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Foreword

A simple fact keeps me coming back to Icon: With Icon, I can write programs I don’t
have the time to write in C or C++. Without Icon, those programs wouldn’t be
written and tasks that could be automated would be done manually instead.

When teaching a course in comparative programming languages at The Univer-
sity of Arizona, I took the liberty of attempting to identify the design philosophy of
Icon:

• provide a “critical mass” of types and operations

• free the programmer from worrying about details

• put the burden of efficiency on the language implementation

C scores about zero on those points. C++ provides the ability to build or buy a
“critical mass” and it also can free the programmer from worrying about details in
many cases, but that takes effort. With Icon, it comes in the box.

I think that many programmers don’t have a language like Icon in their toolbox.
The result is that instead of building a personal tool to automate a task, the task is
done manually. I think every programmer can benefit by knowing a language like
Icon.

C, C++, and Icon can be viewed as filling three different niches:

C        A time- and space-efficient language well suited for applications that
call for neither abstract data types or object-oriented design (to manage
complexity).
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 C++       Everything that C offers plus abstract data types and object orientation
to manage complexity in larger applications. But you can’t have your
cake and eat it too — the cost of C++ is language complexity and fairly
primitive debugging environments.

Icon       A compact but powerful language that’s well suited for building tools.

Icon Versus C

Fundamentally, C presents three advantages over Icon: faster execution (typi-
cally an order of magnitude) and less memory usage (perhaps half as much). C
evolved in an environment where machines were 100 times slower and processes
had 100 times less memory available to them than is the case today. I think C became
very popular because it allowed one to work at a relatively higher level without
paying a significant price in terms of either execution time or memory usage.
However, for applications where speed and memory utilization are not primary
concerns, the fine-grained nature of C becomes a liability.

Consider a simple example: a function that concatenates each element in a list
of strings to produce a single string with the elements separated by commas. In Icon,
it’s three of lines of code; in C, it’s maybe a dozen. What’s more interesting is that I
think the Icon programmer would be far more likely to bet a day’s pay that his
solution is completely correct than would the C programmer.

Several years ago, when reading the net.sources newsgroup on a regular basis,
I saw program after program that were thousands of lines in C that I pictured as
maybe a few hundred in Icon. For most of those programs Icon would have provided
a completely suitable execution profile in terms of both speed and space. I was truly
saddened by all the effort that had been needlessly expended to write those
programs in C.

Icon Versus C++

When first learning C++ I wondered if, in fact, C++ wouldn’t have the capability
to fill the niche Icon occupies. One design goal of C++ is that it can be used to build
(or buy) whatever higher-level data types one might need, but the fact is that it’s a
major undertaking to do that. Today, almost a decade after C++ came onto the scene,
there is still no generally accepted and widely used library of foundation classes
such as strings, lists, sets, associative arrays, and so forth.

In contrast, Icon provides a great set of abstract data types right out of the box.
I’ve seen many C++ string classes, but I’ve yet to see a string class that approaches
the simple elegance and power of Icon’s string type. The same is true for lists, sets,
and associative arrays.
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On Memory Management

At the 1988 Usenix C++ technical conference Bill Joy said that he considered it
to be impossible to build a large software system in C without memory management
problems. C++ addresses memory management to a certain extent with construc-
tors and destructors, but the fact remains that the C++ programmer must be very
cognizant of the lifetime of objects and where responsibility should lie for destroy-
ing a given object. There is a significant segment of the software market that consists
of tools to help C and C++ programmers locate memory management bugs. In
contrast, Icon provides fully automatic storage management. Objects that are no
longer needed are deleted automatically.

The Programming Experience

To me, working with Icon is a lot like drawing with pencil and paper. Icon gives
me a compact set of tools whose various usages are easy to remember and that lets
me focus on the problem I’m trying to solve.

Many, perhaps most, programmers don’t have a language like Icon in their
toolbox. The result is that instead of being able to build a tool to automate a given
task, the task is often done manually. I think every programmer can benefit by
knowing a language like Icon.

William H. Mitchell

The University of Arizona
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Introduction

Icon is one of the most elegant and powerful programming languages in use today.
It is a high-level, general-purpose language that contains a wide variety of features
for processing and presenting symbolic data — strings of characters and structures
— both as text and as graphic images.

Applications of Icon include analyzing natural languages, reformatting data,
generating computer programs, manipulating formulas, formatting documents,
artificial intelligence, rapid prototyping, and graphic display of complex objects, to
name just a few.

Icon is well suited to applications where quick solutions are needed —
solutions that can be obtained with a minimum amount of time and programming
effort. It is very useful for one-shot programs and for speculative efforts like
computer-generated poetry, in which a proposed solution is more heuristic than
algorithmic. It also excels in very complicated applications that involve complex
data structures.

Several general characteristics contribute to Icon’s “personality”. The syntax
of Icon is similar in appearance to Pascal and C. Although Icon programs superfi-
cially resemble programs written in Pascal and C, Icon is far more powerful than
they are.

In Icon, a string of characters is a value in its own right rather than being
represented as an array of characters. Strings may be arbitrarily long; the length of
a string is limited only by the amount of memory available. Icon has neither storage
declarations nor explicit allocation and deallocation operations. Management of
storage for strings and other values is handled automatically.

xv
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Icon has no type declarations. A structure can contain values of different types.
Type conversion is automatic. For example, a numeric value read into a program as
a string is converted automatically to a number if it is used in a numerical operation.
Error checking is rigorous; a value that cannot be converted to a required type in a
meaningful way causes termination of program execution with a diagnostic mes-
sage.

Many of Icon’s control structures resemble those of other programming
languages. Icon, however, uses the concept of the success or failure of a computa-
tion, not Boolean values, to drive control structures. For example, in

if find(s1, s2) then write("found") else write("not found")

the expression find(s1,s2) succeeds if the string s1 exists in s2 but fails otherwise.
The success or failure of this expression determines which action is taken. This
mechanism allows an expression to produce a meaningful value, if there is one, and
at the same time to control program flow, as in

if i := find(s1, s2) then write(i)

which writes the location of s1 in s2 if there is one.

The concept of failure allows many other computations to be phrased in
natural and concise ways. For example,

while line := read() do
   process(line)

reads lines of input and processes them until the end of the file, which causes read()
to fail, terminating the while loop.

Many computations can have more than one result. Consider

find("th", "this thesis is the best one")

Here "th" occurs at three positions in the second argument. In most programming
languages, such a situation is resolved by selecting one position for the value of the
function. This interpretation discards potentially useful information. Icon general-
izes the concept of expression evaluation to allow an expression to produce more
than one result. Such expressions are called generators. The results of a generator are
produced in sequence as determined by context. One context is iteration:

every expr1 do expr2

which evaluates expr2 for every result produced by expr1. An example is

every i := find(s1, s2) do write(i)
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which writes all the positions at which s1 occurs in s2.

In many computations, some combinations of alternatives may lead to suc-
cessful computations, while other combinations may not. Icon uses the concepts of
success and failure in combination with generators to perform goal-directed evalua-
tion. If a computation fails, alternative values from generators are produced auto-
matically in an attempt to produce an overall successful result. Consider, for
example,

if find(s1, s2) = 10 then expr1 else expr2

The intuitive meaning of this expression is: “If s1 occurs in s2 at a position that is
equal to 10, then evaluate expr1; otherwise evaluate expr2”. This is, in fact, exactly
what this expression does in Icon.

Neither generators nor goal-directed evaluation depends on any particular
feature for processing strings; find() is useful pedagogically, but many possibilities
exist in numerical computation and other contexts. Icon also allows programmers
to write their own generators, and there is no limit to the range of their applicability.

Since Icon is oriented toward the processing of textual and symbolic data, it has
a large repertoire of functions for operating on strings, of which find() is only one
example. Icon also has a high-level string scanning facility. String scanning estab-
lishes a subject that is the focus for string-processing operations. Scanning operations
then apply to this subject. As operations on the subject take place, the position in the
subject may be changed. A scanning expression has the form

s ? expr

where s is the subject and expr performs scanning operations on this subject.

Matching functions change the position in the subject and produce the substring
of the subject that they “match”. For example, tab(i) moves the position to i and
produces the substring between the previous and new positions. A simple example
of string scanning is

text ? write(tab(find("the")))

which writes the initial substring of text up to the first occurrence of "the". The
function find() is the same as the one given earlier, but in string scanning its second
argument need not be specified. Note that any operation, such as write(), can appear
in string scanning.

Icon provides several types of structures for organizing data in different ways.
Records allow references to values by field name and provide programmer-defined
data types. Lists consist of ordered sequences of values that can be referenced by
position. Lists also can be used as stacks and queues. Sets are unordered collections
of values. Set membership can be tested and values can be inserted into and deleted
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from sets as needed. The usual set operators of union, intersection, and difference
are available as well. Tables provide associative lookup in which subscripting with
a key produces the corresponding value.

Icon has extensive graphics facilities for creating and manipulating windows,
drawing, writing text in different fonts, accepting user input from the keyboard and
mouse, and so on.

Icon has much more; these are just the highlights of the language.

Icon has been implemented for many computers and operating systems,
including the Acorn Archimedes, the Amiga, the Atari ST, CMS, the Macintosh,
Microsoft Windows, MS-DOS, MVS, OS/2, VAX/VMS, many different UNIX
platforms, and Windows NT. These implementations are in the public domain and
most of them can be downloaded via the World Wide Web.

Icon, like many other programming languages, has evolved over a period of
time. The first edition of this book described Version 5 of Icon, and the second edition
described Version 8. The third edition describes Version 9.3. It not only includes
descriptions of features that have been added since Version 8, but it also is
completely revised. It contains many improvements based on continuing experi-
ence in teaching and using Icon.

The reader of this book should have a general understanding of the concepts
of computer programming languages and a familiarity with the current terminol-
ogy in the field. Programming experience with other programming languages, such
as Pascal or C, is desirable.

The first 11 chapters of this book describe the main features of Icon. Chapter
12 contains an overview of Icon’s graphics facilities, and Chapter 13 describes
features of Icon that do not fit neatly into other categories. Chapter 14 provides
information about running Icon programs. Chapter 15 describes libraries of Icon
procedures available to extend and enhance Icon’s capabilities. Chapter 16 deals
with errors and diagnostic facilities. Chapters 17 through 20 illustrate programming
techniques and provide examples of programming in Icon.

Some chapters have a final section entitled Notes. These sections provide
additional information, references to other material, programming tips, and so on.

Appendix A summarizes the syntax of Icon. Appendix B lists character codes
and their glyphs. Appendix C describes preprocessing facilities. A reference manual
for Icon is contained in Appendix D. Command-line options appear in Appendix E,
and environment variables are discussed in Appendix F. Error messages are listed
in Appendix G, and platform-specific aspects of Icon are described in Appendix H.
Appendix I contains complete sample programs and Appendix J provides informa-
tion about obtaining material related to Icon. The book concludes with a glossary of
terms related to Icon.
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Getting Started

This chapter introduces a few basic concepts of Icon — enough to get started.
Subsequent chapters discuss these concepts in greater detail.

PROGRAM STRUCTURE

A good way to learn a programming language is to write programs. There is a fine
tradition for beginning to learn a new programming language by writing a program
that produces a greeting. In Icon this takes the form:

procedure main()

   write("Hello world")

end

This program writes Hello world.

The reserved words procedure and end bracket a procedure declaration. The
procedure name is main. Every program must have a procedure with the name main;
this is where program execution begins. Most programs, except the simplest ones,
consist of several procedures.

Procedure declarations contain expressions that are evaluated when the
procedure is called. The call of the function write simply writes its argument, a string
that is given literally in enclosing quotation marks. When execution of a procedure
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reaches its end, it returns. When the main procedure returns, program execution
stops.

To illustrate the use of procedures, the preceding program can be divided into
two procedures as follows:

procedure main()

   hello()

end

procedure hello()

   write("Hello world")

end

Note that main and hello are procedures, while write is a function that is built into
the Icon language. Procedures and functions are used in the same way. The only
distinction between the two is that functions are built into Icon, while procedures are
declared in programs. The procedure hello writes the greeting and returns to main.
The procedure main then returns, terminating program execution.

Expressions in the body of a procedure are evaluated in the order in which they
appear. Therefore, the program

procedure main()

   write("Hello world")
   write("   this is a new beginning")

end

writes two lines:

Hello world
   this is a new beginning

Procedures may have parameters, which are given in a list enclosed in the parenthe-
ses that follow the procedure name in the declaration. For example, the program

procedure main()

   greet("Hello", "world")

end

procedure greet(what, who)

   write(what)
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   write(who)

end

writes

Hello
world

Like most programming languages, Icon has both values and variables that
have values. This is illustrated by

procedure main()

   line := "Hello world"
   write(line)

end

The operation

line := "Hello world"

assigns the value "Hello world" to the identifier line, which is a variable. The value of
line is then passed to the function write.

All 256 ASCII characters may occur in strings. Strings may be written literally
as in the example above, and they can be computed in a variety of ways. There is no
limit on the length of a string except the amount of memory available. The empty
string, given literally by "", contains no characters; its length is 0.

Identifiers must begin with a letter or underscore, which may be followed by
other letters, digits, and underscores. Upper- and lowercase letters are distinct.
Examples of identifiers are comp, Label, test10, and entry_value. There are other
kinds of variables besides identifiers; these are described in later chapters.

Note that there is no declaration for the identifier line. Scope declarations,
which are described in Chapter 8, are optional for local identifiers. In the absence of
a scope declaration, an identifier is assumed to be local to the procedure in which it
occurs, as is the case with line. Local identifiers are created when a procedure is
called and are destroyed when the procedure returns. A local identifier can only be
accessed in the procedure call in which it is created.

Most identifiers are local. The default to local is an example of a design
philosophy of Icon: Common usages usually default automatically without the need
for the programmer to write them out.

Icon has no type or storage declarations. Any variable can have any type of
value. The correctness of types is checked when operations are performed. Storage
for values is provided automatically. The programmer need not be concerned about
it.
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The character # in a program signals the beginning of a comment. The # and
the remaining characters on the line are ignored when the program is compiled. An
example of the use of comments is

#  This procedure illustrates the use of parameters. The
#  first parameter provides the message, while the second
#  parameter specifies the recipient.
#
procedure greet(what, who)

   write(what) # message
   write(who) # recipient

end

Note that the end of a line terminates a comment. Each line of a multi-line comment
must have a #.

If a # occurs in a quoted literal, it stands for itself and does not signal the
beginning of a comment. Therefore,

write("#======#")

writes

#======#

SUCCESS AND FAILURE

The function read() reads a line. For example,

write(read())

reads a line and writes it out. Note that the value produced by read() is the argument
of write().

The function read() is one of a number of expressions in Icon that may either
succeed or fail. If an expression succeeds, it produces a value, such as a line of input.
If an expression fails, it produces no value. In the case of read(), failure occurs when
the end of the input file is reached. The term outcome is used to describe the result of
evaluating an expression, whether it is success or failure.

Expressions that may succeed or fail are called conditional expressions. Com-
parison operations, for example, are conditional expressions. The expression

count > 0
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succeeds if the value of count is greater than 0 but fails if the value of count is not
greater than 0.

As a general rule, failure occurs if a relation does not hold or if an operation
cannot be performed but is not actually erroneous. For example, failure occurs when
an attempt is made to read but when there are no more lines. Failure is an important
part of the design philosophy of Icon. It accounts for the fact that there are situations
in which operations cannot be performed. It corresponds to many real-world
situations and allows programs to be formulated in terms of attempts to perform
computations, the recognition of failure, and the possibility of alternatives.

Two other conditional expressions are find(s1, s2) and match(s1, s2). These
functions succeed if s1 is a substring of s2 but fail otherwise. A substring is a string
that occurs in another string. The function find(s1, s2) succeeds if s1 occurs
anywhere in s2, while match(s1, s2) succeeds only if s1 is an initial substring that
occurs at the beginning of s2. For example,

find("on", "slow motion")

succeeds, since "on" is contained in "slow motion", but

find("on", "radio noise")

fails, since "on" is not a substring of "radio noise" because of the intervening blank
between the "o" and the "n". Similarly,

match("on", "slow motion")

fails, since "on" does not occur at the beginning of "slow motion". On the other hand,

match("slo", "slow motion")

succeeds.

If an expression that fails is an argument in another expression, the other
expression fails also, since there is no value for its argument. For example, in

write(read())

if read() fails, there is nothing to write. The function write() is not called and the
whole expression fails.

The context in which failure occurs is important. Consider

line := read()
write(line)
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If read() succeeds, the value it produces is assigned to line. If read() fails, however,
no new value is assigned to line, because read() is an argument of the assignment
operation. There is no value to assign to line if read() fails, no assignment is
performed, and the value of line is not changed. The assignment is conditional on the
success of read(). Since

line := read()

and

write(line)

are separate expressions, the failure of read() does not affect write(line); it just writes
whatever value line had previously.

CONTROL STRUCTURES

Control structures use the success or failure of an expression to govern the evalua-
tion of other expressions. For example,

while line := read() do
   write(line)

repeatedly evaluates read() in a loop. Each time read() succeeds, the value it
produces is assigned to line and write(line) is evaluated to write that value. When
read() fails, however, the assignment operation fails and the loop terminates. In
other words, the success or failure of the expression that follows while controls
evaluation of the expression that follows do.

Note that assignment is an expression. It can be used anywhere that any
expression is allowed.

Words like while and do, which distinguish control structures, are reserved
and cannot be used as identifiers. A complete list of reserved words is given in
Appendix A.

Another frequently used control structure is if-then-else, which selects one of
two expressions to evaluate, depending on the success or failure of a conditional
expression. For example,

if count > 0 then sign := 1 else sign := –1

assigns 1 to sign if the value of count is greater than 0, but assigns –1 to sign
otherwise. The else clause is optional, as in
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if count > 0 then sign := 1

which assigns a value to sign only if count is greater than 0.

PROCEDURES

Procedures are the major units of a program. Each procedure in a program typically
performs a separate logical task. Some examples follow.

The following procedure prints only the lines that contain the string s:

procedure locate(s)

   while line := read() do
      if find(s, line) then write(line)

end

For example,

procedure main()

   locate("fancy")

end

writes all the lines of the input file that contain an occurrence of the string "fancy".

This procedure is more useful if it also writes the numbers of the lines that
contain s. To do this, it is necessary to count each line as it is read:

procedure locate(s)

   lineno := 0

   while line := read() do {
      lineno := lineno + 1
      if find(s, line) then write(lineno, ": ", line)
      }

end

The braces in this procedure enclose a compound expression, which in this case
consists of two expressions. One expression increments the line number and the
other writes the line if it contains the desired substring. Compound expressions
must be used wherever one expression is expected by Icon’s syntax but several are
needed.

Note that write() has three arguments in this procedure. The function write()
can be called with many arguments; the values of the arguments are written one after
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another, all on the same line. In this case there is a line number, followed by a colon
and a blank, followed by the line itself.

To illustrate the use of this procedure, consider an input file that consists of the
following song from Shakespeare’s play The Merchant of Venice:

Tell me, where is fancy bred,
Or in the heart or in the head?
How begot, how nourished?
      Reply, reply.
It is engender'd in the eyes,
With gazing fed; and fancy dies
In the cradle where it lies:
  Let us all ring fancy's knell;
I'll begin it, – Ding, dong, bell.

The lines written by locate("fancy") are:

1: Tell me, where is fancy bred,
6: With gazing fed; and fancy dies
8:   Let us all ring fancy's knell;

This example illustrates one of the more important features of Icon: the
automatic conversion of values from one type to another. The first argument of
write() in this example is an integer. Since write() expects to write strings, this integer
is converted to a string; it is not necessary to specify conversion. This is another
example of a default, which makes programs shorter and saves the need to explicitly
specify routine actions where they clearly are the natural thing to do.

Like other expressions, procedure calls may produce values. The reserved
word return is used to indicate a value to be returned from a procedure call. For
example,

procedure countm(s)

   count := 0

   while line := read() do
      if match(s, line) then count := count + 1

   return count

end

produces a count of the number of input lines that begin with s.

A procedure call also can fail. This is indicated by the reserved word fail, which
causes the procedure call to terminate but fail instead of producing a value. For
example, the procedure

9Chap. 1 Getting Started

procedure countm(s)

   count := 0

   while line := read() do
      if match(s, line) then count := count + 1

   if count > 0 then return count else fail

end

produces a count of the number of lines that begin with s, provided that the count
is greater than 0. The procedure fails, however, if no line begins with the string s.

 EXPRESSION SYNTAX

Icon has several types of expressions, as illustrated in the preceding sections. Literals
such as "Hello world" and 0 are expressions that designate values literally. Identifiers,
such as line, are also expressions.

Function and procedure calls, such as

write(line)

and

greet("Hello", "world")

are expressions in which parentheses enclose arguments.

Operators are used to provide a concise, easily recognizable syntax for
common operations. For example, −i produces the negative of i, while i + j produces
the sum of i and j. The term argument is used for both operators and functions to
describe the expressions on which they operate.

Infix operations, such as i + j and  i ∗ j, have precedences that determine which
operations apply to which arguments when they are used in combination. For
example,

 i + j ∗ k

groups as

i + (j ∗ k)

since multiplication has higher precedence than addition, as is conventional in
numerical computation.
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Associativity determines how expressions group when there are several
occurrences of the same operation in combination. For example, subtraction associ-
ates from left to right so that

i – j – k

groups as

(i – j) – k

On the other hand, exponentiation associates from right to left so that

i ^ j ^ k

groups as

i ^ (j ^ k)

Assignment also associates from right to left.

The precedences and associativities of various operations are mentioned as the
operations are introduced in subsequent chapters. Appendix A summarizes the
precedences and associativities of all operations.

Parentheses can be used to group expressions in desired ways, as in

(i + j) ∗ k

Since there are many operations in Icon with various precedences and associativi-
ties, it is safest to use parentheses to assure that operations group in the desired way,
especially for operations that are not used frequently.

Where the expressions in a compound expression appear on the same line,
they must be separated by semicolons. For example,

while line := read() do {
   count := count + 1
   if find(s, line) then write(line)
   }

also can be written as

while line := read() do
   {count := count + 1; if find(s, line) then write(line)}

Programs usually are easier to read if the expressions in a compound expression are
written on separate lines, in which case semicolons are not needed.
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Unlike many programming languages, Icon has no statements; it just has
expressions. Even control structures, such as

if expr1 then expr2 else expr3

are expressions. The outcome of such a control structure is the outcome of expr2 or
expr3, whichever is selected. Even though control structures are expressions, they
usually are not used in ways that the values they produce are important. They
usually stand alone as if they were statements, as illustrated by the examples in this
chapter.

Keywords, consisting of the character & followed by one of a number of
specific words, are used to designate special operations that require no arguments.
For example, the value of &time is the number of milliseconds of processing time
since the beginning of program execution.

Any argument of a function, procedure, operator, or control structure may be
any expression, however complicated that expression is. There are no distinctions
among the kinds of expressions; any kind of expression can be used in any context
where an expression is legal.

PREPROCESSING

Icon programs are preprocessed before they are compiled. During preprocessing,
constants can be defined, other files inserted, code can be included or excluded,
depending on the definition of constants, and so on.

Preprocessor directives are indicated by a $ at the beginning of a line, as in

$define Limit 100

which defines the symbol Limit and gives it the value 100. Subsequently, whenever
Limit appears, it is replaced by 100 prior to compilation. Thus,

if count > Limit then write("limit reached")

becomes

if count > 100 then write("limit reached")

The text of a definition need not be a number. For example,

$define suits "SHDC"

defines suits to be a four-character string.
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Another useful preprocessor directive allows a file to be included in a pro-
gram. For example,

$include "disclaim.icn"

inserts the contents of the file "disclaim.icn" in place of the $include directive.

