may be owned by a

unique user if desired, and Aegis can manage

many projects simultaneously. Security is

through the UNIX groups mechanism, so it can be

as open or restricted as required.

When a change is being developed, it has its own

development directory. This development

directory is a subset of the baseline. Only those

source files which need to be edited are present in

the development directory.

9. Applicability

There are some projects which are well suited to

supervision by Aegis, and there are others which

are not.

Ideally suited projects are programs which take a

set of input files, process them, and generate a set

of output files. Test cases may be easily

generated, and actual output compared with

expected output.

Another class of programs have full-screen text

interfaces or GUIs and thus are not so well suited

to supervision by Aegis. Because tests are

Bourne shell scripts, only the functionality

accessible from the command line can be

automatically tested. In these cases there are

three options:

• Change the program to optionally accept

fake input and to write screen dumps to

files, thus providing a testable case.

• Change the program to allow access to the

functionality from the command line, thus

providing a testable case. Note that this

cannot test the user interface.

• Do not do any automated testing. This may

be configured for a single change or for a

whole project. You still get the supervision

aspects of Aegis, but no regression test

suite.

The least suitable class of programs for

supervision by Aegis are stand-alone programs.

Operating systems and embedded systems are

members of this class. The program in a hand-

held calculator, for example, would be extremely

difficult to test from a shell script. It is possible to

test this class of programs with the right

hardware, but it is usually impractical.

10. Summary

This paper has given a very short overview of

Aegis, and described a few of its strengths.

Things to remember about Aegis include:

Aegis is designed to be a small piece in a larger

system, like many other UNIX utilities.

Aegis is a project change supervisor, it performs

part of what is becoming known as software

configuration management (SCM). This provides

control for manifest, versions, building, changes

and quality.

Aegis is not a history tool, such as RCS. It is

layered above such a tool.

Aegis is not a dependency maintenance tool, such

as make(1). It is layered above such a tool. Any

dependencies which cannot be expressed in the

rules file of the DMT, cannot be expressed by

Aegis.

Aegis is not a bug tracking system, it has no

mechanisms for tracking bugs and telling you

which are fixed and which are not. However,

there are notification hooks to liaise with such a

system.

Aegis does not draw Gantt charts, bubble charts,

flow charts, or any other pretty pictures. It does

not itself generate any code. It is not a CASE

system, it is a component of a CASE system.

Aegis attempts to dictate as little as possible about

each project. It dictates very little directory

structure, and it does not dictate test content or

the review method. Reviews and tests in addition

to those required by Aegis may be performed.

Aegis is free. This means that it has an excellent

cost/benefit ratio, compared to commercial

products, even if it doesn’t hav e all their features.



- 8 -

11. Availability

You can get Aegis by WWW from

URL: http://miller.emu.id.au/pmiller/

File: aegis.4.25.tar.gz the full source

File: aegis.4.25.ps.gz the User Guide

Aegis is distributed under the terms and

conditions of the GNU General Public License.

Aegis is Copyright © 1991, 1992, 1993, 1994,

1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,

2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,

2011, 2012 Peter Miller

This paper is Copyright © 1993 Australian

Geological Survey Org anisation. Apart from any

fair dealings for the purposes of study, research,

criticism or review, as permitted under the

Australian Copyright ACT 1968, no part may be

reproduced by any process without prior written

permission. Copyright is the responsibility of the

Executive Director. Inquiries should be directed

to the Principal Information Officer.

12. References

The following free software, and their

documentation, are referred to in this paper:

• Miller, P. A., "Aegis - A Project Change

Supervisor," AUUG ’93 Conference Papers,

1993, p. 169-178.

[1] RCS 5.6

Copyright © 1982, 1988, 1989 by Walter F.

Tichy.

Copyright © 1990, 1991 by Paul Eggert.

[2] CVS 1.3

Copyright © 1986, 1988-1992 Free Software

Foundation, Inc.

Numerous authors, principally Brian

Berliner.

[3] GNU Make 3.65

Copyright © 1988-1993 Free Software

Foundation, Inc.

Numerous authors, principally Roland

McGrath.

All of these programs may be fetched by FTP

from your closest GNU archive site. Within

Australia, you can find them at archie.au in the

/gnu directory.