Other preprocessor directives and matters related to preprocessing are de-
scribed in Appendix C.

NOTES

Notation and Terminology

In describing what operators and functions do, the fact that their arguments
may be syntactically complicated is not significant. It is the values produced by these
expressions that are important.

Icon has several types of data: strings, integers, real numbers, and so forth.
Many functions and operations require specific types of data for their arguments.
Single letters are used in this book to indicate the types of arguments. The letters are
chosen to indicate the types that operations and functions expect. These letters
usually are taken from the first character of the type name. For example, i indicates
an argument that is expected to be an integer, while s indicates an argument that is
expected to be a string. For example, −i indicates the operation of computing the
negative of the integer i, while i1 + i2 indicates the operation of adding the integers
i1 and i2. This notation is extended following usual mathematical conventions, so
that j and k also are used to indicate integers. Other types are indicated in a similar
fashion. Finally, x and y are used for arguments that are of unknown type or that may
have one of several types. Chapter 10 discusses types in more detail.

This notation does not mean that arguments must be written as identifiers. As
mentioned previously, any argument can be an expression, no matter how compli-
cated that expression is. The use of letters to stand for expressions is just a device that
is used in this book for conciseness and to emphasize the expected data types of
arguments. These are only conventions. The letters in identifiers have no meaning
to Icon. For example, the value of s in a program could be an integer. In situations
where the type produced by an expression is not important, the notation expr, expr1,
expr2, and so on is used. Therefore,

while expr1 do expr2

emphasizes that the control structure is concerned with the evaluation of its
arguments, not with their values or their types.

In describing functions, phrases such as “the function match(s1, s2) … ” are
used to indicate the name of a function and the number and types of its arguments.
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Strictly speaking, match(s1, s2) is not a function but rather a call of the function
match. The shorter phraseology is used when there can be no confusion about its
meaning. In describing function calls in places where the specific arguments are not
relevant, the arguments are omitted, as in write(). Similarly, other readily under-
stood abbreviations are used. For example, “an integer between 1 and i” sometimes
is used in place of “an integer between 1 and the value of i”.

As illustrated by examples in this chapter, different typefaces are used to
distinguish program material and terminology. The sans serif typeface denotes
literal program text, such as procedure and read(). Italics are used for expressions
such as expr.

Running an Icon Program

The best way to learn a new programming language is to write programs in it.
Just entering the simple examples in this chapter and then extending them will teach
you a lot.

Chapter 14 describes how to run Icon programs. All you need to get started is
to know how to name Icon files and how to compile and execute them. Although this
varies somewhat from platform to platform, in command-line environments like
MS-DOS and UNIX, it’s this simple:

• Enter an Icon program in a file with the suffix .icn. An example is hello.icn.

• At the command-line prompt, enter

icont hello.icn

• The result is an executable file that starts with hello and may end with .exe
  or have no suffix at all. In any event, from the command-line prompt, enter

hello

  to run the program.

If you are using a visual environment rather than a command-line one, the steps will
be somewhat different. Consult the Icon user manual for your platform. See
Appendix J for sources of Icon and documentation about it.

The Icon Program Library

The Icon program library contains a large collection of programs and proce-
dures (Griswold and Townsend, 1996). The programs range from games to utilities.
The procedures contain reusable code that extends Icon’s built-in repertoire.

Library procedures are organized into modules. A module may contain one or
many procedures. A module can be added to a program using the link declaration,
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as in

link strings

procedure main()
     …

which adds the module strings to a program.

Useful material in the program library is mentioned at appropriate places in
this book. The use of library procedures and ways of creating new library proce-
dures are described in Chapter 15.

See Appendix J for information on how to get the Icon program library.

Testing Icon Expressions Interactively

Although Icon itself does not provide a way to enter and evaluate individual
expressions interactively, there is a program in the Icon program library that does.
This program, named qei, allows a user to type an expression and see the result of
its evaluation. Successive expressions accumulate and results are assigned to
variables so that previous results can be used in subsequent computations.

At the > prompt, an expression can be entered, followed by a semicolon and
a return. (If a semicolon is not provided, subsequent lines are included until there
is a semicolon.) The computation is then performed and the result is shown as an
assignment to a variable, starting with r1_ and continuing with r2_, r3_, and so on.
Here is an example of a simple interaction.

> 1 + 3;
r1_ := 4

> r1_ ∗ 10;
r2_ := 40

If an expression fails, qei responds with Failure, as in

> 1 < 0;
Failure

The program qei has several other useful features, such as optionally showing
the types of results. To get a brief summary of qei’s features and how to use them,
enter :help followed by a return.

Syntactic Considerations

The value of a constant defined by preprocessing can be any string. The string
simply is substituted for subsequent uses of the defined symbol. For example,

$define Sum i + j
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defines Sum to be i + j and i + j is substituted wherever sum appears subsequently.
In such uses, expressions should be parenthesized to assure proper grouping. For
example, in

k ∗ Sum

the result of substitution is

k ∗ i + j

which groups as

(k ∗ i) + j

which presumably is not what is wanted and certainly does not produce the result
suggested by

k ∗ Sum

On the other hand

$define Sum (i + j)

produces the expected result:

k ∗ (i + j)
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2

Expressions

The evaluation of expressions causes the computations that are performed during
program execution. Icon has a large repertoire of functions and operations, each of
which performs a different kind of computation.

The most important aspect of expression evaluation in Icon is that the outcome
of evaluating an expression may be a single result, no result at all (failure), or a
sequence of results (generation). The possibilities of failure and generation distin-
guish Icon from most other programming languages and give it its unusual
expressive capability. These possibilities also make expression evaluation a more
important topic than it is in most other programming languages.

Several control structures in Icon are specifically concerned with failure and
generation. This chapter introduces the basic concepts of expression evaluation in
Icon. Chapter 7 contains additional information about expression evaluation.

SEQUENTIAL EVALUATION

In the absence of control structures, expressions in an Icon procedure are evaluated
in the order in which they appear; this is called sequential evaluation. Where
expressions are nested, inner expressions are evaluated first to provide values for
outer ones. For example, in

i := k + j
write(i)

17
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the values of k and j are added to provide the value assigned to i. Next, the value of
i is written. The two lines also could be combined into one, as

write(i := k + j)

although the former version is more readable and generally better style.

The sequential nature of expression evaluation is familiar and natural. It is
mentioned here because of the possibilities of failure and generation. Consider, for
example

i := find(s1, s2)
write(i)

As shown in Chapter 1, find(s1, s2) may produce a single result or it may fail.
It may also generate a sequence of results.

The single-result case is easy — it is just like

i := k + j

in which addition always produces a single result.

Suppose that find(s1, s2) fails. There is no value to assign to i and the
assignment is not performed. The effect is as if the assignment failed because one of
its arguments failed. Consequently, in

i := find(s1, s2)
write(i)

if find(s1, s2) fails, i is not changed, and execution continues with write(i), which
writes the value i had prior to the evaluation of these two lines. It generally is not
good programming practice to let possible failure go undetected. This subject is
discussed in more detail later.

Since a substring can occur in a string at more than one place, find(s1, s2) can
have more than one possible result. The results are generated, as needed, in order
from left to right. In the example above, assignment needs only one result, so the first
result is assigned to i and sequential execution continues (writing the newly
assigned value of i). The other possible results of find(s1, s2) are not produced.

The next section illustrates situations in which a generator may produce more
than one result.

GOAL-DIRECTED EVALUATION

Failure during the evaluation of an expression causes previously evaluated genera-
tors to produce additional values. This is called goal-directed evaluation, since failure
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of a part of an expression does not necessarily cause the entire expression to fail;
instead other possibilities are tried in an attempt to find a combination of values that
makes the entire expression succeed.

Goal-directed evaluation is illustrated by the following expression

if find(s1, s2) > 10 then write("good location")

Suppose s1 occurs in s2 at positions 2, 8, 12, 20, and 30. The first value produced by
find(s1, s2) is 2, and the comparison is:

2 > 10

This comparison fails, which causes find(s1, s2) to produce its next value, 8. The
comparison again fails, and find(s1, s2) produces 12. The comparison now succeeds
and good location is written. Note that find(s1, s2) does not produce the values 20
or 30. As in assignment, once the comparison succeeds, no more values are needed.

Observe how natural the formulation

find(s1, s2) > 10

is. It embodies in a concise way a conceptually simple computation. Try formulating
this computation in Pascal or C for comparison. This method of expression evalu-
ation is used very frequently in Icon programs. It is a large part of what makes Icon
programs short and easy to write. It is not necessary to think about all the details of
what is going on.

Failure may cause expression evaluation to go back to a previously evaluated
expression. For example, in the preceding example, failure of a comparison opera-
tion caused evaluation to return to a function that had already produced a value.
This is called control backtracking. Control backtracking only happens in the presence
of generators. An expression that produces a value and may be capable of producing
another one suspends. Instead of just producing a value and “going away”, it keeps
track of what it was doing and remains “in the background” in case it is needed
again. Failure causes a suspended generator to be resumed so that it may produce
another value. If a generator is resumed but has no more values, its resumption fails.
While the term failure is used to describe an expression that produces no value at all,
a resumed generator that does not produce a value (failed resumption) has the same
effect on expression evaluation — there is no value to use in an outer expression.

Note that when an outer computation succeeds there may be suspended
generators. They are discarded when there is no longer any need for them.
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ITERATION

It is not necessary to rely on failure and goal-directed evaluation to produce several
values from a generator. In fact, there are many situations in which all (or most) of
the values of a generator are needed, but without any concept of failure. The iteration
control structure

every expr1 do expr2

is provided for these situations. In this control structure, expr1 is first evaluated and
then repeatedly resumed to produce all its values. expr2 is evaluated for every value
that is produced by expr1.

For example,

every i := find(s1, s2) do
   write(i)

writes all the values produced by find(s1, s2). Note that the repeated resumption of
find(s1, s2) provides a sequence of values for assignment. Thus, as many assign-
ments are performed as there are values for find(s1, s2).

The do clause is optional. This expression can be written more compactly as

every write(find(s1, s2))

INTEGER SEQUENCES

Icon has several expressions that generate sequences of values. One of the most
useful is

i to j by k

which generates the integers from i to j in increments of k. The by clause is optional;
if it is omitted, the increment is 1. For example,

$define Limit 10

every i := 1 to Limit do
   write(i ^ 2)

writes the squares 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100.

Note that iteration in combination with integer generation corresponds to the
for control structure found in many programming languages. There are, however,
many other ways iteration and integer generation can be used in combination. For
example, the expression above can be written more compactly as
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every write((1 to Limit) ^ 2)

The function seq(i, j) generates a sequence of integers starting at i with
increments of j, but with no upper bound.

ALTERNATION

Since a generator may produce a sequence of values and those values may be used
in goal-directed evaluation and iteration, it is natural to extend the concept of a
sequence of values to apply to more than one expression. The alternation control
structure,

expr1 | expr2

does this by first producing the values for expr1 and then the values for expr2. For
example,

0 | 1

generates 0 and 1. Thus, in

if i = (0 | 1) then write("okay")

okay is written if the value of i is either 0 or 1. The arguments in an alternation
expression may themselves be generators. For example,

(1 to 3) | (3 to 1 by –1)

generates 1, 2, 3, 3, 2, 1.

When alternation is used in goal-directed evaluation, such as

if i = (0 | 1) then write(i)

it reads naturally as “if i is equal to 0 or 1, then …”. On the other hand, if alternation
is used in iteration, as in

every i := (0 | 1) do
   write(i)

it reads more naturally as “i is assigned 0 then 1”.

The or/then distinction reflects the usual purpose of alternation in the two
different contexts and suggests how to use alternation to formulate computations.
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CONJUNCTION

As explained earlier, an expression succeeds only if all of its component
subexpressions succeed. For example, in

find(s1, s2) = find(s1, s3)

the comparison expression fails if either of its argument expressions fails. The same
is true of

find(s1, s2) + find(s1, s3)

and, in fact, of all operations and functions. It often is useful to know if two or more
expressions succeed, although their values may be irrelevant. This operation is
provided by conjunction,

expr1 & expr2

which succeeds (and produces the value of expr2) only if both expr1 and expr2
succeed. For example,

if find(s1, s2) & find(s1, s3) then write ("okay")

writes okay only if s1 is a substring of both s2 and s3.

Note that conjunction is just an operation that performs no computation (other
than returning the value of its second argument). It simply binds two expressions
together into a single expression in which the components are mutually involved in
goal-directed evaluation. Conjunction normally is read as “and ”. For example,

if (i > 100) & (i = j) then write(i)

might be read as “if i is greater than 100 and i equals j …”

 Note also that in goal-directed contexts,

expr1 | expr2 | ... | exprn

and

expr1 & expr2 & … & exprn

correspond closely to logical disjunction and conjunction, respectively. Thus, and/
or conditions can be easily composed using conjunction and alternation.
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LOOPS

There are two control structures that evaluate an expression repeatedly, depending
on the success or failure of a control expression:

while expr1 do expr2

described earlier, and

until expr1 do expr2

which repeatedly evaluates expr2 until expr1 succeeds. In both cases expr1 is
evaluated before expr2. The do clauses are optional. For example,

while write(read())

copies the input file to the output file.

A related control structure is

not (expr)

which fails if expr succeeds, but succeeds if expr fails. Therefore,

until expr1 do expr2
and

while not (expr1) do expr2

are equivalent. The form that is used should be the one that is most natural to the
situation in which it occurs.

The while and until control structures are loops. Loops normally are terminated
only by the failure or success of their control expressions. Sometimes it is necessary
to terminate a loop, independent of the evaluation of its control expression.

The break expression causes termination of the loop in which it occurs. The
following program illustrates the use of the break expression:

procedure main()

   count := 0

   while line := read() do
      if match("stop", line) then break
      else count := count + 1

   write(count)

end
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This program counts the number of lines in the input file up to a line beginning with
the substring "stop".

Sometimes it is useful to skip to the beginning of the control expression of a
loop. This can be accomplished by the next expression. Although the next expression
is rarely needed in simple cases, the following example illustrates its use:

procedure main()

   while line := read() do
      if match("comment", line) then next
      else write(line)

end

This program copies the input file to the output file, omitting lines that begin with
the substring "comment".

The break and next expressions may appear anywhere in a loop, but they apply
only to the innermost loop in which they occur. For example, if loops are nested, a
break expression only terminates the loop in which it appears, not any outer loops.
The use of a break expression to terminate an inner loop is illustrated by the
following program, which copies the input file to the output file, omitting lines
between those that begin with "skip" and "end", inclusive.

procedure main()

   while line := read() do
      if match("skip", line) then { # check for lines to skip
         while line := read() do # skip loop
            if match("end", line) then break
         }
      else write(line) # write line in main loop

end

There is one other looping control structure:

repeat expr

This control structure evaluates expr repeatedly, regardless of whether it succeeds
or fails. It is useful when the controlling expression cannot be placed conveniently
at the beginning of a loop. A repeat loop can be terminated by a break expression.

Consider an input file that is organized into several sections, each of which is
terminated by a line beginning with "end". The following program writes the
number of lines in each section and then the number of sections.
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procedure main()

   setcount := 0

   repeat {
      setcount := setcount + 1
      linecount := 0
      while line := read() do {
         linecount := linecount + 1
         if match("end", line) then {
            write(linecount)
            break
            }
         }
      if linecount = 0 then break # end of file
      }

   write(setcount, " sections")

end

The outcome of a loop, once it is complete, is failure. That is, a loop itself
produces no value. In most cases, this failure is not important, since loops usually
are not used in ways in which their outcome is important.

SELECTION EXPRESSIONS

The most common form of selection occurs when one or another expression is
evaluated, depending on the success or failure of a control expression. As described
in Chapter 1, this is performed by

if expr1 then expr2 else expr3

which evaluates expr2 if expr1 succeeds but evaluates expr3 if expr1 fails.

If there are several possibilities, if-then-else expressions can be chained to-
gether, as in

if match("begin", line) then depth := depth + 1
else if match("end", line) then depth := depth – 1
else other := other + 1

The else portion of this control structure is optional:

if expr1 then expr2
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evaluates expr2 only if expr1 succeeds. The not expression is useful in this abbrevi-
ated if-then form:

if not (expr1) then expr2

which evaluates expr2 only if expr1 fails. In this situation, parentheses are often
needed around expr1 because not has high precedence.

While if-then-else selects an expression to evaluate, depending on the success
or failure of the control expression, it is often useful to select an expression to
evaluate, depending on the value of a control expression. The case control structure
provides selection based on value and has the form

case expr of {
   case-clause
   case-clause
         .
         .
         .
   }

The expression expr after case is a control expression whose value controls the
selection. There may be several case clauses. Each case clause has the form

expr1 : expr2

The value of the control expression expr is compared with the value of expr1 in each
case clause in the order in which the case clauses appear. If the values are the same,
the corresponding expr2 is evaluated, and its outcome becomes the outcome of the
entire case expression. If the values of expr and expr1 are different, or if expr1 fails,
the next case clause is tried.

There is also an optional default clause that has the form

default : expr2

If no comparison of the value of the control expression with expr1 is successful, expr2
in the default clause is evaluated, and its outcome becomes the outcome of the case
expression. The default clause may appear anywhere in the list of case clauses, but
it is evaluated last. It is good programming style to place it last in the list of case
clauses.

Once an expression is selected, its outcome becomes the value of the case
expression. Subsequent case clauses are not processed, even if the selected expres-
sion fails. A case expression itself fails if (1) its control expression fails, (2) if the
selected expression fails, or (3) if no expression is selected.
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Any kind of value can be used in the control expression. For example,

case s of {
  "begin" :  depth := depth + 1
   "end" :  depth := depth – 1
   }

increments depth if the value of s is the string "begin" but decrements depth if the
value of s is the string "end". Since there is no default clause, this case expression fails
if the value of s is neither "begin" nor "end". In this case, the value of depth is not
changed.

The expression in a case clause does not have to be a constant. For example,

case i of {
   j + 1 :  write("high")
   j – 1 :  write("low")
   j :  write("equal")
   default :  write("out of range")
   }

writes one of four strings, depending on the relative values of i and j.

The expression in a case clause can be a generator. If the first value it produces
is not the same as the value of the control expression, it is resumed for other possible
values. Consequently, alternation provides a useful way of combining case clauses.
An example is:

case i of {
   0 :  write("at origin")
   1 | –1 :  write("near origin")
   default :  write("not near origin")
   }

Since the outcome of a case expression is the outcome of the selected expres-
sion, it sometimes is possible to “factor out” common components in case clauses.
For example, the case expression above can be written as

write(
   case i of {
      0 :  "at origin"
      1 | –1 :  "near origin"
      default :  "not near origin"
      }
   )

Such constructions can be difficult to read and should be used with restraint.
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Note that each case clause allows just a single expression to be executed. If
multiple expressions are needed, they must be grouped using braces.

COMPARISON OPERATIONS

A comparison operation such as

i = j

produces the value of its right operand if it succeeds. For example

write(find(s1, s2) = find(s3, s4))

writes the first common position if there is one.

Comparison operations are left associative, so an expression such as

i < j < k

groups as

(i < j) < k

Since a comparison operation produces the value of its right operand if it succeeds,
the expression above succeeds if and only if the value j is between the values of i and
k.

ASSIGNMENT

One of the most commonly used operations is assignment, which has the form

x := y

and assigns the value of y to the variable x.

Assignment associates to the right, so that

x := y := z

groups as

x := (y := z)

Consequently, the value of z is assigned to both y and x.
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Augmented Assignment

One of the most common operations in programming is incrementing the
numerical value of a variable, as in

i := i + 1

In order to make such operations more concise and to avoid two references to
the same variable, Icon provides augmented assignment operations that combine
assignment with the computation to be performed. For example,

i +:= 1

adds one to the value of i.

There are augmented assignment operations corresponding to all infix opera-
tions (except assignment operations themselves); the := is simply appended to the
operator symbol. For example,

i ∗:= 10

is equivalent to

i := i ∗10

Similarly,

i >:= j

assigns the value of j to i if the value of i is greater than the value of j. This may seem
a bit strange at first sight, since most programming languages do not treat compari-
son operations as numerical computations, but this feature of Icon sometimes can be
used to advantage.

Exchanging Values

The operation

x :=: y

exchanges the values of x and y. For example, after evaluating

s1 := "begin"
s2 := "end"
s1 :=: s2
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the value of s1 is "end" and the value of s2 is "begin".

The exchange operation associates from right to left and returns its left
argument as a variable. Consequently,

x :=: y :=: z

groups as

x :=: (y :=: z)

VALUES, VARIABLES, AND RESULTS

Some expressions produce values, while others (such as assignment) produce
variables, which in turn have values. For example, the string literal "hello" is a value,
while the identifier line is a variable. It is always possible to get the value of a
variable. This is done automatically by operations such as i + j, in which the values
of i and j are used in the computation.

On the other hand, values are not obtained from variables unless they are
needed. For example, the expression x | y generates the variables x and y, so that

every (x | y) := 0

assigns 0 to both x and y. The if-then-else and case control expressions also produce
variables if the selected expression does.

The term result is used collectively to include both values and variables.
Consequently, it is best to describe

expr1 | expr2

as generating the results of expr1 followed by the results of expr2.

Note that the term outcome includes results (values and variables) as well as
failure.

The keyword &fail does not produce a result. It can be used to indicate failure
explicitly.

ARGUMENT EVALUATION

The arguments of function and procedure calls are evaluated from left to right. If the
evaluation of an argument fails, the function or procedure is not called. If more
arguments are given in a call than are expected, the extra arguments are evaluated,
but their values are not used. If the evaluation of an extra argument fails, the function
or procedure is not called, just as in the case of the evaluation of any other argument.
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If an argument is omitted, as in write(), the value of that argument is null. Many
functions have defaults that are used if an argument is null. For example, in write(),
the null value defaults to an empty string and an empty (blank) line is written.
Another example is the function seq(i, j), which was described earlier. If its
arguments are omitted, and hence null, they default to 1. Consequently, seq()
generates 1, 2, 3, … and seq(7) generates 7, 8, 9 … .

The keyword &null produces the null value. Consequently, write() and
write(&null) are equivalent. The null value is described in more detail in Chapter 10.

PROCEDURE RETURNS

As shown in Chapter 1, a procedure call may return a value, as in

return count

or it may fail and not return a value by using fail. A procedure call also may fail by
flowing off the end of the procedure body without an explicit return.

A procedure also may generate a sequence of values by using suspend, as in
the following example:

procedure To(i, j)

   while i <= j do {
      suspend i
      i +:= 1
      }

   fail

end

The suspend expression produces a value from the procedure call in the same
manner as return, but the call is suspended and can be resumed. If it is resumed,
evaluation continues following the point of suspension. In the example above, the
first result produced is the value of i, provided it is less than or equal to j. If the call
is resumed, i is incremented. If i is still less than or equal to j, the call suspends again
with the new value of i. If i is greater than j, the loop terminates and fail is evaluated,
which causes the resumption of the call to fail. The fail expression is not necessary,
since flowing off the end of the procedure body has the same effect. Consequently,

every write(To(1, 10))

is equivalent to

every write(1 to 10)
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The suspend expression is like the every expression; if its argument is a
generator, the generator is resumed when the procedure call is resumed. Thus,

suspend (1 | 3 | 5 | 7 | 11)

suspends with the values 1, 3, 5, 7, 11 as the call in which it appears is successively
resumed.

NOTES

Testing Icon Expressions Interactively

Success, failure, and generation in expression evaluation are powerful pro-
gramming tools, but they may be unfamiliar. Testing various expressions interac-
tively (or in a simple program) can help with understanding expression evaluation
in Icon and dispel potential misconceptions.

The program qei, mentioned in the Notes section of Chapter 1, is particularly
useful in this context. The command :every at the beginning of a line instructs qei to
show every result of a generator. For example

> :every 1 to 5;

produces

1
2
3
4
5

Care should be taken not to specify a generator that has a large number of results.

Syntactic Considerations

The way that expressions are grouped in the absence of braces or parentheses
is determined by the precedence and associativity of the syntactic tokens that
comprise expressions. Appendix A contains detailed information on these matters.

Ideally, precedence and associativity lead to natural groupings of expressions
and produces the expected results. In some cases, however, what is natural in one
context is not natural in another, and precedence and associativity rules may cause
expressions to group differently than expected. Such potential problems are noted
at the ends of subsequent chapters.
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The grouping of conjunction and alternation with other operations is a
frequent source of problems. Conjunction has the lowest precedence of all opera-
tions. Alternation, on the other hand, has a medium precedence. Consequently,

expr1 & expr2 | expr3

groups as

expr1 & (expr2 | expr3)

Since, in the absence of parentheses, such expressions are easily misinterpreted, it is
good practice to use parentheses even if they are not necessary. There are many other
cases where this rule applies. For example,

1 to 10 | 20

groups as

 1 to (10 | 20)

The moral is clear: Parenthesize for readability as well as correctness.

 When control structures are nested, braces can be used for grouping as shown
in examples earlier in this chapter. Even if braces are not necessary, using them helps
avoid errors that may result from unexpected groupings in complicated expres-
sions. Using braces to delimit expressions also can make programs easier to read —
it is difficult for human beings to parse nested expressions.

Consistent and appropriate indentation (“paragraphing”) also makes pro-
grams easier to read. There are several styles of indentation. The one to use is largely
a matter of taste, but it should be consistent and should accurately reflect the
grouping of expressions.

There are a few common syntactic problems that arise in control structures.
One is that the do clause in every, which, and until is optional. If a do clause is
intended but omitted by accident, the results can be unexpected. Consider for
example,

while line := read()
   process(line)

This is syntactically correct, but since there is no do, all input lines are read and then
process(line) is evaluated once. Because of the omitted do, only the last input line is
processed.
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The precedence of not is higher than that of any infix operation. For example,

not find(s1, s2) = 10

groups as

(not find(s1, s2)) = 10

As a general rule, it is advisable to use parentheses for grouping in expressions
containing not to avoid such unexpected results, as shown in earlier examples.

If there is a “dangling” else in nested if-then-else expressions, the else clause
is grouped with the nearest preceding if. Consider, for example, the following
section of a program for analyzing mailing lists:

if find("Mr.", line) then
if find("Mrs.", line)
then mm := mm + 1
else mr := mr + 1

These lines group as

if find("Mr.", line) then {
   if find("Mrs.", line) then mm := mm + 1
   else mr := mr + 1
   }

The precedence of then and else is lower than the precedence of any infix operation,
so

if i > j then k := i else k := j

 groups as

if i > j then (k := i) else (k := j)

which usually is what is intended.

In Icon, unlike many other programming languages, control structures are
expressions. For example, the outcome of

if expr1 then expr2 else expr3

is the outcome of expr2 or expr3 depending on whether expr1 succeeds or fails.
Consequently, it is possible to write expressions such as

(if i > j then i else j) := 0
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to assign 0 to either i or j, depending on the relative magnitudes of their values.
Although Icon allows such constructions, they tend to make programs difficult to
read. It usually is better style to write such an expression as

if i > j then i := 0 else j := 0

The assignment and numerical comparison operators are easily confused.
Thus,

i = (1 | 2)

compares the value of i to 1 and then 2, while

i := (1 | 2)

assigns 1 to i. (The second argument of alternation is not used, since assignment only
needs one value.)
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3

String Scanning

Icon has many facilities for manipulating strings of characters (text). Its most
powerful facility is high-level scanning for analyzing and synthesizing strings in a
general way. This chapter is devoted to string scanning. Other string-processing
facilities are described in Chapter 4.

THE CONCEPT OF SCANNING

Icon’s string scanning facility is based on the observation that many operations on
strings can be cast in terms of a succession of operations on one string at a time. By
making this string, called the subject, the focus of attention of this succession of
operations, it need not be mentioned in each operation. Furthermore, operations on
a string often involve finding a position of interest in the string and working from
there. Thus, the position serves as a focus of attention within the subject. The term
scanning refers to changing the position in the subject. String scanning therefore
involves operations that examine a subject string at a specific position and possibly
change the position.

The form of a string-scanning expression is

expr1 ? expr2

where expr1 provides the subject to be scanned and expr2 does the scanning. The
outcome of the scanning expression is the outcome of expr2. String scanning is
illustrated by the function move(i), which increments the position by i characters if

37
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that is possible but fails if it is not. This function also produces the portion of the
subject between the old and new positions. A function that produces a substring of
the subject while changing the position is called a matching function.

Scanning starts at the beginning of the subject, so that

text ? {
   while move(1) do
      write(move(1))
   }

writes the even-numbered characters of text on separate lines.

STRING POSITIONS

In Icon, positions in strings are between characters and are numbered starting with
1, which is the position to the left of the first character:

d r a g o n
↑ ↑ ↑ ↑ ↑ ↑ ↑
1 2 3 4 5 6 7

For convenience in referring to characters with respect to the right end of the
string, there are corresponding nonpositive position specifications:

d  r a g  o n
↑ ↑ ↑ ↑ ↑ ↑ ↑
–6 –5 –4 –3 –2 –1 0

The matching function tab(i) sets the position in the subject to i. For example,

text ? {
   if tab(3) then
      while move(1) do
         write(move(1))
   }

writes the even-numbered characters of text starting with the fourth one, provided
text is that long. The argument of tab() can be given by a nonpositive specification,
and a negative argument to move() decreases the position in the subject. Conse-
quently,

text ? {
   tab(0)
   while write(move(–1))
   }
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writes the characters of text from right to left. Notice that it is not necessary to know
how long text is.

The function pos(i) succeeds if the position in the subject is i but fails otherwise.
For example,

expr & pos(0)

succeeds if the position is at the right end of the string after expr is evaluated.

STRING ANALYSIS

String analysis often involves finding a particular substring. The string-analysis
function find(s1, s2), used earlier to illustrate failure and generation, performs this
operation. When find() is used in string scanning, its second argument is omitted,
and the subject is used in its place. For example,

write(text ? find("the"))

writes the position of the first occurrence of "the" in text, provided there is one.
Similarly,

every write(text ? find("the"))

writes all the positions of "the" in text. Note that the scanning expression generates
all the values generated by find("the").

In string analysis, the actual value of the position of a substring usually is not
as interesting as the context in which the substring occurs — for example, what
precedes or follows it. Since a string-analysis function produces a position and the
matching function tab() moves to a position and produces the matched substring,
the two can be used in combination. For example,

write(text ? tab(find(",")))

writes the initial portion of text prior to the first comma in it (if any). Similarly,

text ? {
   if tab(find(",") + 1) then
      write(tab(0))
   }

writes the portion of text after the first comma in it (if any).

Alternation may be used in the argument of find() to look for any one of several
strings. For example,
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text ? {
   if tab(find("a" | "e" | "i" | "o" | "u") + 1) then
      write(tab(0))
   }

writes the portion of text after a lowercase vowel. Since alternatives are tried only if
they are needed, if there is an "a" in text, the string after it is written, even if there is
another vowel before the "a".

CSETS

In the example above, what happens depends on the order in which the alternatives
are written. On the other hand, in string analysis, order often is not important or even
appropriate. For example, the scanning expression at the end of the preceding
section does not write the first lowercase vowel.

Csets (character sets) are provided for such purposes. A cset is just what it
sounds like — a set of characters. There is no concept of order in a cset; all the
characters in it are on a par. A cset is therefore very different from a string, which is
a sequence of characters in which order is very important.

A cset can be given literally by using single quotes to enclose the characters (as
opposed to double quotes for string literals). Thus,

vowel := 'aeiou'

is a cset that contains the five lowercase “vowels”. There also are built-in csets. For
example, the value of the keyword &letters is a cset containing the upper- and
lowercase letters.

Icon has several string-analysis functions that use csets instead of strings. One
of these is upto(c), which generates the positions in the subject in which any character
in the cset c occurs. For example,

every write(text ? upto(vowel))

writes the positions of every vowel in text, and

text ? {
   if tab(upto(vowel) + 1) then
      write(tab(0))
   }

writes the portion of text after the first instance of a lowercase vowel (if any).

Another string-analysis function that uses csets is many(c), which produces
the position after a sequence of characters in c. For example,
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text ? {
   while write(tab(upto(' '))) do
      tab(many(' '))
   write(tab(0))
   }

writes the strings of characters between strings of blanks. Strings of blanks are
matched by the expression tab(many(' ')), skipping over them in scanning. Note that
tab(0) is used to match the remainder of the subject after the last blank (if any).

Similarly, the following scanning expression writes all the “words” in text:

text ? {
   while tab(upto(&letters)) do
      write(tab(many(&letters)))
   }

Treating a “word” as simply a string of letters is, of course, naive. In fact, there is no
simple definition of “word” that is satisfactory in all situations. However, this naive
one is easy to express and suffices in many situations.

STRING-ANALYSIS FUNCTIONS

There are three string-analysis functions in addition to find(), many(), and upto().

Matching Substrings

 If s occurs at the current position in the subject, the function match(s)
produces the position in the subject at the end of s. It fails if s does not occur at the
current position in the subject. For example,

"The theory is fallacious" ? match("The")

produces 4, while

"The theory is fallacious" ? match(" theory")

fails, since string scanning starts at the beginning of the subject.

The operation =s is equivalent to tab(match(s)). For example, if line begins with
the substring "checkpoint", then

line ? {
   if ="checkpoint" then
      base := tab(0)
   }
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assigns the remainder of line to base.

Matching a Character

If the character at the current position in the subject is in the cset c, any(c)
produces the position after that character. It fails otherwise. For example,

write("Our conjecture has support" ? tab(any('aeiouAEIOU')))

writes O, while

write("Our conjecture has support" ? tab(any('aeiou')))

fails and does not write anything.

Note that any() resembles match(), except that any() depends on the character
at the current position, not a substring, and any one of several of characters may be
specified. It also resembles many(), but any() matches one character instead of
several.

Matching Balanced Strings

The function bal(c1, c2, c3) generates the positions of characters in c1, pro-
vided the preceding substring is “balanced” with respect to characters in c2 and c3.
This function is useful in applications that involve the analysis of formulas, expres-
sions, and other strings that have balanced bracketing characters.

The function bal() is like upto(), except that c2 and c3 specify sets of characters
that must be balanced in the usual algebraic sense up to a character in c1. If c2 and
c3 are omitted, '(' and ')' are assumed. For example,

"–35" ? bal('–')

produces 1 (the string preceding the minus is empty) but

write("((2∗x)+3)+(5∗y)" ? tab(bal('+')))

writes ((2∗x)+3). Note that the position of the first "+" is not preceded by a string that
is balanced with respect to parentheses.

Bracketing characters other than parentheses can be specified. The expression

write("[+, [2, 3]], [∗, [5, 10]]" ? tab(bal(',', '[', ']')))

writes [+, [2, 3]].

 In determining whether or not a string is balanced, a count is kept starting at
zero as characters in the subject are examined. If a character in c1 is encountered and
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the count is zero, bal() produces that position. Otherwise, if a character in c2 is
encountered, the count is incremented, while the count is decremented if a character
in c3 is encountered. Other characters leave the count unchanged.

If the counter ever becomes negative, or if the count is positive after examining
the last character of the subject, bal() fails.

All characters in c2 and c3 have equal status; bal() cannot be used to determine
proper nesting of different bracketing characters. For example, the value produced
by

"([a+b))+c]" ? bal('+', '([', ')]')

is 8.

If c2 and c3 both contain the same character, its presence in c2 counts; it has
no effect as a character in c3.

Since bal() is a generator, it may produce more than one result. For example,

every write(formula ? bal('∗'))

writes the positions of all asterisks in formula that are preceded by parenthesis-
balanced substrings.

SCANNING ENVIRONMENTS

The subject and position in string scanning, taken together, constitute an “environ-
ment” in which matching and string-analysis functions operate.

A scanning expression,

expr1 ? expr2

starts a new scanning environment. It first saves the current scanning environment,
then starts a new environment with the subject set to the string produced by expr1
and the position set to 1 (the beginning of the subject). Next, expr2 is evaluated. When
the evaluation of expr2 is complete (whether it produces a result or fails), the former
scanning environment is restored.

Since scanning environments are saved and restored in this fashion, string-
scanning expressions can be nested. An example is:

text ? {
   while tab(upto(&letters)) do {
      word := tab(many(&letters))
      word ? {
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         if upto('aeiou') then write(move(1))
         }
      }
   }

This expression writes the first letter of those words that contain a lowercase vowel.

SCANNING KEYWORDS

The subject and position in scanning environments are maintained automatically by
scanning expressions and matching functions. There usually is no need to refer to
the subject and position explicitly — in fact, the whole purpose of string scanning is
to treat these values implicitly so that they do not have to be mentioned during string
scanning.

In some situations, however, it may be useful, or even necessary, to refer to the
subject or position explicitly. Two keywords are provided for this purpose: &subject
and &pos.

For example, the following line writes the subject and position:

write("subject=", &subject, ", position =", &pos)

If a value is assigned to &subject, it becomes the subject in the current scanning
environment and the position is automatically set to 1. If a value is assigned to &pos,
the position in the current scanning environment is changed accordingly, provided
the value is in the range of the subject. If it is not in range, the assignment to &pos
fails.

AUGMENTED STRING SCANNING

Augmented assignment,

s ?:= expr

can be used to scan s and assign a new value to it. The value assigned is the value
produced by expr. For example,

line ?:= {
   tab(many(' ')) & tab(0)
   }

removes any initial blanks from line. If line does not begin with a blank, the scanning
expression fails and the value of line is not changed.
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NOTES

Testing Expressions Interactively

String scanning is one of the most powerful features of Icon. Its apparent
simplicity masks a wealth of uses. String scanning also may be difficult to under-
stand initially, and it may be hard to see how to use it to perform string analysis.

Again, testing expressions interactively (or writing small programs) can be
very helpful in learning to use string scanning.

In qei (available in the Icon program library and described in the Notes section
of Chapter 1) a helpful approach is to set up a string for subsequent tests. An example
from this chapter is:

> text := "The theory is fallacious";
r1_ := text := "The theory is fallacious"

Note that the string is assigned to both text and r1_ (or some other variable qei creates
if r1_ already has been created). Now various scanning expressions can be tried, as
in

> text ? match("The");
r2_ := 4

> text ? match("theory");
> Failure

As in examples shown earlier, scanning may involve several expressions. This
is easily handled in qei by opening a compound expression with a left brace without
a terminating semicolon and writing the remaining expressions on separate lines
without semicolons, finally ending with a right brace and semicolon, as in

> text ? {
>    tab(5)
>    move(1)
>    };
> r3_ := "t"

Library Resources

The library module scan contains several procedures that supplement Icon’s
built-in scanning functions.

In addition, this module contains a procedure snapshot() that shows the
subject and the current position in scanning.
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Syntactic Considerations

The second argument of ? often is fairly complicated, since it contains the
expressions that perform scanning. Consequently, the precedence of ? is low, and

text ? i := find(s)

groups as

text ? (i := find(s))

However, the precedence of ? is greater than & (conjunction), so that

text ? i := find(s1) & j := find(s2)

groups as

(text ? i := find(s1)) & (j := find(s2))

This probably is not what is intended, and the source of the problem may be hard
to locate. The difficulty is that j := find(s2) is not evaluated with text as the subject,
since the completion of the scanning expression at the left of the conjunction restores
the subject and position to their former values. Consequently, find(s2) does not
operate on text but on some other subject. (In the absence of any scanning expression,
the subject is a zero-length, empty string.) Whether find(s2) succeeds or fails, its
outcome has nothing to do with text. However, it looks like it does, which may make
debugging difficult.

Because of the likelihood of conjunction in scanning expressions, it is good
practice to clearly delimit the second argument of the scanning expression. One such
form, which is used in most of the examples of string scanning in this book, is

s ? {
 …

         }

Since scanning expressions can be complicated, it is important to be careful
that the outcome of scanning is the intended one. Consider the following expression:

line ?:= {
   while tab(upto(&letters)) do
      tab(many(&letters))
   }

The scanning expression eventually fails, regardless of the value of line, since the
while loop itself fails. Consequently, no value is assigned to line.
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4

Characters, Csets,
and Strings

Icon has no character data type, but it has two data types that are composed of
characters: strings, which are sequences of characters, and csets, which are sets of
characters. These two organizations of characters, described briefly in previous
chapters, are useful for representing various kinds of information and for operating
on textual data in different ways.

CHARACTERS

Since strings are of major importance in Icon, and csets only somewhat less so, it is
important to understand the significance of the characters from which they are
composed.

Icon uses eight-bit characters and allows all 256 of them to be used; no
characters are excluded from use. Although most computer systems do not allow all
256 characters to be entered from input devices, they all can be represented in Icon
programs by escape sequences in string and cset literals, and any character can be
computed directly during program execution.

Most files are composed of characters, and most input and output consists of
characters. Some characters are “printable” and have graphics (“glyphs”) associ-
ated with them. Other characters are used for control purposes, such as for indicat-
ing the end of a line on a display device or printer. The printable characters, control
characters, and their uses vary from one computer system to another. The associa-
tion between the numeric value of the pattern of bits (code) for a character and its
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graphic also depend on the “character set” the system uses. For example, the letter
A is associated with the bit pattern 01000001 (decimal code 65) in the ASCII character
set, but with the bit pattern 11000001 (decimal code 193) in the EBCDIC character set.
Most computer systems use ASCII. The exceptions are IBM mainframes, which use
EBCDIC.

Most text processing involves printable characters that have graphics and, for
the most part, it does not matter which codes correspond to which characters. For
example, programs that analyze text files usually work the same way, regardless of
whether the character set is ASCII or EBCDIC. Such programs usually are written
in terms of the graphics for the characters (such as A) and the associated codes are
irrelevant.

There are exceptions, however. Comparison of characters and sorting depend
on the numeric codes associated with graphics. In ASCII, the digits are associated
with codes near the beginning of the character set, while in EBCDIC they are near
the end. In both cases, the digits are in the order of their character codes, so strings
of digits compare the same way in both ASCII and EBCDIC. However, the digits
occur before the letters in ASCII but after the letters in EBCDIC, so strings containing
both letters and digits may compare differently in ASCII and EBCDIC. While these
differences cannot be helped, they usually do not cause problems because an Icon
program running on an ASCII system produces the results that the user of an ASCII
system expects, and similarly on an EBCDIC system. And, as mentioned earlier,
almost all computers use ASCII.

See Appendix B for more information about character sets, the glyphs used in
different situations, and listings for several platforms.

STRINGS

Strings are used more frequently than csets because the sequential organization of
strings allows the representation of complex relationships among characters. Writ-
ten text, such as this book, is just a sequence of characters. Most of the information
processed by computers consists of sequences of characters, especially when it is
read in, written out, and stored in files.

String Literals

As described earlier, strings are represented literally with surrounding double
quotation marks. For example,

vowel := "aeiou"

assigns the string "aeiou" to vowel.
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A single string literal can be continued from one line to the next by ending each
line that is incomplete with an underscore and continuing on the next line. White
space (blanks and tabs) are discarded at the beginning of the next line and the parts
are joined. An example is

sentence := "This string literal is too _
   long to be written comfortably _
   on a single line."

Note that blanks to separate words are put before underscores at the ends of lines.

The escape sequences can be used in string literals for characters that cannot
be keyboarded directly. Escape sequences start with the character \ (backslash). For
example, " \ t" is a string consisting of a tab and "\n" is a string consisting of a newline
character. Similarly, " \"" is a string representing a double quote and " \\" is a string
consisting of a single backslash. Therefore,

write("What I want to say is\n\"Hello world\"")

writes

What I want to say is
"Hello world"

A complete listing of escape sequences is given in Appendix A.

Character Codes

The function char(i) produces the one-character string corresponding to the
integer i. For example, the internal integer representation for A is 65 in ASCII, so
char(65) produces the one-character string "A" in ASCII.

The inverse function ord(s) produces the integer (ordinal) corresponding to
the one-character string s.

String Length

The length of a string is the number of characters in it. The operation ∗s
produces the length of s. For example,

∗"Hello world"

produces the integer 11.

There is no practical limit to the length of a string, although very long strings
are awkward and expensive to manipulate. The smallest string is the empty string,
which contains no characters and has zero length. The empty string is represented
literally by "".
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LEXICAL COMPARISON

Strings can be compared for their relative magnitude in a manner similar to the
comparison of numbers. The comparison of strings is based on lexical (alphabetical)
order rather than numerical value. Lexical order is based on the codes for the
characters. The character c1 is lexically less than c2 if the code for c1 is less than the
code for c2. For example, in ASCII the code for "B" is 66, while the code for "R" is 82,
so "B" is lexically less than "R".

Although the relative values of letters and digits are the same in ASCII and
EBCDIC and produce the expected results in lexical comparisons, there are impor-
tant differences between the ordering in the two character sets. As mentioned
earlier, the ASCII codes for the digits are smaller than the codes for letters, while the
opposite is true in EBCDIC. In addition, uppercase letters in ASCII have smaller
codes than lowercase letters, while the opposite is true in EBCDIC. Furthermore,
there is relatively little relationship between the codes for other characters, such as
punctuation, in the two character sets.

For longer strings, lexical order is determined by the lexical order of their
characters, from left to right. Therefore, in ASCII "AB" is less than "aA" and "aB" is
less than "ab". If one string is an initial substring of another, the shorter string is
lexically less than the longer. For example, "Aba" is lexically less than "Abaa" in both
ASCII and EBCDIC. The empty string is lexically less than any other string. Two
strings are lexically equal if and only if they have the same length and are identical,
character by character. There are six lexical comparison operations:

s1 << s2 lexically less than
s1 <<= s2 lexically less than or equal
s1 >> s2 lexically greater than
s1 >>= s2 lexically greater than or equal
s1 == s2 lexically equal
s1 ~== s2 lexically not equal

The use of lexical comparison is illustrated by the following program, which
determines the lexically largest and smallest lines in the input file.

procedure main()

   min := max := read() # initial min and max

   while line := read() do
      if line >> max then max := line
      else if line << min then min := line

   write("lexically largest line is: ", max)
   write("lexically smallest line is: ", min)

end
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This program can be rephrased in a way that is more idiomatic to Icon by using
augmented assignment operations:

procedure main()

   min := max := read() # initial min and max

   while line := read() do
      (max <<:= line) | (min >>:= line)

   write("lexically largest line is: ", max)
   write("lexically smallest line is: ", min)

end

 STRING CONSTRUCTION

Concatenation

One of the more commonly used operations on strings is concatenation,

s1 || s2

which produces a string consisting of the characters in s1 followed by those in s2.
For example,

"Hello " || "world"

produces the string "Hello world".

 The empty string is the identity with respect to concatenation; concatenating
the empty string with another string just produces the other string. The empty string
therefore is a natural initial value for building up a string by successive concatena-
tions. For example, suppose that the input file consists of a number of lines, each of
which contains a single word. Then the following procedure produces a list of these
words with each followed by a comma.

procedure wordlist()

   wlist := "" # initialize

   while word := read() do
      wlist := wlist || word || ","

   return wlist

end
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The augmented assignment operation for concatenation is particularly useful
for appending strings onto an evolving value. For example,

wlist ||:= word || ","

is equivalent to

wlist := wlist || word || ","

The do clause in the while loop above is not necessary; the expression can be written
more compactly as

while wlist ||:= read() || ","

STRING-VALUED FUNCTIONS

When producing formatted output, it often is useful to have “fields” of a specific
width that line up in columns. There are three functions that position a string in a
field of a specified width, aligning the string in the field at the right, left, or in the
center.

Positioning Strings

The function right(s1, i, s2) produces a string of length i in which s1 is
positioned at the right and s2 is used to pad out the remaining characters to the left.
For example,

right("Detroit", 10, "+")

produces "+++Detroit". Enough copies of s2 are concatenated on the left to make up
the specified length. If s2 is omitted, blanks are used for padding.

If the length of s1 is greater than i, it is truncated at the left so that the value has
length i. Therefore,

right("Detroit", 6)

produces "etroit".

The value of s2 usually is a one-character string, but it may be of any length.
The resulting string is always of size i; however, any extra characters that might
result from prepending copies of s2 are discarded. For example,

right("Detroit", 10, "+∗")

produces "+∗+Detroit". Note that the padding string is truncated at the right.
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A common use of right() is to position data in columns. The following program,
which prints out a table of the first four powers of the integers from 1 to 10, illustrates
such an application:

$define Limit 10

procedure main()

   every i := 1 to Limit do {
      write(right(i, 5), right(i ^ 2, 8), right(i ^ 3, 8), right(i ^ 4, 8))
      }

end

The output of this program is:

1 1 1 1
2 4  8 16
3 9 27 81
4 16 64 256
5 25 125 625
6 36 216 1296
7 49 343 2401
8 64 512 4096
9 81 729 6561

10 100 1000 10000

The function left(s1, i, s2) is similar to right(s1, i, s2) except that the position
is reversed: s1 is placed at the left, padding is done on the right, and truncation (if
necessary) is done at the right. Therefore,

left("Detroit", 10, "+")

produces "Detroit+++" and

left("Detroit", 6)

produces "Detroi". The padding string is truncated at the left if necessary.

The function center(s1, i, s2) centers s1 in a string of length i, padding on the
left and right, if necessary, with s2. If s1 cannot be centered exactly, it is placed to
the left of center. Truncation is then done at the left and right if necessary. Therefore,

center("Detroit", 10, "+")

produces "+Detroit++", while

center("Detroit", 6)
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produces "etroit" and

center("Detroit", 9, "+ –")

produces "+Detroit–".

Tabular Data

Tab characters are useful for separating fields and displaying them in an
aligned fashion on devices such as computer terminals.

The function entab(s, i1, i2, …, in) produces a string obtained by replacing runs
of consecutive blanks in s by tab characters. There is an implicit tab stop at 1 to
establish the interval between tab stops. The remaining tab stops are at i1, i2, …, in.
Additional tab stops, if necessary, are obtained by repeating the last interval. If no
tab stops are specified, the interval is 8 with the first tab stop at 9.

For the purposes of determining positions, printable characters have a width
of 1, the backspace character has a width of −1, and a newline or return character
restarts the counting of positions. Other nonprintable characters have zero width.

A lone blank is never replaced by a tab character, but a tab character may
replace a single blank that is part of longer run.

The function detab(s, i1, i2, …, in) produces a string obtained by replacing each
tab character in s by one or more blanks. Tab stops are specified in the same way as
for entab().

Replicating Strings

When several copies of the same string are to be concatenated, it is more
convenient and efficient to use repl(s, i), which produces the concatenation of i copies
of s. For example,

repl("+∗+", 3)

produces "+∗++∗++∗+". The expression repl(s, 0) produces the empty string.

Reversing Strings

The function reverse(s) produces a string consisting of the characters of s in
reverse order. For example,

reverse("string")

produces "gnirts".
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Mapping Characters

The function map(s1, s2, s3) produces a string resulting from a character
mapping of s1 in which each character of s1 that appears in s2 is replaced by the
corresponding character in s3. Characters of s1 that do not appear in s2 are not
changed. For example,

map("mad hatter", "a", "+")

produces "m+d h+tter" and

map("mad hatter", "aeiou", "12345")

produces "m1d h1tt2r".

Several characters in s2 may have the same corresponding character in s3. For
example,

map("mad hatter", "aeiou", "+++++")

produces "m+d h+tt+r".

If a character appears more than once in s2, the rightmost correspondence with
s3 applies. Duplicate characters in s2 provide a way to mask out unwanted
characters. For example, marking the positions of vowels in a string can be accom-
plished by mapping every vowel into an asterisk and mapping all other letters into
blanks. An easy way to do this is to set up a correspondence between every letter and
a blank and then append the correspondences for the vowels:

s2 := &letters || "AEIOUaeiou"
s3 := repl(" ", ∗&letters) || "∗∗∗∗∗∗∗∗∗∗"

In this correspondence, s2 is a string consisting of all letters followed by the vowels,
62 characters in all, since each vowel appears twice. The value of s3 is 52 blanks
followed by 10 asterisks. The last 10 characters in s2 and s3 override the previous
correspondences between the vowels and blanks. Consequently,

map(line, s2, s3)

produces a string with asterisks in the positions of the vowels and blanks for all the
other letters.

Trimming Strings

The function trim(s, c) produces a string consisting of the initial substring of s
with the omission of any trailing characters contained in c. That is, it trims off
characters in c. If c is omitted, blanks are trimmed. For example,
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trim("Betelgeuse   ")

produces "Betelgeuse", while

trim("Betelgeuse", 'aeiou')

produces just "Betelgeus".

SUBSTRINGS

Since a string is a sequence of characters, any subsequence or substring is also a
string. A substring is simply a portion of another string. For example, "Cl" is a
substring of "Cleo", as are "leo" and "e". "Co", however, is not a substring of "Cleo",
since "C" and "o" do not occur consecutively in "Cleo". Any string is a substring of
itself. The empty string is a substring of every string.

Subscripting Strings

A substring is produced by a subscripting expression, in which a range
specification enclosed in brackets gives the positions that bound the desired substring.
One form of range specification is i:j, where i and j are the bounding positions. For
example,

"Cleo"[1:3]

produces "Cl". Note that this is a substring of two characters, not three, because the
characters are between the specified positions. Range specifications usually are
applied to strings that are the values of identifiers, as in

text[1:4]

which produces the first three characters of text, those between positions 1 and 4. If
the value of text is less than three characters long, the subscripting expression fails.
This is another example of the design philosophy of Icon: If an operation cannot be
performed, it does not produce a result. In this case the failure occurs because the
specified substring does not exist.

Expressions can be used to provide the bounds in range specifications. For
example,

text[2:∗s]

produces the substring of text between 2 and the size of s. Similarly, any expression
whose value is a string can be subscripted, as in

s := read()[2:10]
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which assigns a substring of a line of input to s. Note that this expression may fail
for two reasons: if read() fails because there is no more input, or if read() produces
a line that is not long enough. Expressions containing such ambiguous failure should
be avoided, since they can be the source of subtle programming errors.

The following program illustrates the use of substrings to copy the input file
to the output file, truncating long output lines to 60 characters.

procedure main()

   while line := read() do {
      line := line[1:61] # truncate
      write(line)
      }

end

Note that

write(line[1:61])

does not work properly in place of the two lines in the previous procedure, since this
subscripting expression fails if a line is less than 60 characters long. There would be
no output for such lines.

Nonpositive position specifications, described in Chapter 3, also can be used
in range specifications. For example, line[–1:0] is the last character of line. Positive
and nonpositive specifications can be mixed.

The two positions in a range specification can be given in either order. The
leftmost position need not be given first; only the bounding positions are significant.
Therefore, line[1:4] and line[4:1] are equivalent.

Range specifications also can be given by a position and an offset from that
position. The range specification i+:j specifies a substring starting at i of length j. The
offset can be negative: i −:j specifies a substring starting at i but consisting of the j
characters to the left of i, rather than to the right. For example,

write(line[1+:60])

writes the first 60 characters of line, as does

write(line[61–:60])

 If a substring consists of only a single character, it can be specified by the
position before it. Therefore,

write(line[2])
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writes the second character of line and is equivalent to

write(line[2+:1])

Similarly,

last := line[–1]

assigns the last character of line to last.

Assignment can be made to a subscripted variable to change the substring
corresponding to the range specification. For example, if the value of word is "two",

word[2] := "o"

changes the value of word to "too". Similarly,

word[–1] := ""

deletes the last character of word so that its value becomes "to". Note that an
assignment that changes a substring may change the length of a string. Assignment
to change a substring is a just shorthand notation for concatenation. For example,

word[2] := "o"

is shorthand for

word := word[1] || "o" || word[3:0]

If two variables have the same string value, changing a substring in one does
not change the value of the other. Therefore, in

line := read()
old := line
line[2+:3] := ""

the value of old is not changed by the assignment to line[2+:3]. A new value is
assigned to line, but not to old.

Assignment can be made to a subscripting expression to change the value of
a string only if the range specification is applied to a variable. For example,

"Cleo"[1] := "K"

is erroneous, since a literal value cannot be changed.
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Randomly Selected Characters

The operation ?s produces a randomly selected one-character substring of s
provided that s is not empty. If s is empty, ?s fails. For example,

?"HT"

produces the string "H" or "T" with approximately equal probability.

If s is a string-valued variable, assignment can be made to ?s to replace a
randomly selected character of s. For example,

?s := ""

deletes a randomly selected character of s.

Character Generation

The expression !s generates the one-character substrings of s in order from first
to last, left to right. For example,

every write(!s)

writes the characters of s, one per line. This expression is equivalent to

every write(s[1 to ∗s])

If s is a string-valued variable, the expression !s produces a variable, just as s[i]
does. For example,

!s := ""

is equivalent to

s[1] := ""

and deletes the first character in the value of s.

In an expression such as

every !s := expr

the value of s is changed with each assignment, but the position in s is incremented
repeatedly until the end of the string is reached. If the assignment changes the length
of s, the result can be confusing.
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CSETS

Cset Literals

A cset can be written literally by using single quotes to enclose the characters.

The order of the characters in a cset literal is not important, and duplicate
characters are ignored. Consequently, 'aeiou', 'uoiea', and 'aeiouaeiou' all produce
the same cset.

Built-in Csets

Icon provides keywords for commonly needed csets, such as the uppercase
letters, lowercase letters, all the letters, and digits: &ucase, &lcase, &letters, and
&digits, respectively.

For example,

text ? {
   while tab(upto(&digits)) do
      write(move(1))
   }

writes out all the digits in text, one per line.

Other built-in csets are &cset, the set of all 256 characters, and &ascii, the set
of the first 128 characters in ASCII.

Operations on Csets

Icon has four operations on csets:

c1 ++ c2 union
c1 ∗∗ c2 intersection
c1 – – c2 difference
~c complement

The union of two csets is a cset that contains all the characters in either of the two.
For example, &letters ++ &digits contains all the letters and digits. The intersection
of two csets is a cset that contains all the characters that appear in both csets. The
difference of two csets is a cset that contains all the characters in the first that are not
in the second. For example, &cset – – &digits contains all the characters that are not
digits. The complement of a cset contains all the characters that are not in it. For
example, ~&digits is equivalent to &cset – – &digits. The operation ∗c produces the
number of characters in c.
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STRING ANALYSIS

As illustrated earlier, string analysis functions are not restricted to string scanning.
The analysis functions can be applied to  a specific string by adding that string as
an additional argument. For example, find(s1, s2) generates the positions where s1
occurs as a substring of s2, and upto(c, s) generates the position at which characters
in c occur in s. In such usages, the subject and the position in it are irrelevant.

All the string analysis functions also may have two additional arguments that
restrict the range in which the analysis is done. For example, upto(c, s, i, j) restricts
the value to positions between i and j in s. Therefore,

upto('aeiou', "The theory is fallacious", 5, 11)

produces 7. Note that this is a position in s; the value produced by

upto('aeiou', "The theory is fallacious"[5:11])

is 3.

An omitted value of i defaults to 1, the beginning of s. An omitted value of j
defaults to 0 and restricts the value to positions between i and the end of the string.

Like range specifications, the range-restriction arguments can be given either
as positive or nonpositive position specifications and can be given in either order.
For example,

find(s1, s2, 0, –10)

restricts the range in s2 to the last 10 characters. Substrings are always found from
left to right, regardless of the form of the specification.

CONVERSION BETWEEN CSETS AND STRINGS

As described in Chapter 1, Icon automatically converts values from one type to
another according to context. This conversion applies to csets and strings. For
example, the following procedure produces a cset of all the characters that occur in
the input file.

procedure inset()

   chars := ' ' # empty cset to start

   while line := read() do
      chars := chars ++ line

   return chars

end
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The cset chars initially starts out empty, given literally by enclosing no characters in
single quotes. Then the characters in each line of input are added to chars. In the
union operation, the value of line is a string that is automatically converted to a cset.

This procedure can be written more compactly using augmented assignment:

procedure inset()

   chars := ' ' # empty cset to start

   while chars ++:= read()

   return chars

end

NOTES

Library Resources

 The module strings contains many procedures for manipulating strings. Some
of the most useful procedures in this module are:

cat(s1, s2, … ) concatenate an arbitrary number of strings

deletec(s, c) delete all occurrences of characters in c from s

deletes(s1, s2) delete all occurrences of s2 in s1

replace(s1, s2, s3) replace all occurrences of s2 in s1 by s3

rotate(s, i) rotate s by i characters

Syntactic Considerations

Concatenation associates from left to right. Its precedence is higher than that
of the numerical comparison operations, but lower than that of addition. If concat-
enation is used in combination with numerical computation, it is advisable to use
parentheses to specify desired grouping.

All the lexical comparison operations associate from left to right and have the
same precedence as the numerical comparison operations. A lexical comparison
operation produces the value of its right argument, provided that the comparison
succeeds. Therefore, the expression

s1 << s2 << s3

succeeds and produces s3, provided s2 is strictly between s1 and s3 in lexical order.
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5

Numerical Computation
and Bit Operations

Numerical computation in Icon is similar to that in most programming languages.
The usual operations on integers and real numbers are provided. Integers are
converted to real numbers automatically in mixed-mode operations that involve
both integers and real numbers. There are also bit operations on integers.

Integers in Icon can be arbitrarily large; they are not restricted to the size of
machine integers. Real (floating-point) numbers vary in range and precision from
platform to platform. They normally are represented by the double-precision
floating-point values native to the computer on which Icon runs.

NUMERIC LITERALS

Integers are represented literally in the usual way. For example, 36 represents the
integer 36 and 1024 represents the integer 1,024. Real numbers can be represented
literally using either decimal or exponent notation. For example, 27e2 and 2700.0
are equivalent and represent the real number 2,700.0.

Bases other than 10 can be used for integer literals. Such radix literals have the
form i r j, where i is a base-10 integer that specifies the base for j. For example, 2r11
represents the integer 3, while 8r10 represents 8. The base can be any value from 2
through 36; the letters a, b, …, z are used to specify “digits” in j that are larger than
9. For example, 16ra represents 10, while 36rcat represents 15,941. See Appendix A
for additional details of the syntax of numeric literals.
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ARITHMETIC

Icon has two prefix (unary) operations for numerical computation. The operation +N
produces the numeric value of N, while −N produces the negative of N. The infix
(binary) operations for numerical computation are as follows:

            relative
expression operation                   precedence associativity

N1 ^ N2 exponentiation 3 right to left
N1 % N2 remaindering 2 left to right
N1 / N2 division 2 left to right
N1 ∗ N2 multiplication 2 left to right
N1 – N2 subtraction 1 left to right
N1 + N2 addition 1 left to right

In integer division the remainder is discarded; that is, the value is truncated toward
0. For example,

–7 / 2

produces −3.

The operation

N1 % N2

produces the remainder of N1 divided by N2 with the sign of N1. For example,

–10 % 3

produces −1, but

10 % –3

produces 1.

Division by zero and raising a negative real number to a real power are
erroneous. Such errors cause program execution to terminate with a diagnostic
message.

The function abs(N) produces the absolute value of N. For example,

abs(–7 / 2)

produces 3.

Any numerical computation that involves a real number is performed using
floating-point arithmetic and produces a real number. For example, the result of
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10 + 3.14159

is 13.14159 and the result of

–7 / 2.0

is –3.5.

NUMERICAL COMPARISON

Icon’s numerical comparison operations are

N1 < N2 less than
N1 <= N2 less than or equal to
N1 = N2 equal to
N1 >= N2 greater than or equal to
N1 > N2 greater than
N1 ~= N2 not equal to

MATHEMATICAL COMPUTATIONS

Icon provides the standard trigonometric functions:

sin(r) sine of r
cos(r) cosine of r
tan(r) tangent of r
asin(r) arc sine of r
acos(r) arc cosine of r
atan(r1, r2) arc tangent of r1 / r2

In all cases, angles are given in radians. The default for r2 in atan() is 1.0.

The following functions convert between radians and degrees:

dtor(r) the radian equivalent of r given in degrees
rtod(r) the degree equivalent of r given in radians

Icon also provides the following functions for mathematical calculations:

sqrt(r) square root of r
exp(r) e raised to the power r
log(r1, r2) logarithm of r1 to the base r2

The default for r2 is e.
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Keywords provide values of frequently used mathematical constants:

&e base of the natural logarithms, 2.71828…
&phi golden ratio, 1.61803…
&pi ratio of circumference to diameter of a circle, 3.14159…

RANDOM NUMBERS

The operation ?i produces a pseudo-random number. If the value of i is a positive
integer i, the value produced by ?i is an integer j in the range 1  ≤  j  ≤  i. If the value
of i is 0, the value produced by ?i is a real number r in the range 0.0  ≤  r  <  1.0.

For example, the expression

if ?2 = 1 then "H" else "T"

produces the string "H" or "T" with approximately equal probability.

Pseudo-random numbers are produced by a linear congruence relation start-
ing with an initial seed of 0. This sequence is the same from one program execution
to another, allowing programs to be tested in a reproducible environment. The seed
can be changed by assigning an integer value to &random. For example,

&random := 0

resets the seed to its initial value.

The same pseudo-random sequence is used for all random operations. For
example, the operation ?s described in Chapter 4 uses the same sequence as ?i.

BIT OPERATIONS

Icon has five functions that operate on integers at the bit level. All these operations
produce integers.

The function iand(i, j) produces the bitwise and of i and j. For example,

iand(4, 5)

produces 4.

The functions ior(i, j) and ixor(i, j) produce the bitwise inclusive and exclusive
or of i and j, respectively. For example,

ior(4, 6)

produces 6, while
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 ixor(4, 6)

produces 2.

The function icom(i) produces the bitwise complement of i. For example,

icom(1)

produces −2.

The function ishift(i, j) shifts i by j positions. If j is positive, the shift is to the left,
and vacated bit positions are filled with zeros. If j is negative, i is shifted to the right
with sign extension. For example,

ishift(2, 3)

produces 16, while

ishift(2, –3)

produces 0.

NOTES

Library Resources

The library module numbers contains a large collection of procedures for
formatting numbers and performing simple numeric computations.

Large Integers

As mentioned in the beginning of this chapter, there is no limitation on the
magnitude of integers in Icon.

Internally, Icon uses integers native to the platform on which it runs. These
native integers are at least 32 bits long and may be longer. Integers that are larger
than native integers are represented by blocks of data that Icon manages in a way
that is transparent in writing and running Icon programs.

Large integers are supported in all arithmetic computations, but there are a few
places where only integers that are small enough to be represented as native integers
can be used:

i to j by k
seq(i, j)
integer-valued keywords
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It is also worth knowing that large integer literals in a program such as

174359213645100235

are converted to actual large integers when evaluated during program execution.
Consequently, such literals should not be placed in loops or other places in which
they are evaluated frequently.

Syntactic Considerations

All infix arithmetic operations have precedence higher than that of assign-
ment. Consequently,

N := N + 1

groups as

N := (N + 1)

Prefix operations have higher precedence than infix operations. For example,

–N + 3

groups as

(–N) + 3

The comparison operations all have the same precedence, which is lower than
that of any numerical computation operation, but higher than that of assignment.
Therefore,

N1 > N2 + 1

groups as

N1 > (N2 + 1)

while
N1 := N2 > 10

groups as

N1 := (N2 > 10)

Note that this expression assigns the value 10 to N1 if the comparison succeeds.

69Chap. 5 Numerical Computation and Bit Operations

Comparison operations associate from left to right, which allows compound
comparisons to be written in a natural way. For example,

1 <= N <= 10

groups as

(1 <= N) <= 10

and succeeds if the value of N is between 1 and 10, inclusive.
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6

Structures

Structures are collections of values. Icon has four kinds of structures: records, lists,
sets, and tables. Different kinds of structures have different access methods and
organizations.

RECORDS

Records are fixed in size and their values are referenced by field names. Records, like
procedures, are declared and are global to the entire program. (A record declaration
cannot appear within a procedure declaration.) The declaration for a record with n
fields has the form

record name(field1, field2, …, fieldn)

where name is the name of the record and field1, field2, …, fieldn are the field names
associated with the record. The syntax of record names and field names is the same
as the syntax for identifiers (see Appendix A). An example of a record declaration
is

record complex(rpart, ipart)

Such a record declaration might be used to represent complex numbers with real and
imaginary parts. Similarly, the record declaration

record employee(name, age, ssn, salary)

 71
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might be used to represent an employee whose name, age, social security number,
and salary are attributes of interest.

An instance of a record is created by a record constructor function correspond-
ing to the record name and with values in positions corresponding to the field
names. For example,

origin := complex(0.0, 0.0)

assigns a complex record with zero real and imaginary parts to origin, while

clerk := employee("John Doe", 36, "123–45–6789", 35000.00)

assigns an employee record to clerk.

Fields of records are referenced by expressions of the form name . field. For
example, the value of

origin.rpart

is 0.0. Field references are variables, and values can be assigned to the corresponding
fields. Therefore,

origin.ipart +:= 6.0

increments the imaginary part of origin by 6.0.

Records can be referenced (subscripted) by field number or field name, as in

origin[2] +:= 2.5

which adds 2.5 to the ipart field of origin, and

origin["rpart"] := 1.0

which sets the rpart of origin to 1.0. The operation ?R produces a randomly selected
reference to a field of R. The size of a record is produced by the same operation that
is used to get the size of a string. For example, ∗origin produces 2. The operation !R
generates the fields of R from first to last. For example,

every !R := 0

assigns 0 to every field of R.

LISTS

Lists in Icon have two roles. In one role, they are one-dimensional arrays (vectors)
that can be subscripted by position. In the other role, they can be manipulated by
stack and queue access functions and hence grow and shrink.
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List Creation

A list can be created by placing brackets around a list of values. For example,

oracles := ["Delphi", "Heracles", "Claros"]

assigns a list of three strings to oracles. The values can be given by expressions, as
in

powers := [i, i ^ 2, i ^ 3, i ^ 4]

which assigns a list of four integers to powers.

The values in a list do not have to be of the same type. For example,

city := ["Tucson", 700000, "Arizona", "Pima"]

assigns a list containing three strings and one integer to city.

The values in a list may be of any type. For example,

expression := ["+", ["a"], ["/", ["c"], ["d"]]]

assigns a list of three values to expression. The first value is a string, while the second
and third values are other lists, and so on. Such a list can be used to represent a tree
in which the first value in the list is associated with the contents of a node and
subsequent values represent subtrees. The tree corresponding to expression can be
visualized as:

"+"

"a" "/"

"c" "d"

Lists also can be created by the function

list(i, x)
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which creates a list of i values, each of which has the value of x. For example,

vector := list(100, 0.0)

assigns to vector a list of 100 values, each of which is 0.0.

An empty list, which contains no values, is created by [ ] or list(0). The size of a
list is produced by the same operation that is used for strings and records. For
example, ∗vector produces 100, while ∗[ ] produces 0.

List Referencing

The values in a list can be referenced (subscripted) by position. For example,

write(oracles[2])

writes Heracles. Note that positions are numbered starting at 1. Similarly,

every i := 1 to ∗vector do
   write(vector[i])

writes all the values in the list vector. Since positions can be computed in the
subscripting expressions, this loop can be written more compactly as

every write(vector[1 to ∗vector])

A list reference is a variable. It can be changed by assignment to its position,
which may be specified positively or nonpositively. For example,

oracles[–1] := "Branchidae"

changes the last value of oracles, so that the list becomes

["Delphi", "Heracles", "Branchidae"]

Similarly,

city[2] +:= 1000

changes the second value in city to 701,000.

List subscripting fails if the position specified does not correspond to a value
in the list; that is, if the subscript is out of range.

The operation !L generates the elements of L. Consequently, the values in a list
can be written without specific reference to positions:

every write(!vector)
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Assignment can be made to !L to change the values of the elements. For example

every !vector := 1.0

assigns 1.0 to every element of vector.

The following program, which tabulates word lengths, illustrates a typical use
of lists.

$define MaxLen 20

procedure main()

   wordlen := list(MaxLen, 0) # initial zero counts

   while line := read() do
      line ? {
         while tab(upto(&letters)) do {
            word := tab(many(&letters))
            wordlen[∗word] +:= 1
            }
         }

   every i := 1 to ∗wordlen do
      write(right(i, 2), right(wordlen[i], 5))

end

The values in wordlen accumulate counts of word lengths from 1 to 20. After the
input has been processed, the results are written out. Note that any word that is
longer than 20 characters is not tabulated; the expression

wordlen[∗word] +:= 1

fails, since the subscript is out of range for word lengths greater than 20.

Lists  are one dimensional, but a list of lists can be used to simulate a multi-
dimensional array. The following procedure constructs an i-by-j array in which each
value is x:

procedure array(i, j, x)

   L := list(i)

   every !L := list(j, x)

   return L

end

For example,
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board := array(8, 8, 0)

assigns to board an 8-by-8 array in which each value is 0. A list reference can itself
be subscripted so that

board[2][4]

references the value in “column” 4 of “row” 2 of board. This expression also can be
written as

board[2, 4]

The operation ?L produces a randomly selected reference to the list L. If L is
empty, ?L fails. Assignment can be made to ?L to change the subscripted value. For
example,

?vector := 2.0

assigns 2.0 to a randomly selected element of vector.

List Concatenation

Lists can be concatenated in a manner similar to the concatenation of strings.
The list concatenation operation has three vertical bars to distinguish it from string
concatenation. An example is

city := city ||| [1883]

which assigns a new list

["Tucson", 550000, "Arizona", "Pima", 1883]

to city. An empty list is an identity with respect to list concatenation.

As for other infix operations, there is an augmented assignment operation for
list concatenation operation, as in

city |||:= [1883]

Note that both arguments in list concatenation must be lists;

city |||:= 1883

is erroneous.
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List Sections

A list section is a list composed of a sequence of values from another list. List
sections are like substrings, except that they are new lists that are distinct from the
list from which they are obtained, instead of being a part of it. List sections are
produced by range specifications applied to lists, much as substrings are produced
by range specifications applied to strings. For the value of city given in the preceding
section, the value of

city[3:5]

is the list

["Arizona", "Pima"]

There is one other important distinction between subscripting lists and strings:
If L is a list, L[i] refers to the ith value in the list, while L[i : j] is a list consisting of the
values between positions i and j in L. In particular, L[i : j] is a list that is distinct from
L, and assignment cannot be made to it to change L.

Queue and Stack Access to Lists

Queue and stack access functions provide ways to add and remove values
from the ends of lists. When the elements of a list are viewed from left to right, L[1]
is the left end of a list and L[∗L] or L[–1] is the right end of a list.

The function put(L, x) adds the value of x to the right end of the list L, increasing
the size of L by 1. One use of put() is to build a list whose size cannot be determined
when the list is created. For example, the following procedure produces a list of all
words in input:

procedure words()

   wordlist := [ ]

   while line := read() do
      line ? {
         while tab(upto(&letters)) do
            put(wordlist, tab(many(&letters)))
         }

   return wordlist

end

Since put() adds values at the right end, the words in the list are in the order that they
appear in input. That is, the first value in the list is the first word, the second value
is the second word, and so on.
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Values are removed from a list by the operation, get(L). Each time get(L) is
evaluated, it removes a value from the left end of L and produces this value. If L is
empty, get(L) fails.

For example, the following program uses the procedure words() to produce a
list of words and then writes out only those words that begin with an uppercase
letter:

procedure main()

   wlist := words()

   while word := get(wlist) do
     word ? {
        if any(&ucase) then write(word)
        }

end

When the execution of this program is complete, the list wlist is empty, since each call
of get() removes a value from it.

The functions put() and get() provide a queue access method for lists; put(L, x)
adds x to the right end of L, and get(L) removes a value from the left end of L.

Two functions provide a corresponding stack access method for lists. The
function push(L, x) adds x to the left end of L and pop(L) removes a value from the
left end of L. For example, if the expression

put(wordlist, tab(many(&letters)))

in the procedure words() given previously is replaced by

push(wordlist, tab(many(&letters)))

the list that is produced has the words in the opposite order from their order in input:
the first word in the list is the last one in input, and so on.

Note that get(L) and pop(L) both remove a value from the left end of L. The two
names for the same function are provided to accommodate the usual terminology
for queue and stack access methods. The function pull(L) removes a value from the
right end of L, so push() and pull() also provide a queue access method. The four
functions together provide an access method for double-ended queues, or deques.

The functions put(L, x) and push(L, x) produce L.

The functions put() and push() can have additional trailing arguments to add
several values to a list in one call. For example,

put(wordlist, "the", "a", "an")
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appends these values to wordlist.

When push() is used to add values to the left end of a list, the values are pushed
in the order they are given. For example, as a result of

push(wordlist, "source", "many", "any")

"any" is the first element of wordlist.

Since the queue and stack access functions add and remove elements from lists,
they affect subsequent subscripting. For example, after push(L, x), the former
element L[1] is L[2]. The effects of the queue and stack access function on subscripting
generally are not a problem, since queue and stack access usually are not used in
combination with positional access.

SETS

A set is an unordered collection of values. Sets in Icon have many of the properties
normally associated with sets in the mathematical sense. The function

set(L)

creates a set that contains the distinct elements of the list L. For example,

set(["abc", 3])

creates a set with two members, "abc" and 3. If the argument to set() is omitted, an
empty set is created.

Any specific value can occur only once in a set. For example,

set([1, 2, 3, 3, 1])

creates a set with only three members: 1, 2, and 3.

There are several operations on sets. The function

member(S, x)

succeeds and produces x if x is a member of the set S, but fails otherwise. For
example,

member(S1, member(S2, x))

succeeds if x is a member of both S1 and S2.
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The function

insert(S, x)

inserts x into the set S and returns S. For example, the following procedure produces
a set containing all the different words in the input file:

procedure diffwords()

   wordset := set()
   while line := read() do
      line ? {
         while tab(upto(&letters)) do
            insert(wordset, tab(many(&letters)))
         }

   return wordset

end

The function

delete(S, x)

deletes the member x from the set S and produces S.

The functions insert(S, x) and delete(S, x) succeed, whether or not x is in S. This
allows their use in loops in which failure may occur for other reasons. For example,

S := set()
while insert(S, read())

builds a set that consists of the (distinct) lines from the input file.

The operations

S1 ++ S2
S1 ∗∗ S2
S1 – – S2

create the union, intersection, and difference of S1 and S2, respectively. In each case,
the result is a new set.

Note that these operations apply both to sets and csets. There is no automatic
type conversion between csets and sets; the result of the operation depends on the
types of the arguments. For example,

'aeiou' ++ 'abcde'
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produces the cset 'abcdeiou', while

set([1, 2, 3]) ++ set([2, 3, 4])

produces a set that contains 1, 2, 3, and 4.

Several operations that apply to lists also apply to sets. ∗S produces the size of
S, and ?S produces a randomly selected member of S. The operation !S generates
the members of S but in no predictable order.

TABLES

A table is a collection of pairs, where a pair consists of a key and a corresponding
value. These pairs are called elements. Tables resemble lists, except that the keys, or
“subscripts”, need not be integers but can be values of any type. Tables are much like
the symbol tables used in compilers and similar software, but lookup and insertion
are taken care of automatically.

Table Creation and Referencing

A table is created by the function

table(x)

where x is the default value for new elements in the table. Table references are
variables and are similar to list references in appearance. For example, if words is a
table created by

words := table(0)

then

words["The"] := 1

assigns the value 1 to the key "The" in words. Subsequently,

write(words["The"])

writes 1.

The value associated with a key can be changed, as in

words["The"] := 2

Augmented assignment is particularly useful for tables. The expression

words["The"] +:= 1
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increments the value associated with "The".

When a table is first created, it is empty and has a size of zero. Every time a
value is assigned to a new key, the size of the table increases by 1. The operation ∗T
produces the size of T (the number of elements in it).

An element is added to a table only when an assignment is made to a new key.
Therefore, if "way" has not been assigned a value in words, the expression

words["way"]

produces the default value of 0, but "way" is not added to the table and the size of the
table does not change. On the other hand,

words["way"] +:= 1

adds "way" to words and increases the size of words by 1.

As illustrated above, if a table is used to count values, a useful default value is
0. For example, the following procedure produces a table of the number of times
each different word occurs in the input file.

procedure countwords()

   wordcount := table(0)

   while line := read() do
      line ? {
         while tab(upto(&letters)) do
            wordcount[tab(many(&letters))] +:= 1
         }

   return wordcount

end

The operation ?T produces a randomly selected reference to the table T. If T is
empty, ?T fails. Assignment can be made to ?T to change the value of the element.
For example,

?T +:= 1

increments the value of a randomly selected element in T.

The operation !T generates the values of elements in T, while key(T) generates
the keys in T. The order of generation is not predictable. For example, the following
expression writes all the keys and their corresponding values in the table T:

every x := key(T) do
   write(x, ":", T[x])
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Note that it is always possible to get from a key to its corresponding value.

Testing and Changing Table Elements

The functions member(), insert(), and delete() apply to tables as well as sets.
The function member(T, x) succeeds if x is a key in the table T but fails otherwise.

The function insert(T, x, y), which is equivalent to T[x] := y, inserts an element
with key x and value y into table T. If there already is a key x in T, its corresponding
value is changed. An omitted third argument defaults to the null value. Note that
insert() has three arguments when used with tables but only two when used with
sets.

The function delete(T, x) removes the element with key value x from T. If x is
not a key in T, no operation is performed; delete() succeeds in either case.

PROPERTIES OF STRUCTURES

Structures are created during program execution as illustrated by previous ex-
amples. A structure value is a reference (pointer) to a collection of values. Assign-
ment copies the reference (pointer) but not the collection of values to which it points.
There are several consequences of these properties of structures that may not be
immediately obvious. Consider

index := list(50, 0)
temp := index
temp[1] := 1

The assignment of the value of index to temp does not copy the 50 values pointed to
by the value of index. Instead, index and temp both reference the same collection of
values. Therefore, the assignment of 1 to temp[1] changes the contents of the list that
temp and index share as their value. The effect is as if

index[1] := 1

had been evaluated. Consider also

cycle := ["x"]
put(cycle, cycle)

These expressions construct a loop in which cycle contains its own value. This can
be visualized as follows:
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"x"cycle

Since assignment does not copy structures, the result of an expression such as

L1 := L2 := list(i, 0)

is to assign the same list to both L1 and L2. Subsequently, assignment to a position
in L2 changes the value of that position in L1, and conversely. Similarly, the effect
of

L := list(3, list(5, 0))

is to assign the same list of five values to each of the three values in L. Compare this
to the procedure for constructing two-dimensional arrays that is given earlier in this
chapter.

The remarks above apply to all types of structures. For example, a set can be
a member of (reference) itself, as in

S := set()
insert(S, S)

NOTES

Library Resources

The Icon program library contains three modules specifically related to
structures: lists, sets, and tables.

The lists module contains many procedures that operate on lists in a fashion
similar to the built-in repertoire of string operations. Some examples are

lmap(L1, L2, L3) map elements of L1 in the style of map(s1, s2, s3)
lrep(L, i) replicate L in the style of repl(s, i)
lreverse(L) reverse L in the style of reverse(s)

The sets module extends the built-in repertoire with procedures such as

seteq(S1, S2) test equivalence of S1 and S2
setl(S1, S2) test inclusion of S1 in S2
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The tables module provides a variety of procedures such as

keylist(T) list of keys in T
tbldflt(T) default value for T
vallist(T) list of values in T

Syntactic Considerations

A subscripting expression can be subscripted as in

expression[3][2]

As noted earlier, subscripted subscripts can be abbreviated by placing a list of
subscripts in one pair of brackets, as in

expression[3, 2]

which is equivalent to the example above. Subscripted subscripts can be used to any
level as in

expression[3, 2, 4, 1]

The field references associate from left to right. Consequently,

x.y.z

groups as

(x.y).z

where y and z are field names.

The field reference operation has higher precedence than any other operation,
including the prefix operations. This is an exception to the general rule that prefix
operations have higher precedence than infix operations. As a result,

–x.y

groups as

–(x.y)
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7

Expression Evaluation

The way that Icon evaluates expressions is one of the most important aspects of the
language. It gives Icon much of its power and provides many interesting ways of
programming that are not available in most other programming languages.

Most aspects of expression evaluation are described in Chapter 2 and are
illustrated by examples in subsequent chapters. This chapter describes a few more
advanced aspects of expression evaluation and explores in more depth the interac-
tion between generators and goal-directed evaluation.

BACKTRACKING

Control Backtracking

In function calls and operations (as opposed to control structures), arguments
are evaluated from left to right. For example, in

expr1 < expr2

the order of evaluation is expr1 then expr2. If these expressions produce results, the
comparison operation is performed. It is easier to follow the order of evaluation if
such expressions are written in postfix form with the operator following its argu-
ments:

87
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(expr1, expr2) <

This is not proper Icon syntax and is used here only to help explain the order of
evaluation.

In this form, evaluation is strictly left to right: expr1, expr2, and then the
comparison operation. Consider the following example:

!x < !y

written in postfix form, this becomes

(x!, y!) <

Suppose both expressions produce results and suspend. This can be depicted as
follows:

 g1 ← g2    ← last suspended generator

  ↑       ↑
(x!,     y!) <

The arrow from the suspended generator for !y, g2, back to the suspended generator
for !x, g1, shows the order for resumption. If the comparison operation fails, g2 is
resumed. If g2 produces another result, the situation is as it was before and the
comparison is performed again. However, if g2 does not produce a result, it is
removed from the chain of suspended generators and g1 is resumed:

 g1   ←  last suspended generator

  ↑
(x!,     y!) <

If g1 produces another result, !y is evaluated again, just as it was when !x produced
its first result. On the other hand, if g1 does not produce another result, the entire
expression fails.

The left-to-right expression evaluation and last-in/first-out resumption of
suspended generators results in what is called “cross-product evaluation with
depth-first search”. Note that it may be advisable to compose expressions in ways
that take advantage of this form of search. For example, since find() produces values
in order of increasing magnitude, it is better to use

if find(s1) < find(s2) then write("condition satisfied")

than to use

if find(s2) > find(s1) then write("condition satisfied")
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since if a value for find(s1) is less than a value for find(s2), any subsequent values for
find(s2) are also.

Cross-product evaluation of several generators potentially tries all possible
combinations of values from the generators. This allows complex searches to be
expressed very simply. Of course it is possible for such searches to be very time
consuming. Three things diminish this potential problem: (1) the search is done
internally and hence more efficiently than if it had to be written at the source-
language level with loops and local variables, (2) most situations in which cross-
product evaluation is used do not involve large “search spaces” (the problem is
rarely seen in practice), and (3) generation can be limited as shown later.

Data Backtracking

Although the matching functions tab() and move() are not generators, they
suspend when they produce a result. If they are resumed because of subsequent
failure, they restore the former position in the subject before themselves failing. That
is, they undo the change they made to the position. This is called data backtracking.

Only a few Icon expressions perform data backtracking. Most changes in
values caused by expression evaluation are not undone during control backtrack-
ing. For example, in

text ? {
   (i := 10) &
   (j := (i < find(s)))
   }

the assignment of 10 to i is not undone even if i < find(s) fails, despite the conjunction
and resulting control backtracking.

The reason that matching functions perform data backtracking for the position
in the subject is so that alternative matches can be specified without the failure of one
interfering with another. For example, in

text ? {
   (tab(upto(',') +1) & write(move(1))) | write(tab(upto('.')))
   }

if text contains a comma, the character after it is written, while otherwise the initial
position of text up to a period is written (if any). If text contains only one comma as
its last character, the move(1) fails, and nothing is written. Since

tab(upto(',') + 1)

is evaluated in conjunction with write(move(1)), the suspension from tab() is
resumed and it restores the position to the beginning of the resumption. Conse-
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quently the alternative tab(upto('.')) starts at the beginning of the subject. If tab() had
not performed data backtracking, the position would have been left at the end of the
subject, so the alternative tab(upto('.')) would have inevitably failed.

As mentioned earlier, an assignment expression such as i := 10 does not
perform data backtracking; its effect is irreversible. There is, however, a reversible
form of assignment, indicated by <– instead of := . For example, in

text ? {
   (i <– 10) &
   (j := (i < find(s)))
   }

the assignment of 10 to i is reversed if i < find(s) fails, and it is restored to the value
it had prior to the scanning expression.

There is also a reversible exchange operation, <–>, which is like :=: except that
the assignments are reversed if it is resumed.

BOUNDED EXPRESSIONS

Failure within an expression causes the resumption of suspended generators,
resulting in backtracking to previously evaluated portions of the expression. If there
were no limits on backtracking, failure would cause control to backtrack further and
further toward the first expression in a program.

Such unlimited backtracking has several undesirable effects. The most serious
is that there usually are places in a program beyond which backtracking is inappro-
priate. For example, in

if find(s) then expr1 else expr2

if find(s) produces a result, expr1 is evaluated. However, if expr1 fails, find(s) should
not be resumed. While there might be a use for such behavior, it would not be what
is meant by if-then-else.

Another problem with unlimited backtracking is that suspended generators
must be kept until program execution terminates. This obviously requires space that
in most cases is unneeded.

Icon handles the problem of limiting backtracking by using bounded expres-
sions. If an expression is bounded and produces a result, all suspended generators
in it are discarded.

It is therefore impossible to backtrack into a bounded expression. Put another
way, a bounded expression cannot generate a sequence of results.
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Expressions are bounded in specific syntactic contexts. For example, the
control expression in if-then-else is bounded. Consequently, in

if find(s) then expr1 else expr2

if find(s) produces a result but expr1 fails, find(s) is not resumed. The places that
bounded expressions occur are the natural ones for control flow. These are shown
below, underlined:

case expr of {
  expr1 : expr2
  expr3 : expr4
          …
  }

every expr1 do expr2

if expr1 then expr2 else expr3

not expr

repeat expr

return expr

suspend expr1 do expr2

until expr1 do expr2

while expr1 do expr2

{   expr1; expr2; …; exprn }

A few consequences of bounding (and the lack of it) deserve attention. Since
expr2 and expr3 in if-then-else are not bounded, they can generate sequences of
results. An example of the usefulness of this is

if i < j then (i to j) else (j to i)

In most cases of sequential execution, when an expression is evaluated it is
logically complete and backtracking into it is neither intended nor desired. Since all
expressions in a compound expression except the last one are bounded, compound
expressions provide the primary means of avoiding backtracking in sequential
execution.

When backtracking is not desired, the composition of sequential portions of a
program is facilitated by the fact that semicolons are added at the ends of lines,
provided the expression on the line is complete and a new expression begins on the
next line. Consequently,

i := find(s1)
write(i)
j := find(s2)
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is equivalent to

i := find(s1);
write(i);
j := find(s2);

Thus, it is natural to write separate (bounded) expressions on separate lines.
As execution goes from one line to the next, suspended generators are discarded and
backtracking to preceding lines is impossible.

On the other hand, conjunction can be used to bind several lines together
without bounding the expressions. For example, in

i := find(s1) &
write(i) &
j := find(s2)

semicolons are not added at the ends of the first two lines, since the expressions on
those lines are not complete. Consequently, if find(s1) produces a result but find(s2)
fails, find(s1) is resumed.

Note that bounded expressions prevent data backtracking in string scanning
by preventing control backtracking.

For example, in

if tab(upto(',') + 1) then write(move(1))

the tab() expression is bounded, so that if move() fails, tab() is not resumed and the
former position is not restored.

MUTUAL EVALUATION

If the mutual success of several expressions is needed, conjunction can be com-
pounded, as in

expr1 & expr2 & … &  exprn

This notation is cumbersome, especially if the expressions are themselves complex.
An alternative is mutual evaluation, denoted by

(expr1, expr2, …, exprn)

which evaluates expr1, expr2, …, exprn just like the evaluation of the arguments in
a function call. If all the expressions produce results, the result of mutual evaluation
is the result of the last expression, exprn. Otherwise, the mutual-evaluation expres-
sion fails. The effect is exactly the same as in a compound conjunction. For example,
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i := (upto(' ', line1), upto(' ', line2))

assigns to i the position of the first blank in line2, provided both line1 and line2
contain a blank.

Sometimes a number of expressions need to be mutually evaluated, but a result
other than the last one is desired. The expression

expr (expr1, expr2, …, exprn)

produces the result of expri, where the value of expr is the integer i, provided that all
the expressions produce a result. If any of the expressions fails, however, the mutual
evaluation expression fails. For example, the value of

i := 1(upto(' ', line1), upto(' ', line2))

assigns to i the position of the first space in line1, provided both line1 and line2
contain a space.

The value of expr can be negative, in which case the result is selected from right
to left in the manner of nonpositive position specifications.

If the value of expr is out of range, the mutual-evaluation expression fails. For
example,

3(expr1, expr2)

always fails, regardless of whether or not expr1 and expr2 produce results.

Although mutual evaluation has the same syntax as a function call, there is no
ambiguity. If the value of expr is an integer i, the result is the result of expri. If the value
of expr is a function or procedure, however, the function or procedure is called with
the arguments, and the outcome of the expression is the outcome of the call.

LIMITING GENERATION

While a bounded expression is limited to at most one result, it sometimes is useful
to explicitly limit an expression to a specific number of results. This can be done by
the limitation control structure,

expr \ i

which limits expr to at most i results (the value of i is computed before expr is
evaluated, an exception to the otherwise left-to-right evaluation of expressions). For
example,

every write(upto(&lcase, line) \ 3)
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writes at most the first three positions at which lowercase letters occur in line.

Note that limitation to one result corresponds to a bounded expression. This
form of limitation is particularly useful in preventing unwanted backtracking.
Consider the following procedure, which is intended to generate the words in its
argument

procedure words(text)

   text ? {
      while tab(upto(&letters)) do
         suspend tab(many(&letters))
      }

end

The problem in this formulation is that when the procedure is resumed after
generating one word, suspend resumes its argument. Since tab() suspended to allow
for data backtracking, it is resumed and restores the scanning position to its former
value. The while loop continues, but since the position is now back to where it was
(at a letter), upto() produces this same position again. This procedure just generates
the first word in text endlessly!

In order to prevent the unwanted data backtracking, the suspend expression
can be limited as follows:

suspend tab(many(&letters)) \ 1

In this case, tab() is not resumed, and the while loop continues to the next word.

REPEATED ALTERNATION

It sometimes is useful to generate a sequence of results repeatedly. The repeated
alternation control structure,

|expr

repeatedly generates the sequence of results for expr. A simple example is

|1

which generates the sequence 1, 1, … . Another example is

|(1 to 3)

which generates the endless sequence 1, 2, 3, 1, 2, 3, ….
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Such sequences never terminate of their own accord and normally are used in
situations where they are not resumed endlessly. For example,

every write(|(0 to 7) \ 128)

writes the octal digits 16 times.

An exception to endless generation for repeated alternation occurs if expr fails.
If the sequence for expr is empty, then the sequence for |expr is empty; it fails.
Furthermore, if expr has a non-empty sequence initially, but its sequence subse-
quently becomes empty during the evaluation of |expr, the sequence for |expr
terminates at that point. For example, the sequence for

|read()

consists of the lines of the input file, terminating when the end of the input file is
reached.

NOTES

Testing Expressions Interactively

As mentioned in the Notes section of Chapter 2, Icon’s expression evaluation
mechanism is powerful but may be difficult to understand initially. That is espe-
cially true of material in this chapter. Running qei (or writing small programs) can
provide insight and dispel misconceptions.

Syntactic Considerations

In using mutual evaluation to select an expression, care needs to be taken to
avoid unexpected grouping. For example

–1(expr1, expr2, … , exprn)

groups as

–(1(expr1, expr2, … , exprn))

which probably is not the intention. This problem can be avoided by using paren-
theses:

(–1)(expr1, expr2, … , exprn)
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8

Procedures

Procedures contain expressions that are evaluated when the program is run. The
arrangement of the expressions in a program into procedures specifies the organi-
zation of the program. Icon has no block structure; procedures cannot be placed
inside procedures.

Functions and procedures are very similar in Icon. Functions are essentially
procedures that are built into the Icon system. Both procedures and functions are
“first-class” values that can be assigned to variables, passed as arguments in
procedure calls, and so forth.

Most values are accessed via identifiers. Scope determines the identifiers a
procedure can access. Icon uses lexical scoping.

PROCEDURE DECLARATIONS

A procedure declaration has the form

procedure name (parameter-list)
   local-declarations
   initial-clause
   procedure-body
end

The parameter list, which is optional, consists of identifiers separated by
commas:

97
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identifier, identifier, …

These identifiers are local to the procedure and are not accessible elsewhere in the
program. Different procedure declarations can have parameters with the same
names, but parameters with the same names in different procedures have no
connection with each other.

Other identifiers can be declared to be local to a procedure in optional local
declarations at the beginning of the procedure declaration. Local declarations have
the form

local identifier-list

The initial clause, which also is optional, has the form

initial expr

where expr is an expression that is evaluated the first time the procedure is called.
Uses of the initial clause are mentioned later.

The body of the procedure consists of a sequence of expressions. These
expressions are evaluated when the procedure is called.

Representative procedure declarations appear in preceding chapters but
without declarations for local identifiers. A typical procedure with local declara-
tions is

procedure exor(s1, s2)
   local count, line

   count := 0

   while line := read() do
      line ? {
         if find(s1) then {
            if not find(s2) then count +:= 1
            }
         else if find(s2) then count +:= 1
         }

   return count

end

A procedure can be declared to have a variable number of arguments by
appending [ ] to the last (or only) parameter in the parameter list. In this form of
declaration, the arguments are passed to the last parameter in a list. An example is:

Chap. 8 Procedures 99

procedure cat(s1, s2, rest[ ])

   result := s1 || s2
   every result ||:= !rest

   return result

end

If called as cat("a", "b", "c", "d", "e"), the parameters have the following values:

s1 "a"
s2 "b"
rest ["c", "d", "e"]

and the result returned is "abcde".

In this form of declaration, the last parameter always is a list. This list consists
of the arguments not assigned to previous parameters. If the previous parameters
consume all the arguments, the list is empty. If there are not enough arguments for
the previous parameters, the null value is used for the remaining ones, but the last
parameter still is an empty list.

SCOPE

The identifiers in the parameter list and the identifiers in the local declarations of a
procedure are local to calls of that procedure and are accessible only to expressions
in the body of that procedure. Such identifiers are called dynamic local identifiers.

Identifiers can be made global and accessible to all procedures in a program by
global declarations, which have the form

global identifier-list

Global declarations are on a par with procedure declarations, and they may not
appear inside procedure declarations. If an identifier that is declared global also
appears in a parameter list or local declaration, it is local to the procedure, not global.
A declaration of a global identifier need not appear before the appearance of the
identifier in a procedure.

Global identifiers can be used to share values among procedures. Suppose, for
example, procedures p1() and p2() both must increment the same counter. Then the
following format could be used:

global counter

procedure p1()
…

   counter +:= 1
…

end
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procedure p2()
…

   counter +:= 1
…

end

A procedure name is a global identifier. The procedure itself is a value. It is the
value of the identifier that names the procedure.

The names of record types also are global. Record field names are not
identifiers; they apply to the entire program and are not affected by scope declara-
tions.

Identifiers that are not declared to be global are local to the procedure in which
they occur, whether or not they are explicitly declared to be local in that procedure.
This default scope interpretation saves writing but may lead to errors. For example,
a global declaration, perhaps unrelated to the procedure containing an undeclared
local identifier, can cause an undeclared identifier that otherwise would be local to
be interpreted as global. It is good practice to declare all local identifiers explicitly.

Variables for dynamic local identifiers come into existence when a procedure
is called and cease to exist when the procedure returns; they are only accessible
during the duration of the procedure call. Local identifiers can be made static by
using the declaration

static identifier-list

A static local identifier does not cease to exist when the procedure in which it is
declared returns. Such an identifier retains its value for subsequent calls of that
procedure. Therefore, a static identifier can provide memory for a procedure.

Static identifiers are useful when a procedure that is called many times uses a
value that must be computed but is always the same. Consider a program that writes
the first string of letters and digits of each line of the input file. This program can be
adapted to other uses more easily if it is divided into two procedures: one that
generates the strings and another that writes them. An example is:

procedure main()

   every write(alphan())

end

procedure alphan()
   local line, chars

   chars := &letters ++ &digits
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   while line := read() do
      line ? {
         if tab(upto(chars)) then suspend tab(many(chars))
         }

end

Note that the value assigned to chars is computed every time alphan() is called. This
unnecessary computation can be avoided by making chars a static identifier and
computing its value only once the first time that alphan() is called:

procedure alphan()
   local line
   static chars

   initial chars := &letters ++ &digits

   while line := read() do
      line ? {
         if tab(upto(chars)) then suspend tab(many(chars))
         }

end

Keywords have global scope and their values are not affected by procedure
calls.

PROCEDURE INVOCATION

Procedure Calls

Procedures are invoked by procedure calls, which have the form

expr (expr1, expr2, …, exprn)

where the value of expr is the procedure to be called and expr1, expr2, …, exprn are
expressions that provide the arguments.

Normally, there are as many arguments as there are parameters in the
procedure declaration. For example,

exor("Mr.", "Mrs.")

is a call of the procedure exor() given previously. The values of the expressions are
assigned to the identifiers in the parameter list (s1 and s2 in this case). Evaluation
then starts at the beginning of the body of the procedure for exor().
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Arguments are transmitted by value; there is no call-by-reference or other
method of argument transmission. Notice, however, that since structures in Icon are
pointers to aggregates of values, structures are effectively passed by reference.

A procedure or function also can be called with a list or record that contains its
arguments. This form of call is

expr1 ! expr2

where the value of expr1 is the procedure or function to be called and expr2 is a list
or record containing the arguments. For example,

select ! ["a", "b", "c", "d", "e"]

is equivalent to

select("a", "b", "c", "d", "e")

Returning from a Procedure

Evaluation of the expression

return expr

returns from the procedure call in which it occurs. The outcome of expr becomes the
outcome of the procedure call, and evaluation continues at the place where the call
was made. A return expression always returns. If expr fails, the procedure call fails.
If expr is omitted, the null value is returned.

 The fail expression, which is equivalent to return &fail, causes a procedure to
return and fail explicitly, as illustrated in previous examples. An implicit fail
expression is provided at the end of the procedure body. Consequently, a procedure
call that returns by flowing off the end of the procedure body fails. It is important
to provide an explicit return expression at the end of such a procedure body unless
failure is intended.

The return and fail expressions cause return from a procedure call and
destruction of all dynamic local identifiers for that call. On the other hand,

suspend expr1 do expr2

returns from the procedure call and produces the value of expr1 but leaves the call
in suspension with the values of dynamic local variables intact. In this case, the
procedure call can be resumed to continue evaluation.

The do clause is optional. If it is present, expr2 is evaluated when the suspend-
ing procedure is resumed. Next, expr1 is resumed. If it produces another result, the
procedure suspends again. In this sense, suspend is very similar to every; the
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difference is that suspend causes the procedure in which it occurs to generate a value
for each value generated by expr1.

Procedures as Values

As mentioned earlier, functions are built-in procedures. The term procedure
is used here for both declared procedures and built-in procedures. Procedures are
the initial values of global identifiers. Procedures are known and accessed by these
global identifiers — their “names”. For example, the value of the global identifier
write is the function that writes strings. Consequently, in write(s), the value of write
is the function that is applied to s.

Since procedures are values, they may be assigned to variables, passed as
arguments, and so forth. Therefore,

print := write

assigns the procedure for write to print, and print(s) subsequently performs the same
operation as write(s).

Similarly, if a procedure is declared with the name write, the declared proce-
dure value replaces the built-in one, which is then inaccessible. It is good practice to
avoid using names for declared procedures that have the same names as built-in
ones.

Although the procedure that is applied in a procedure call usually is produced
by an identifier, it can be the value of an expression. Therefore,

plist := [upto, any, many]

constructs a list of procedures and

plist[2](c, s)

is equivalent to

any(c, s)

The procedure that is applied in a call is just the “zeroth” argument; it is
evaluated before the other arguments.

VARIABLES AND DEREFERENCING

Roughly speaking, a variable is anything to which a value can be assigned. There are
several kinds of variables: identifiers (global, local, and static), the elements of lists
and tables, the fields of records, subscripted string-valued variables, and some
keywords.
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When an expression produces a variable and its value is needed, the value of
the variable is obtained automatically. This process is called dereferencing. Derefer-
encing, like type conversion, occurs implicitly. For example, in

write(line)

the variable line is dereferenced to produce its value, which then is written.

Variables are dereferenced only when a value is needed. For example, in

(if i > j then i else j) := 0

the variable in the selected clause is not dereferenced and 0 is assigned to i or j,
depending on which has the larger prior value.

If the argument of a return expression is a local variable, it is dereferenced and
the value is returned, since local variables are accessible only to the procedure in
which they are declared. For example, in

procedure max(i, j)

   return (if i > j then i else j)

end

the result returned is the value of i or j, not the variable.

When a variable is returned from a procedure, it is dereferenced only if it is
local or static. Other variables — global variables, keywords that are variables,
subscripted structures, and subscripted global strings — are returned as variables
and may be assigned a value. Consider the following procedure, which produces the
largest value in the list L:

procedure maxel(L)
   local i, j, max
   j := 1
   max := L[1]

   every i := 2 to ∗L do
      if max <:= L[i] then j := i

   return L[j]

end

Since the result that is returned is a list element, it is not dereferenced and a value
can be assigned to it. For example,

Chap. 8 Procedures 105

maxel(L) := 0

replaces the maximum value in L by 0.

The possibility of such an assignment can be prevented by use of the explicit
dereferencing operation .expr, which produces the value of expr. For example, if the
return expression in the previous procedure is changed to

return .L[j]

the result returned is the value of the list element and an attempt to assign to it is
erroneous.

The dereferencing operation can be applied to any expression, not just one that
produces a variable. Consequently, it is not necessary to know whether or not an
expression produces a variable in order to apply the dereferencing operation to it.

In a function or procedure call, dereferencing is not done until all arguments
have been evaluated. Consider

write(line, line := read())

In this expression a new value is assigned to line when the second argument,

line := read()

is evaluated. The first argument is not dereferenced until the value of line is changed
by the evaluation of the second argument. At this time, both arguments have the
same value, and two copies of the newly read line are written, not the former value
of line followed by the newly read value.

Argument expressions with such side effects generally should be avoided, but
explicit dereferencing can be used, if necessary, to prevent unexpected results from
side effects, as in

write(.line, line := read())

NOTES

Recursive Calls

It is common in mathematics to define functions recursively in terms of
themselves. The Fibonacci numbers provide a classic example:

f (i) = 1 i = 1, 2
f (i) = f (i – 1) + f (i – 2) i > 2
f (i) undefined otherwise
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The sequence of Fibonacci numbers for i = 1, 2, 3, … is 1, 1, 2, 3, 5, 8, 13, … .

Since a procedure can call itself, this mathematical definition can be tran-
scribed mechanically into a procedure that computes the Fibonacci numbers:

procedure fib(i)

    if i = (1 | 2) then return 1
    else return fib(i – 1) + fib(i – 2)

end

Recursive calls rely on the fact that the identifier for the procedure name is
global. For example, within the procedure body for fib(), fib is a global identifier
whose value is the procedure itself.

While a recursive definition may be elegant and concise, the use of recursion
for computation can be very inefficient, especially when it depends on the compu-
tation of previous values. For example, to compute fib(5), it is necessary to compute
fib(4) and fib(3). The computation of fib(4) also requires the computation of fib(3),
and so on. Redundant computations often can be avoided by finding an alternative
iterative solution (see the exercises at the end of this chapter).

In some cases, iterative solutions can be difficult or impractical to formulate.
The classic example is Ackermann’s function (Manna, 1974):

a ( i, j) = j + 1 i = 0, j ≥ 0
a ( i, j ) = a ( i – 1,1 ) i > 0, j = 0
a ( i, j) = a ( i – 1, a (i, j – 1)) i > 0, j > 0
a ( i, j ) undefined otherwise

One method for avoiding redundant computation in recursive procedures is
to provide a mechanism whereby the values of previous computations are remem-
bered (Bird, 1980). These values then can be looked up instead of being recomputed.
A static identifier can be used to provide the necessary memory. Consider the
following reformulation of fib(i):

procedure fib(i)
   static fibmem
   local j

   initial {
      fibmem := table(0)
      fibmem[1] := fibmem[2] := 1
      }

   if (j := fibmem[i]) > 0 then return j
   else return fibmem[i] := fib(i – 1) + fib(i – 2)

end
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A table with default value 0 is assigned to the static identifier fibmem when the
procedure is called the first time. Note that 0 is not a possible value in the Fibonacci
sequence. The values for 1 and 2 are placed in this table. In general, if the desired
value has already been computed, fibmem[i] is greater than zero and is returned.
Otherwise the desired value is computed and stored in the table before returning.
Note that the computation still is recursive, but no value is computed recursively
more than once.

Syntactic Considerations

The precedence of return is lower than that of any infix operation, so

return i + j

groups as

return (i + j)

The expr following return is optional; if expr is omitted, the null value is
returned. This is useful in procedures that do not have any other value to return and
corresponds to the initial null value of identifiers. Since expr is optional, if the value
of an expression is to be returned, the expression must begin on the same line as the
return. For example,

return
   expr

returns the null value and expr is never evaluated.

Static Variables and Initial Clauses

As shown in an example earlier in this chapter, static variables can be used in
combination with an initial clause to perform a computation only once in order to
provide a value needed in many calls of the same procedure, as in:

procedure alphan()
   local line
   static chars

   initial chars := &letters ++ digits
          …



Procedures       Chap. 8108

A common mistake is to forget the static declaration, as in

procedure alphan()
   local line

   initial chars := &letters ++ digits
          …

In this case the procedure works correctly the first time it is called, but in subsequent
calls the variable chars, not being static, is local by default and has the null value.
Since the initial clause is only evaluated on the first call, chars is not assigned a value
and an error results in most situations.
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9

Co-Expressions

In normal expression evaluation, the results produced by an expression are limited
to the place where that expression appears in the program. Furthermore, the results
of an expression can be produced only by iteration or goal-directed evaluation; there
is no mechanism for explicitly resuming an expression to get a result. Consequently,
the results produced by an expression are strictly constrained, both in location and
in the sequence of program evaluation.

Co-expressions overcome these limitations. A co-expression “captures” an
expression so that it can be explicitly resumed at any time and place.

CO-EXPRESSION OPERATIONS

Co-Expression Creation

A co-expression is a data object that contains a reference to an expression and
an environment for the evaluation of that expression. A co-expression is created by
the control structure

create expr

The create expression does not evaluate expr. Instead, it produces a co-expression
that references expr. This co-expression can be assigned to a variable, passed as an

109
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argument to a procedure, returned from a procedure, and in general handled like
any other first-class value. A co-expression contains not only a reference to its
argument expression, but also a copy of the dynamic local variables for the
procedure in which the create appears. These copied variables have the same values
as the corresponding dynamic local variables have at the time the create expression
is evaluated. This frees expr from the place in the program where it appears and
provides it with an environment of its own.

An example is

procedure writepos(s1, s2)

   locs1 := create find(s1)
   locs2 := create find(s2)

…
end

Here the values assigned to locs1 and locs2 are co-expressions corresponding to the
expressions find(s1) and find(s2), respectively.

Activating Co-Expressions

Control is transferred to a co-expression by activating it with the operation @C.
At this point, execution continues in the expression referenced by C. When this
expression produces a result, control is returned to the activating expression and the
result that is produced becomes the result of the activation expression. For example,
if

articles := create("a" | "an" | "the")

then

write(@articles)

transfers control to the expression

"a" | "an" | "the"

which produces "a" and returns control to the activation expression, which then
writes that result.

If the co-expression is activated again, control is transferred to the place in its
expression where it last produced a result and execution continues there. Thus,
subsequent to the activation above,

second := @articles

assigns "an" to second and
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third := @articles

assigns "the" to third. If article is activated again, the activation fails because there are
no more results for the expression that is resumed.

The activation operation itself produces at most one result, but it fails when all
results of the co-expression have been produced. Consequently,

while write(@locs1)

writes out all the positions at which s1 occurs in the subject and the loop terminates
when find(s1) has no more results and @locs1 fails. Note that this expression
produces the same results as

every write(find(s1))

In general, in the absence of side effects

|@C

generates the same results as the expression referenced by C. Activation may occur
at any time and place, however, while producing results by iteration is confined to
the site at which the expression occurs.

An important aspect of activation is that it produces at most one result.
Therefore, the results of a generator can be produced one at a time, where and when
they are needed. For example, the results of generators can be intermingled, as in

while write(@locs1, " ", @locs2)

which writes the locations of s1 and s2 in the subject, side-by-side in columns. Since
activation fails when there are no more results, the loop terminates when one of the
generators runs out of results.

The results produced by a co-expression are dereferenced according to the
same rules that apply to procedures. Specifically, if the result is a local variable in the
co-expression, it is dereferenced.

Refreshing Co-Expressions

Since activation produces a result for a co-expression, it has the side effect of
changing the “state” of the co-expression, and effectively consumes a result, much
in the way that reading a line of a file consumes that line. Sometimes it is useful to
“start a co-expression over”. Although there is no way to reset the state of a co-
expression to its initial value at the time of its creation, the operation ̂ C produces
a “refreshed” copy of a co-expression C. The term “refresh” is somewhat of a
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misnomer, since it sounds like C is refreshed; in fact, it does not change C, but instead
produces a new co-expression. Typical usage is

C := ^C

Number of Values Produced

The “size” of a co-expression, given by ∗C, is the number of results it has
produced. Each successful activation of a co-expression increments its size (which
starts at 0). For example,

if ∗C = 0 then write(@C)

writes a result for C, provided it has not yet produced a result. Of course, @C fails
if there are no results at all. Similarly,

while @C
write(∗C)

writes the number of results for the expression referenced by C. Such usage
obviously is risky, since an expression may have an infinite number of results.

Co-Expression Environments

As mentioned earlier, a co-expression is created with copies of the dynamic
local identifiers for the procedure in which the create expression occurs. These
copies have the values of the corresponding local variables at the time the create
expression is evaluated. This aspect of co-expression creation has several implica-
tions.

Since every co-expression has its own copies of dynamic local variables, two
co-expressions can share a variable only if it is global or static. Failure to recognize
that every co-expression has its own copy of its local variables can lead to program-
ming mistakes, since the names of the variables in different co-expressions created
in the same procedure are the same, making the variables appear to be the same.

When a new co-expression is created by ^C, new copies of the dynamic local
variables are made, but with the values they had at the time that C was originally
created. Consider, for example,

   local i

   i := 1
   seq1 := create |(i ∗:= 2)

   i := 3
   seq2 := create |(i ∗:= 2)
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The results produced by successive activations of seq1 are 2, 4, 8, … , while the
results produced by seq2 are 6, 12, 24, … . Then, for

   seq3 := ^seq1

the results produced by seq3 are 2, 4, 8, … , since the initial value of i in seq1 is 1 and
it is not affected by the assignment of 3 to i after seq1 is created — the two variables
are distinct.

USING CO-EXPRESSIONS

As mentioned earlier, co-expressions are useful in situations in which the produc-
tion of the results of a generator needs to be controlled, instead of occurring
automatically as the result of goal-directed evaluation or iteration. Since most of the
utility of co-expressions comes from generators, most co-expression applications
depend on the use of generators.

Labels and Tags

In some situations, a sequence of labels or tags is needed. For example, an
assembler may need a source of unique labels for referencing the code it produces,
while a procedure that traverses a graph may need tags to name nodes.

A generator, such as

"L" || seq()

is a convenient way of formulating a sequence of labels. However, the need for a new
label may occur at different times and places in the program and a single generator
such as the one above cannot be used. One solution to this problem is to avoid
generators and use a procedure such as

procedure label()
   static i

   initial i := 0

   return "L" || (i +:= 1)

end

Consequently, every call of label() produces a new label.

The use of such a procedure gives up much of the power of expression
evaluation in Icon, since it encodes, at the source level, the computation that a
generator does internally and automatically. To use a generator, a co-expression
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such as

label := create ("L" || seq())

suffices. Here, every evaluation of @label produces a new label.

Parallel Evaluation

One of the common paradigms that motivates co-expression usage is the
generation of results from generators in parallel. Consider, for example, producing
a tabulation showing the decimal, hexadecimal, and octal values for all characters,
along with their images. The values for each column are easily produced by
generators:

0 to 255

!"0123456789ABCDEF" || !"0123456789ABCDEF"

(0 to 3) || (0 to 7) || (0 to 7)

image(!&cset)

In order to produce a tabulation, however, the results of these generators are needed
in parallel. This cannot be done by simple expression evaluation. The solution is to
create a co-expression for each generator and to activate these co-expressions in
parallel:

decimal := create (0 to 255)
hex := create (!"0123456789ABCDEF" || !"0123456789ABCDEF")
octal := create ((0 to 3) || (0 to 7) || (0 to 7))
character := create image(!&cset)

Then an expression such as

while write(right(@decimal, 10), " \t ", right(@hex, 10), " \t ",
   right(@octal, 10), " \t ", right(@character, 12))

can be used to produce the tabulation:

0 00 000 "\x00"
1 01 001 "\x01"
2 02 002 "\x02"
3 03 003 "\x03"
4 04 004 "\x04"

…
97 61 141 "a"
98 62 142 "b"
99 63 143 "c"
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100 64 144 "d"
…

251 FB 373 "\xfb"
252 FC 374 "\xfc"
253 FD 375 "\xfd"
254 FE 376 "\xfe"
255 FF 377 "\xff"

Another example of parallel evaluation occurs when the results produced by
a generator are to be assigned to a sequence of variables. Suppose the first three
results for find(s) are to be assigned to i, j, and k, respectively. This can be done as
follows:

loc := create find(s)

every (i | j | k) := @loc

Of course, if find(s) has fewer than three results, not all of the assignments are made.

PROGRAMMER-DEFINED CONTROL STRUCTURES

Control structures are provided so that the flow of control during program execu-
tion can be modified depending on the results produced by expressions. In Icon,
most control structures depend on success or failure. For example, the outcome of

if expr1 then expr2 else expr3

depends on whether or not expr1 succeeds or fails.

Icon’s built-in control structures are designed to handle the situations that
arise most often in programming. There are many possible control structures in
addition to the ones that Icon provides (parallel evaluation is perhaps the most
obvious).

Co-expressions make it possible to extend Icon’s built-in repertoire of control
structures. Consider a simple example of parallel evaluation:

procedure parallel(C1, C2)
   local x

   repeat {
      if x := @C1 then suspend x else fail
      if x := @C2 then suspend x else fail
      }

end
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where C1 and C2 are co-expressions. For example, the results for

parallel(create !&lcase, create !&ucase)

are "a", "A", "b", "B", … "z", and "Z". In this case, both co-expressions have the same
number of results. In general, parallel(C1, C2) terminates when either C1 or C2 runs
out of results.

This formulation of parallel evaluation is cumbersome, since the user must
explicitly create co-expressions for each invocation of parallel(). Icon provides a
form of procedure invocation in which arguments are passed as a list of co-
expressions. This form of invocation is denoted by braces instead of parentheses, so
that

p{expr1, expr2, …, exprn}

is equivalent to

p([create expr1, create expr2, …, create exprn])

Thus, p() is called with a single argument, so that an arbitrary number of co-
expressions can be given.

Using this facility, parallel evaluation can be formulated as follows:

procedure Parallel(L) # called as Parallel{expr1, expr2}
   local x

   repeat {
      if x := @L[1] then suspend x else fail
      if x := @L[2] then suspend x else fail
      }

end

For example, the results for Parallel{!&lcase, !&ucase} are "a", "A", "b", "B" … "z", and
"Z".

It is easy to extend parallel evaluation to an arbitrary number of arguments:

procedure Parallel(L) # called as Parallel{expr1, expr2, ..., exprn}
   local x, C

   repeat
      every C := !L do
         if x := @C then suspend x else fail

end
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Another example of the use of programmer-defined control structures is a
procedure that generalizes alternation to an arbitrary number of expressions:

procedure Alt(L) # called as Alt{expr1, expr2, …, exprn}
   local C

   every C := !L do
      suspend |@C

end

Some operations on sequences of results are more useful if applied in parallel,
rather than on the cross product of results. An example is

procedure Add(L)       # called as Add{expr1, expr2}

   suspend I(@L[1] + @L[2])

end

String invocation often is useful in programmer-defined control operations. An
example is a procedure that “reduces” a sequence by applying a binary operation to
successive results:

procedure Reduce(L) # called as Reduce{op, expr}
   local op, opnds, result

   op := @L[1] | fail # get the operator
   opnds := L[2] # get the co–expression for the arguments

   result := @opnds | fail

   while result := op(result, @opnds)

   return result

end

For example, the result of Reduce{"+", 1 to 10} is 55.

Another application for programmer-defined control structures is in the
production of a string representation of a sequence of results:

$define Limit 10

procedure Seqimage(L) # called as Seqimage{expr, i}
   local seq, result, i

   seq := ""

   i := @L[2] | Limit # limit on number of results
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   while result := image(@L[1]) do {
      if ∗L[1] > i then {
         seq ||:= ", ..."
         break
         }
      else seq ||:= ", " || result
      }

   return "{" || seq[3:0] || "}" | "{}"

end

For example, the result produced by Seqimage{1 to 8} is "{1, 2, 3, 4, 5, 6, 7, 8}".

OTHER FEATURES OF CO-EXPRESSIONS

Although co-expressions are motivated by the need to control the results produced
by generators, they also can be used as coroutines. A general description of coroutine
programming is beyond the scope of this book; see Knuth (1968); Marlin (1980); and
Dahl, Dijkstra, and Hoare (1972).

Transfer of Control Among Co-Expressions

As illustrated earlier, a co-expression can transfer control to another co-
expression by two means: activating it explicitly, as in @C, or returning control to
it implicitly by producing a result. Despite the appearance of dissimilarity between
these two methods for transferring control, they really are symmetric.

It is important to understand that transferring control from one co-expression
to another co-expression by either method changes the place in the program where
execution is taking place and changes the environment in which expressions are
evaluated. Unlike procedure calls, however, transfer of control among co-expres-
sions is not hierarchical.

This is illustrated by the use of co-expressions as coroutines. Consider, for
example, the following program:

global C1, C2

procedure main()

   C1 := create note(C2, "co–expression C2")
   C2 := create note(C1, "co–expression C1")

   @C1

end

procedure note(C, tag)
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   local i

   i := 0

   repeat {
      write("activation ", i +:= 1, " of ", tag)
      @C
      }

end

When C1 is activated, the procedure note() is called with two arguments: the co-
expression C2 and a string used for identification. Execution continues in note(). A
line of output is produced, and C2 is activated. As a result, there is another call of
note(). It writes a line of output and activates C1. At this point, control is transferred
to the first call of note() at the point it activated C2. Control then transfers back and
forth between the two procedure calls, and the output produced is

activation 1 of co–expression C2
activation 1 of co–expression C1
activation 2 of co–expression C2
activation 2 of co–expression C1
activation 3 of co–expression C2
activation 3 of co–expression C1
activation 4 of co–expression C2
activation 4 of co–expression C1
activation 5 of co–expression C2
activation 5 of co–expression C1
activation 6 of co–expression C2
activation 6 of co–expression C1

…

This continues endlessly and neither procedure call ever returns.

Built-In Co-Expressions

There are three built-in co-expressions that facilitate transfer of control:
&source, &current, and &main.

The value of &source is the co-expression that activated the currently active co-
expression. Thus,

@&source

“returns” to the activating co-expression.

The value of &current is the co-expression in which execution is currently
taking place. For example,
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process(&current)

passes the current co-expression to the procedure process(). This co-expression
could be used to assure return of control to the co-expression that was current when
process() was called.

The value of &main is the co-expression for the invocation of the main
procedure. This co-expression corresponds to the invocation of the main procedure
that initiates program execution, which can be viewed as

@(create main())

The co-expression &main is the first co-expression that is created in every program.

If program execution is taking place in any co-expression,

@&main

returns control to the co-expression for the procedure main() at the point it activated
a co-expression. Note that this location need not be in the procedure main() itself,
since main() may have called another procedure from which the activation of a co-
expression took place.

Transmission

A result can be transmitted to a co-expression when it is activated. Transmis-
sion is done by the operation

expr @ C

where C is activated and the result of expr is transmitted to it. In fact, @C is just an
abbreviation for

&null @ C

so that every activation actually transmits a result to the co-expression that is being
activated.

On the first activation of a co-expression, the transmitted result is discarded,
since there is nothing to receive it. On subsequent activations, the transmitted result
becomes the result of the expression that activated the current co-expression.

The use of transmission is illustrated by the following program, which reads
in lines from standard input, breaks them up into words, and writes out these words
on separate lines. Co-expressions are used to isolate the tasks: reading lines,
producing the words from the lines, and writing out the words.

Chap. 9 Co-Expressions 121

global words, lines, writer

procedure main()

   words := create word()
   lines := create reader()
   writer := create output()

   @writer

end

procedure word()

   while line := @lines do
      line ? while tab(upto(&letters)) do
         tab(many(&letters)) @ writer

end

procedure reader()

   while read() @ words

end

procedure output()

   while write(@words)

   @&main

end

Note that output() activates main() to terminate program execution.

This example is designed to illustrate transmission, not as a recommended
programming technique. The problem above can be solved more simply by using
generators and procedure calls, since there is nothing in the problem that requires
coroutine control flow or the generation of results at arbitrary times or places.
Coroutine programming generally is appropriate only in large programs that
benefit from the organization that coroutines allow. Knuth (1968) says “It is rather
difficult to find short, simple examples of coroutines which illustrate the importance
of the idea; the most useful coroutine applications generally are quite lengthy”, and
Marlin (1980) remarks “ … the choice of an example program is … difficult … . The
programming methodology is intended for programming-in-the-large”.
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NOTES

Library Resources

The Icon program library has two modules that contain programmer-defined
control operations:

pdco procedures for various control operations

pdae procedures for programmer-defined argument-
evaluation methods

Multi-Thread Icon

There is a version of Icon, called MT-Icon, that supports the execution of
several programs in the same execution space. Control is passed between programs
using co-expression activation. See Jeffery (1993). This version of Icon also provides
instrumentation that allows program activity to be monitored (Griswold and
Jeffery, 1996).

Syntactic Considerations

The reserved word create has lower precedence than any operator symbol. For
example,

articles := create "a" | "an" | "the"

groups as

articles := create ("a" | "an" | "the")

Although parentheses usually are unnecessary, they improve the readability of
create expressions.
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10

Data Types

As illustrated in the previous chapters, Icon has a large repertoire of types, twelve
in all:

co–expression list set
cset null string
file procedure table
integer real window

Files and windows are described in Chapters 11 and 12.

In addition, record declarations add new “programmer-defined” types.

TYPE DETERMINATION

Sometimes it is useful, especially in program debugging, to be able to determine the
type of a value. The function type(x) produces the string name of the type of x. For
example, the value of

type("Hello world")

is "string". Similarly,

if type(i) == "integer" then write("okay")

writes okay if the value of i is an integer.

123
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Functions, which are simply built-in procedures, have type procedure. For
example, the value of

type(write)

is "procedure".

A record declaration adds a type to the built-in repertoire of Icon. For example,
the declaration

record complex(rpart, ipart)

adds the type complex. If a complex record is assigned to origin, as in

origin := complex(0.0, 0.0)

then the value of

type(origin)

is "complex".

TYPE CONVERSION

Csets, integers, real numbers, and strings can be converted to values of other types.
The possible type conversions are given in the following table.

type in type out

cset integer real string

cset = ? ? u

integer u = ? u

real u u = u

string u ? ? =

The symbol u indicates a conversion that is always possible, while ? indicates a
conversion that may or may not be possible, depending on the value. The = indicates
that nothing needs to be done to convert a value to its own type.
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A string can be converted to a numeric type only if it “looks like a number”. For
example, "1500" can be converted to the integer 1500, but "a1500" and "1,500"
cannot be converted to integers. Signs and radix literals are allowed in conversion
of strings to numeric types. For example, "–2.5" can be converted to –2.5 and "16ra"
can be converted to 10. Leading and trailing blanks are ignored in strings that are
converted to numeric types.

Since real numbers are limited in magnitude, the strings that can be converted
to real numbers are correspondingly limited. When a real number is converted to an
integer, any fractional part is discarded in the conversion; no rounding occurs.

When csets are converted to strings, the characters are put in lexical order. For
example, conversion of &lcase to a string produces "abcdefghijklmnopqrstuvwxyz".

When a cset is converted to a numeric type, it is first converted to a string, and
then string-to-numeric conversion is performed.

Type conversions take two forms: implicit and explicit.

Implicit Type Conversion

Implicit type conversion occurs in contexts where the type of a value is
different from the type expected by an operation. For example, in

write(∗line)

the integer produced by ∗line is converted to a string in order to be written. Similarly,
in

i := upto("aeiou", line)

the string "aeiou" is automatically converted to a cset.

In some situations, implicit conversion can be used to convert a value to a
desired type. For example,

N := +s

is a way of converting a string that looks like a number to an actual number. Note
that the converted value is assigned to N, but the value of s remains unchanged.

Implicit type conversion sometimes can have unexpected effects. For example,
a comparison operation produces the value of its right argument, converted to the
type expected by the comparison. Therefore,

i := (j > "20")

assigns the integer 20, not the string "20" to i, provided the comparison succeeds.
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Unnecessary type conversion can be a source of inefficiency. Since there is no
direct evidence of implicit type conversion, this problem can go unnoticed. For
example, in an expression such as

upto("aeiou")

the argument is converted from a string to a cset every time the expression is
evaluated. If this expression occurs in a loop that is evaluated frequently, program
execution speed may suffer. Where a cset is expected, it is important to use a cset
literal or some other cset-valued expression that does not require conversion.

An implicit type conversion that cannot be performed is an error and causes
program execution to terminate with a diagnostic message. For example,

N +:= "a"

is erroneous.

Implicit type conversion is not performed for comparing values in case clauses
or for the keys in tables. For example, T[1] and T["1"] reference different elements in
T.

Explicit Type Conversion

Explicit conversion is performed by functions whose names correspond to the
desired types. For example,

s := string(x)

converts x to a string and assigns that string value to s. The other explicit type-
conversion functions are cset(x), integer(x), and real(x). The function numeric(x)
converts strings to their corresponding numeric values if possible. This function is
useful for converting a value that may represent either an integer or a real number.
For example,

numeric("10.5")

produces 10.5, but

integer("10.5")

produces 10.

Explicit conversion sometimes can be used as a way of performing a compu-
tation that otherwise would be difficult. For example,

s := string(cset(s))
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eliminates duplicate characters of s and puts the remaining characters in lexical
order.

If an explicit type conversion cannot be performed, the type conversion
function fails. For example,

numeric("a")

fails. Explicit type conversion therefore can be used to test the convertibility of a
value without risking program termination.

THE NULL VALUE

The null value is a single, unique value of type null. Identifiers, except for those for
functions and procedures, have the null value initially.

The null value, usually provided as the result of an omitted argument, is also
used to specify default values in many functions. Most other uses of the null value
are erroneous. This prevents the accidental use of an uninitialized identifier in a
computation. For example, if no value has been assigned to i, evaluation of the
expression

j := i + 10

causes program termination with a diagnostic message.

Since the null value cannot be used in most computations, care should be taken
to specify appropriate initial values for structures. Similarly,

words := table()

creates a table in which the default value is null. Consequently,

words["The"] +:= 1

is erroneous, since this expression attempts to add 1 to the null value.

Assignment is indifferent to the null value. Therefore,

x := &null

assigns the null value to x.

There are two operations that succeed or fail, depending on whether or not an
expression has the null value. The operation

/x
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succeeds and produces the null value if x has the null value, but it fails if x has any
other value.

The operation

\x

succeeds and produces the value of x if that value is not the null value, but it fails if
x produces the null value. This operation is useful for determining if a variable has
been initialized.

If the argument of one of these operations is a variable and the operation
succeeds, the operation produces the variable. Therefore, assignment can be made
to the result of such an operation, so that

/x := 0

assigns 0 to x if x has the null value, while

\x := 0

assigns 0 to x if x does not have the null value.

As in all operations, the arguments of these operations can be expressions. For
example, if a table is created with the null default value, as in

T := table()

then

\T["the"]

succeeds if the key "the" in T has been assigned a nonnull value; otherwise, this
expression fails.

The control structure not expr produces the null value if expr fails.

COMPARING VALUES

Five of the twelve built-in data types in Icon — csets, integers, real numbers, strings,
and the null value — have the property of having “unique” values. This means that
equivalent values of these types are indistinguishable, regardless of how they are
computed. For example, there is just one distinguishable integer 0. This value is the
same, regardless of how it is computed.

Whether or not two numbers are the same can be determined by a numerical
comparison operation. Therefore,
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(1 – 1) = (2 – 2)

succeeds, because the two arguments have the same value.

The property of uniqueness is natural for numbers and is essential for numeri-
cal computation. The uniqueness of csets and strings is not a necessary consequence
of their inherent properties, but it plays an important role in Icon. For example,

("ab" || "cd") == ("a" || "bcd")

succeeds because both arguments have the same value, even though the value is
computed in different ways.

Numerical and string comparisons are restricted to specific data types, al-
though type conversions are performed automatically.

There is also a general value-comparison operation

x === y

which compares arbitrary values x and y, as well as the converse operation

x ~=== y

Unlike string comparison, value comparison fails if x and y do not have the
same type: No implicit type conversion is performed. For the types that have unique
values, value comparison succeeds if the values are the same, regardless of how they
are computed. For other types, value comparison succeeds only if the values are
identical.

Lists can be equivalent without being identical. For example,

list(10, 0) === list(10, 0)

fails because the two lists are not identical, even though they are equivalent in size
and contents. However, in

vector := list(10, 0)
vector1 := vector
vector === vector1

the comparison succeeds because assignment does not copy structures and the two
arguments have identical values.

Value comparison is used implicitly in case expressions and table references.
For example, if the value of x is the integer 1, in



Data Types       Chap. 10130

case x of {
   "1": expr

…
   }

the first case clause is not selected, since the types of the values compared are
different. Similarly,

T["abcdefghijklmnopqrstuvwxyz"]

and

T[&lcase]

reference different values in the table T, but

T["abcdefghijklmnopqrstuvwxyz"]

and

T[string(&lcase)]

reference the same value, since string values are unique.

COPYING VALUES

Any value can be copied by copy(x). For lists, sets, tables, and records, a new copy
of x is made. This copy is distinct from x. For example, in

vector := list(10, 0)
vector === copy(vector)

the comparison fails. Only the list itself is copied; values in the copy are the same as
in the original list (copying is “one level”). For example, in

L1 := [ ]
L2 := [L1]
L3 := copy(L2)
L3[1] === L2[1]

the comparison succeeds, since both L2[1] and L3[1] are the same list, L1.

For values other than lists, sets, tables, and records, copy(x) simply produces
the value of x; no actual copy is made. Therefore,
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"Hello" === copy("Hello")

succeeds. Copying a co-expression does not produce a refreshed copy of it.

NOTES

Large Integers

Conversion between integers and strings and csets is supported for both native
integers and integers too large to represented as native integers. (See Notes in
Chapter 5.) However, the time required to convert a large integer to a string (and
hence cset) and the time to convert a string to a large integer are proportional to the
square of the number of digits. For very large integers, this can be an important
consideration.

For example, as of this writing the largest known prime is 21257787 - 1, which has
378,632 digits. It takes about 123 times as long to convert this number to a string as
it does to compute it.

Since writing a large integer requires its conversion to a string, care should be
taken not do this unnecessarily.
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11

Input and Output

FILES

All reading and writing in earlier examples use standard input and standard output.
In an interactive system, standard input usually comes from the user’s console and
standard output usually is written to this console. These standard files are implicit
in reading and writing operations; they are the default in case no specific files are
given.

On most systems standard input and standard output can be connected to
specific files when the Icon program is run. This allows a program to use any input
and output files without having to incorporate the names of the files in the text of the
program. By convention, standard error output is used for error messages, so that such
messages are not mixed up with normal output.

Values of type file are used to reference actual files of data that are external to
the program. There are three predefined values of type file:

&input standard input
&output standard output
&errout standard error output

The values of these keywords cannot be changed.

133
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While many programs can be written using just standard input and output,
sometimes it is necessary to use other files. For example, some programs must read
from specific files or write to specific files.

The name of a file is specified when it is opened for reading or writing; at this
time a value of type file is created in the program and connected with the actual file
that is to be read or written. The function open(s1, s2) opens the file named s1
according to options given in s2 and produces a value of type file that can be used
to reference the named file. How files are named is a property of the operating
system under which Icon runs, not a property of Icon itself.

The options given in s2 specify how the file is to be used. Some options can be
used in combination. These options inherently are somewhat dependent on the
operating system, although some options are common to all operating systems. The
two basic options for opening files are:

"r" open for reading
"w" open for writing

Other options are:

"b" open for reading and writing (bidirectional)
"a" open for writing in append mode
"c" create and open for writing
"t" open in translated mode
"u" open in untranslated mode
"p" open pipe

The "b" option usually applies to interactive input and output at a terminal that
behaves like a file that is both written and read. With the "p" option, the first
argument is passed to an operating-system shell for execution. Not all operating
systems support pipes. If a file is opened for writing but not for reading, "c" is
implied. The "c" and "a" options have no effect on pipes. Upper- and lowercase
letters are equivalent in option specifications. The translated and untranslated
modes and pipes are described later in this chapter.

If the option is omitted, "r" is assumed. For example,

intext := open("shaw.txt")

opens the file shaw.txt for reading and assigns the resulting file to intext. The
omission of the second argument with the subsequent default to "r" is common
practice in Icon programming.

A file that is opened for reading must already exist; if it does not, open() fails.
A file that is opened for writing may or may not already exist. If it does not exist, a
new file with the name s1 is created. If this is not possible (there may be various
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reasons, depending on the environment), open() fails. If the file does exist, the
previous contents of the file are destroyed unless the "a" option is used, in which case
new output is appended to the end of the old data. Some files may be protected to
prevent them from being modified; open() fails if an attempt is made to open such
a file for writing.

Since open() may fail for a variety of reasons, it is good practice to check for
possible failure, even if it is not expected. An example is

if not(intext := open("shaw.txt")) then stop("cannot open shaw.txt")

This also can be formulated as

intext := open("shaw.txt") | stop("cannot open shaw.txt")

The function close(f) closes the file f. This has the effect of physically complet-
ing output for f, such as flushing output buffers, and making the file inaccessible for
further input or output. A file that has been closed can be opened again, however.
The function flush(f) flushes any accumulated output for f.

If several files are used, it is good practice to close files when they are no longer
needed, since most operating systems allow only a limited number of files to be open
at the same time. All open files are closed automatically when program execution
terminates.

INPUT

The function read(f) reads the next line from the file referenced by f. If f is omitted,
standard input is assumed, as is illustrated in earlier examples. For example, the
following program copies shaw.txt to standard output:

procedure main()

   intext := open("shaw.txt") | stop("cannot open shaw.txt")
   while write(read(intext))

end

In text files, line terminators separate the lines. These line terminators are
discarded by read(f) and are not included in the strings it produces.

When there is no more data in a file, read() fails. This end-of-file condition can
be used to terminate a loop in which the read occurs, as illustrated in earlier
examples.

The operation !f generates the lines from the file f, terminating when an end of
file is reached. As with read(), line terminators are discarded. For example,
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every line := !&input do …

is equivalent to

while line := read() do …

Sometimes it is useful to be able to read a fixed number of characters instead
of lines. This is done by

reads(f, i)

where f is the file that is read and i specifies how many characters are to be read. If
f is omitted, standard input is assumed. If i is omitted, 1 is assumed. The function
reads(f, i) reads a string of i characters; line terminators are not discarded and they
appear in the string that is read. If there are not i characters remaining, only the
remaining characters are read. In this case the value produced is shorter than i. The
function reads() fails if there are no characters remaining in the file.

There is no limit to the length of a string that can be produced by read() or
reads() except for the amount of memory needed to store it.

OUTPUT

The function

write(x1, x2, …, xn)

writes a line. What write() does depends on the types of its arguments. The simplest
case is

write(s)

which simply writes a line consisting of the string s to standard output. The function
write() automatically appends a line terminator, so s becomes a new line at the end
of the file.

If there are several string arguments, as in

write(s1, s2, …, sn)

then s1, s2, …, sn are written in sequence and a line terminator is appended to the
end. Therefore, the line consists of the concatenation of s1, s2, …, sn, although the
concatenation is done on the file, not in the Icon program. When several strings are
written in succession to form a single line, it is more efficient to use write() with
several arguments than to actually concatenate the strings in the program.
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The most general case is

write(x1, x2, …, xn)

where x1, x2, …, xn may have various types. If the ith argument, xi, is not a string,
it is converted to a string if possible and then written. If xi is a file, subsequent output
is directed to that file. The following program, for example, copies shaw.txt to
standard output and also copies it to shaw.cpy:

procedure main()

   intext := open("shaw.txt") | stop("cannot open shaw.txt")
   outtext := open("shaw.cpy", "w") | stop("cannot open shaw.cpy")

   while line := read(intext) do {
      write(line)
      write(outtext, line)
      }

end

The output file can be changed in midstream. Therefore,

write(&errout, s1, &output, s2)

writes s1 to standard error output and s2 to standard output. A separate line is
written to each file; a line terminator is appended whenever the file is changed.

If the ith argument, xi, is not a file and is not convertible to a string, program
execution terminates with a diagnostic message. There is one exception; the null
value is treated like an empty string. Therefore,

write()

writes an empty line (a line terminator) to standard output.

The function

writes(x1, x2, …, xn)

is like write(), except that a line terminator is not appended to the end. One line of a
file can be built up using writes() several times. Similarly, prompting messages to
users of interactive programs can be produced with writes() to allow the user at a
computer terminal to enter input on the same visual line as the prompt. For example,
the following program prompts the user for the names of the input and output files
for a file copy:
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procedure main()

   writes("specify input file: ")

   while not(intext := open(read())) do
      writes("cannot open input file, respecify: ")

   writes("specify output file: ")
   while not(outtext := open(read(), "w")) do
      writes("cannot open output file, respecify: ")

   while write(outtext, read(intext))

end

In addition to writing, write() and writes() produce the value of their last
argument. For example,

last := write("The final value is ", count)

assigns the value of count to last.

There is no limit to the length of a string that can be written by write() or writes()
except for the amount of file space needed for it.

TEXT FILES AND BINARY FILES

Text files are usually thought of as files composed of lines that contain printable
characters, while binary files (such as executable programs) have no line structure
and may contain nonprintable characters. While this view of text and binary files fits
most situations well, in reality the distinction is not that clear.

Some computer systems, notably UNIX, do not differentiate at all between text
and binary files. On these systems, a file is simply a sequence of characters. Other
computer systems distinguish between text and binary files, and a file can be opened
in either text or binary mode. How a file is opened determines how it is treated
during input and output.

For historical reasons, it also is common on ASCII-based systems to think of
text characters as being only those in the first half of the character set (that is, those
with the high-order bit not set). However, 128 different characters have proved too
few for modern applications, and many systems use almost all of the 256 characters
for text. Consequently, the important matter is not the characters that a file contains,
but whether or not it is viewed as consisting of lines. When a file is viewed as text,
it is thought of as consisting of lines, while there is no such structure in binary files.
Conceptually, a line is a sequence of characters followed by a line terminator. When
a line is read, the sequence of characters up to the line terminator is returned and the
line terminator is discarded. When the line is written, a line terminator is appended
to become part of the file.
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Unfortunately, not all computer systems use the same line terminator. On
UNIX and the Amiga, lines are terminated by linefeed characters (hex 0A). On MS-
DOS and the Atari ST, lines are terminated by two characters: return/linefeed pairs
(hex 0D/hex 0A). On the Macintosh, lines are terminated by return characters (hex
0D). On some computer systems, the line terminator is not even composed of
characters.

Notice that except for the characters actually in the file, the effect is the same
when reading and writing lines, regardless of the nature of the line terminator: It is
discarded on input and appended on output. As long as line-oriented input/output
is done on text files, there is no need to worry about line terminators.

As mentioned previously, on UNIX systems line terminators are linefeed
characters, which can be represented literally by "\n". For example,

write(line1, "\n", line2, "\n", line3)

writes three lines, since separating line terminators are provided. Suppose a pro-
gram containing this expression is run on an MS-DOS system, where line termina-
tors are pairs (represented literally as "\r\n"). It may be surprising to learn that a single
"\n" works as a line terminator on MS-DOS also. This is because the input/output
system that stands between Icon and the actual file translates line terminators
automatically, converting (in MS-DOS) the linefeed to a return/line feed pair.

This translation is a property of the mode in which a file is opened. The
translated mode is the default. This translation can be prevented by opening a file
in the untranslated mode, using the "u" option, as in open("run.log", "uw"). The
default translated mode can be given explicitly with the "t" option, and the same
situation applies to opening a file for reading. Note that "u" and "t" options are
irrelevant on systems for which the line terminator is the linefeed character.
Standard input, standard output, and standard error output are translated.

Normally a text file is not opened in untranslated mode. However, in order to
read or write a binary file on a system for which the line terminator is not the linefeed
character, the file must be opened in untranslated mode. Otherwise, the data will be
corrupted by translation. It is worth noting that some input/output systems treat
characters other than line terminators in special ways. This is another reason for
being careful to use the untranslated mode for binary data.

Binary input and output usually are done using reads() and writes(). Using
reads() prevents line terminators, which may occur in binary data, from being
discarded. In addition, reads() permits reading a binary file in fixed-sized pieces.
And, of course, writes() prevents unwanted insertion of line terminators in binary
data.

Using read() and write() with files opened in the translated mode, and using
reads() and writes() with files opened in the untranslated mode, follows from the
usual properties of files. It is not a physical or logical necessity. However, adhering
to these conventions produces the correct results and avoids problems in most cases.
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PIPES

Some operating systems (notably UNIX) support pipes, which allow the output of
one process to be the input of another process (“piped into it”). In UNIX commands,
pipes are indicated by the character | between processes. For example,

ls | grep dat

is a command that pipes the output of ls into grep. The program ls writes the names
of the files in the current directory, and grep writes only the ones containing the
string in its argument (dat in this example).

On systems that support pipes, a command string can be opened as a pipe by
using the open option "p". For example,

iconfiles := open("ls ∗.icn", "p")

assigns a pipe to iconfiles corresponding to the command line above. Consequently,

while write(read(iconfiles))

writes out the names of all files that end in .icn.

A pipe can be opened for reading ("pr") or writing ("pw"), but not both. Opening
for reading is the default, and the "r" can be omitted.

An example of writing to a pipe is

listprocs := open("grep procedure", "pw")

so that

while write(listprocs, read())

pipes the lines from standard input into the command grep procedure, which writes
only those containing the substring "procedure".

On systems that support pipes, opening command strings as pipes provides a
very powerful technique for using other programs during the execution of an Icon
program. The use of pipes in Icon programs, however, requires not only an
understanding of the programs that are used, but also the system’s command-line
interpreter (“shell”), how programs work when connected by pipes, and how Icon’s
input and output work with pipes.

KEYBOARD FUNCTIONS

On systems that support console input and output, there are three keyboard
functions.
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The function getch() waits until a character is entered from the keyboard and
then produces the corresponding one-character string. The character is not dis-
played. The function getche() is the same as getch() except that the character is
displayed.

The function kbhit() succeeds if a character is available for getch() or getche()
but fails otherwise.

RANDOM-ACCESS INPUT AND OUTPUT

There are two functions related to random-access input and output. These functions
allow data in files to be accessed non-sequentially.

The function seek(f, i) seeks to character i in file f. As with other positions in
Icon, a nonpositive value of i can be used to reference a position relative to the end
of f. i defaults to 1. The Icon form of position identification is used; the position of the
first character of a file is 1, not 0 as it is in some other random-access facilities. seek(f,
i) fails if an error occurs. The function where(f) produces the current character
position in the file f.

Random-access input and output may produce peculiar results in the trans-
lated mode on systems that have multi-character line terminators. Seeking only the
positions previously produced by where(f) minimizes this risk.

OPERATIONS ON FILES

Files can be removed or renamed during program execution. The function remove(s)
removes (deletes) the file named s. Subsequent attempts to open the file fail, unless
it is created anew. If the file is open, the behavior of remove(s) is system dependent.
remove(s) fails if it is unsuccessful.

The function rename(s1, s2) causes the file named s1 to be known subse-
quently by the name s2. The file named s1 is effectively removed. If a file named s2
exists prior to the renaming, the behavior is system-dependent. rename(s1, s2) fails
if unsuccessful, in which case if the file existed previously it is still known by its
original name. Among possible causes of failure are a file currently open or a
necessity to copy the file’s contents to rename it.

NOTES

Library Resources

The Icon program library module io provides several procedures that may be
helpful for matters related to files and reading and writing data.
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An Overview of Graphics

Icon provides extensive facilities for creating and manipulating windows, drawing
various geometric shapes, displaying text in a variety of type faces and sizes,
accepting input from a mouse, and so on.

These facilities are too extensive to describe in detail here and are the subject
of another book (Griswold, Jeffery, and Townsend, forthcoming). This chapter
provides an overview to show the nature of the facilities and indicate what can be
done with them.

WINDOW OPERATIONS AND ATTRIBUTES

A window is a rectangular area of the screen on which a program can draw, write
text, and receive input. A window usually has a frame provided by the graphics
system:

143
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Locations in a window are measured in pixels (“picture elements”), which are
small dots that can be illuminated and colored. The window shown above is 400
pixels wide and 300 pixels high.

In the window coordinate system, the upper-left pixel has x-y coordinates (0,0)
and locations increase to the right (x-direction) and down (y-direction):

0,0

y

x

Consequently, the lower-right pixel in the window shown previously is numbered
(399,299).

Windows can be opened and closed much in the manner of files. The function
call

WOpen("size=400,300")

opens a 400×300 window like the one shown above.
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The argument "size=400,300" is an attribute of the window and describes its
size. Windows have many other attributes.

Two important attributes are the foreground color, in which drawing and text
are displayed, and the background color, which initially fills the window. The
default foreground and background colors are black and white, respectively. Other
colors can be specified by using the attributes fg and bg, as in

WOpen("size=500, 300", "fg=blue", "bg=light gray")

which produces the window

Any subsequent drawing is done in blue.

The attributes of a window can be changed after a window is opened by using
the function WAttrib(). For example, the foreground color can be changed to black by

WAttrib("fg=black")

Subsequent drawing is done in black.

DRAWING

Several drawing functions are available. A line can be drawn between two points by

DrawLine(x1, y1, x2, y2)
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where x1 and y1 give the coordinates of the first point and x2 and y2 give the
coordinates of the second point.

For example,

$define GridWidth 20
$define GridHeight 10

every x := GridWidth to 499 by GridWidth do
   DrawLine(x, 0, x, 299)
every y := GridHeight to 299 by GridHeight do
   DrawLine(0, y, 499, y)

produces

The function DrawRectangle(x, y, w, h) draws a rectangle whose upper-left
corner is at x and y, whose width is w, and whose height is h. For example,

$define XIncr 35
$define YIncr 15
$define Width 200
$define Height 100
$define Iter 8

 every i := 1 to Iter do
   DrawRectangle(i ∗ XIncr, i ∗ YIncr, Width, Height)

produces
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Circles are drawn by DrawCircle(x, y, r), where x and y specify the center of the
circle and r its radius.

The following segment of code draws a sequence of circles with centers and
radii chosen at random within a range:

$define Width 400
$define Height 400
$define Range 35
$define Min 5
$define Iter 50

WOpen("size=" || Width || "," || Height)

every 1 to Iter do
   DrawCircle(?Width, ?Height, ?Range + Min)

A typical result looks like this:
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Note that the portions of circles that fall outside the window are not drawn. Drawing
is confined to the window; anything that would be outside is “clipped” by the
graphics system.

 Closed figures can be filled with the background color as opposed to being
drawn in outline as in the examples above. For example, FillCircle() draws a circle
filled in the foreground color. A variation on the previous example is

$define Width 500
$define Height 300
$define Range 25
$define Min 9
$define Iter 25

WOpen("size=" || Width || "," || Height)

every 1 to Iter do
   DrawCircle(?Width, ?Height, ?Range + Min)

every 1 to Iter do
   FillCircle(?Width, ?Height, ?Range + Min)

which typically produces
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Other functions are provided for erasing portions of a window and drawing
individual points, arcs, polygons, and smooth curves.

TEXT

Text is written to a window much in the manner it is written to a file. The position
of text in a window is measured in rows and columns. The upper-left character is
numbered (1,1).

The function WWrite(s) writes to the window. For example,

WWrite(" Hello world")

produces the following result:



An Overview of Graphics       Chap. 12150

The initial blank in the string written provides space so that the H does not touch the
frame.

One of the advantages of using a window for text is that the size and
characteristics of the text can be specified. The characteristics of text are determined
by a font, which consists of a type face that specifies its general appearance, a size
in pixels, and its style characteristics. The font used for the image above is from a
typeface called Times in a size of 12. The style is plain (known as “roman”). Other
styles are bold, italic, bold italic, and so forth.

The font is specified by the font attribute, as in

WAttrib("font=Helvetica,12,bold")

Helvetica is a “sans-serif” font without ornamentation and is used in this book for
program material. For the window above,

WWrite(" The subject of fonts is complex")

produces
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Notice that this line is written below the last line and starts at the left edge of the
window. WWrite() produces an “end-of-line” in a manner similar to write() and
advances the text position to the next line.

COLOR

Colors are named by English phrases using a system loosely based on Berk (1982).
Examples are "brown", "yellowish green", and "moderate purple–gray". The syntax of
a color name is

where choices enclosed in brackets are optional and hue can be one of black, gray,
white, pink, violet, brown, red, orange, yellow, green, cyan, blue, purple, or magenta.
A single hyphen or space separates each word from its neighbor.

Color names that are not recognized by Icon are passed to the graphics system
for interpretation, allowing the use of system-dependent names.
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Here is another variation on drawing circles, this time with colors, which are
shown in gray here:

$define Width 500
$define Height 300
$define Range 25
$define Min 9
$define Iter 25

colors := ["dark gray", "light red", "light greenish blue", "vivid blue",
   "pale purple", "light brown", "medium brown", "orange", "black"]

WOpen("size=" || Width || "," || Height)

every 1 to Iter do {
   WAttrib("fg=" || ?colors)
   DrawCircle(?Width, ?Height, ?Range + Min)
    }

every 1 to Iter do {
   WAttrib("fg=" || ?colors)
   FillCircle(?Width, ?Height, ?Range + Min)
   }

A typical result is
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IMAGES

Icon provides facilities to draw arbitrarily complex images and to read and write
image files.

Drawing Images

DrawImage(x, y, spec) draws an arbitrarily complex figure in a rectangular
area by giving a value to each pixel in the area. x and y specify the upper left corner
of the area. spec is a string of the form "width,palette,data" where width gives the
width of the area to be drawn, palette chooses the set of colors to be used, and data
specifies the pixel values.

Each character of data corresponds to one pixel in the output image. Pixels are
written a row at a time, left to right, top to bottom. The amount of data determines
the height of the area drawn. The area is always rectangular; the length of the data
must be an integral multiple of the width.

The data characters are interpreted in paint-by-number fashion according to
the selected palette. Spaces and commas can be used as punctuation to aid readabil-
ity. The characters ~ and \377 specify transparent pixels that do not overwrite the
pixels on the canvas when the image is drawn.

The following example uses DrawImage() to draw spheres randomly. The
palette g16 contains 16 equally spaced shades of “gray” from black to white, labeled
0-9 and A-F. Transparent pixels are used for better appearance where the spheres
overlap.

$define Width 400
$define Height 300
$define Iter 100
$define Margin 20

WOpen("size=" || Width || "," || Height)

sphere := "16,g16,_
   ~~~~B98788AE~~~~ ~~D865554446A~~~_
   ~D856886544339~~ E8579BA9643323A~_
   A569DECA7433215E 7569CDB86433211A_
   5579AA9643222108 4456776533221007_
   4444443332210007 4333333222100008_
   533322221100000A 822222111000003D_
   D41111100000019~ ~A200000000018E~_
   ~~A4000000028E~~ ~~~D9532248B~~~~"

every 1 to Iter do
   DrawImage(?(Width – Margin), ?(Height – Margin), sphere)
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The result is shown below. The inset shows a magnified version of a single sphere.

Image Files

Any rectangular portion of a window can be saved in an image file. Con-
versely, image files can be read into a window. Icon supports GIF, the CompuServe
Graphics Interchange Format (Murray and vanRyper, 1994). Additional image file
formats are supported on some platforms.

An image can be loaded into a window when it is opened by using the image
attribute with a file name as value, as in

WOpen("image=kano.gif")

which opens a window using the image file kano.gif. The size of the window is set
automatically to the size of the image. The result is:

155Chap. 12 An Overview of Graphics

EVENTS

A user of a program displaying a window can provide input to the program in a
variety of ways. Typing a character or clicking a mouse button with the mouse cursor
in the window produces an event. A program can detect the event, determine where
in the window it occurred, and take different actions depending on the nature of the
event.

The function Event() produces the next event. For example,
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repeat {
   case Event() of {
     "c" : random_circle()
     "r" : random_rect()
     "q" : stop()
     "b" : break
      }
   }

is an event loop that performs different operations depending on the characters a
user types: a "c" produces a random circle, an "r" a random rectangle, a "b" breaks out
of the loop, and a "q" terminates program execution. All other events are ignored.

A mouse also can be used to produce events. A three-button mouse is standard,
with left, middle, and right buttons that can be pressed and released, each of which
produces an event. If the mouse is moved while a button is depressed, a third kind
of event, “drag” is produced. Consequently there are nine possible mouse events in
all. These events are represented by keywords:

&lpress left mouse press
&ldrag left mouse drag
&lrelease left mouse release
&mpress middle mouse press
&mdrag middle mouse drag
&mrelease middle mouse release
&rpress right mouse press
&rdrag right mouse drag
&rrelease right mouse release

When an event is processed, the position in the window where the event
occurred is automatically assigned to the keywords &x and &y.

Here is a simple event loop that draws a rectangle whose upper-left corner is
the location where a mouse button is pressed and whose lower-right corner is the
location where it is released:

repeat {
   case Event() of {
      &lpress | &mpress | &rpress: {
         x0 := &x # initial coordinates
         y0 := &y
         }
      &lrelease | &mrelease | &rrelease: {
         DrawRectangle(x0, y0, &x – x0, &y – y0)
         break
         }
      }
   }
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DIALOGS

Dialogs are temporary windows that provide information to the user of a program
and in which the user can enter information that the program needs. The simplest
dialog is the notice dialog, which alerts the user to a situation such as an error and
requires the user to acknowledge the notice. The function Notice(s) produces a
dialog with the message s. For example,

Notice("Unable to find specified resource.")

produces the dialog

The dialog remains and the program waits until the user dismisses it by clicking on
the Okay button. Other functions are provided for common situations, such as
requesting the user to provide the name of a file to open. For example,

OpenDialog("Open:", "points.drw")

produces the dialog

The suggested name is highlighted. The user can edit the name if desired. Clicking
on Okay dismisses the dialog and informs the program of the name of the file to
open. Clicking on Cancel tells the program to cancel the request to open a file.

Other forms of dialogs allow the user to enter text in several fields, select one
of several choices, turn switches on or off, and select colors interactively.
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VISUAL INTERFACES

Interaction between a program and a user can be accomplished by mouse and
keyboard events and by using dialogs as described in previous sections. A visual
interface that organizes interaction using interface tools such as menus, buttons, and
sliders makes an application easier to use and more attractive.

Interface Tools

Icon provides several kinds of interface tools:

• buttons with several kinds of functionality and in a variety of styles.

• menus in which the user can select an item from among several choices.

• text-entry fields in which the user can enter information.

• sliders and scroll bars that allow a user to specify a numerical value by
moving a “thumb”.

The dialogs in the last section showed examples of buttons and text-entry fields.
Other interface tools are illustrated in the next section.

Building an Interface

A visual interface consists of a window containing various interface tools,
identifying information, and areas in which the program can display text or images.

Icon provides a program, VIB (Townsend and Cameron, 1996), for building
interfaces interactively: creating, positioning, and configuring individual interface
tools; providing labels; and adding “decoration” such as lines to delineate areas.
This painting program provides an example of a visual interface:
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OTHER FEATURES

Icon provides many other graphics features, including:

• multiple windows

• automatic redrawing of windows when hidden parts are exposed

• hidden windows that do not appear on-screen until needed

• textures for filling figures

• “mutable” colors that allow all pixels of a given color to be changed to
   another color instantaneously

• graphic contexts that can be shared between windows
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NOTES

Library Resources

The Icon program library contains many procedures related to graphics. The
module graphics contains links to all the procedures necessary for running pro-
grams that use graphics.

There also are several programs, ranging from useful applications to visual
amusements. Examples are:

binpack bin packing
colorbook examining the colors for color names
kaleido kaleidoscopic designs
travels traveling-salesman problem
vib visual interface builder
vqueens n-queens problem (see Appendix I)

The program gxplor allows graphics facilities to be tested interactively.
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Other Features

Like any programming language with an extensive computational repertoire, Icon
has several features that do not fit neatly into any category. These features are
described in this chapter. Some additional features for debugging are described in
Chapter 16, and some features related to specific platforms are described in
Appendix H.

SORTING STRUCTURES

The values in a record, list, set, or table can be sorted to produce a list with the values
in order.

Sorting Records, Lists, and Sets

If X is a record, list, or set, the function sort(X) produces a list with the values
in sorted order. If the list or set contains various types of values, the values are first
sorted by type. The order of types in sorting is:

the null value
integers
real numbers
strings
csets
windows
files

161
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co-expressions
procedures, functions, and record constructors
lists
sets
tables
record types

For example,

sort([[ ], &letters, 1, 2.0])

produces a new list with the values in the following order:

[1, 2.0, &letters, [ ]]

Integers and real numbers are sorted in nondecreasing numerical order, while
strings and csets are sorted in nondecreasing lexical order. For example,

sort(["bcd", 3, 2, 'abc', "abc", 'bcd'])

produces

[2, 3, "abc", "bcd", 'abc', 'bcd']

Procedures, functions, and record constructors sort together by name. Within
values of one structure type, values are sorted by time of creation, with the oldest
first.

Sorting Tables

The function sort(T, i) produces a sorted list from the table T. The form of the
result produced and the sorting order depends on the value of i.

If i is 1 or 2, the size of the sorted list is the same as the size of the table. Each
value in the list is itself a list of two values: a key and its corresponding value. If i is
1, these lists are in the sorted order of the keys. If i is 2, the lists are in the sorted order
of the corresponding values. If i is omitted, 1 is assumed.

If i is 3 or 4, the size of the sorted list is twice the size of the table and the values
in the list are alternating keys and corresponding values for the elements in the table.
If i is 3, the values are in the sorted order of the keys. If i is 4, the values are in the sorted
order of the corresponding values. For example, the following program prints a
count of word occurrences in the input file, using the procedure countwords() given
previously:
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procedure main()

   wlist := sort(countwords(), 3)

   while write(left(get(wlist), 12), right(get(wlist), 4))

end

Note that get() obtains a key first and then its corresponding value. The list is
consumed in the process, but it is not needed for anything else.

Sorting by Field

The function sortf(X, i) is like sort() except that it applies only to records, lists,
and sets. List and record values in X are ordered by comparing the values of their ith
fields. For example, suppose personnel records are given by

record employee(name, job, salary)

office := employee("Joan", "supervisor", 56000)
cubicle1 := employee("Bert", "coder", 23000)
cubicle2 := employee("Melissa", "programmer", 35000)
cubicle3 := employee("John", "writer", 25000)
nook := [cubicle1, cubicle2, cubicle3, office]

Then

sortf(nook, 3)

produces a list of the records in nook sorted by salary.

STRING NAMES

As described in Chapter 8, functions and procedures have string names. Operators
also have string names that resemble their syntactic appearance. For example, "∗∗"
is the string name of the intersection operator. Operators, like functions and
procedures, are values. Operator values are not, however, available as the values of
global identifiers.

Function, procedure, and operator values can be obtained from their string
names using the function proc(s, i), which produces the function, procedure, or
operator named s but fails if s is not the name of one. The value of i is used to specify
the number of arguments for operators. The default for i is 1. This second argument
is not used for the names of procedures. For example, proc("repl") produces the
function repl and proc("main") produces the main procedure. Similarly, proc("∗", 1)
produces the unary size operation, while proc("∗", 2) produces the binary multipli-
cation operation.
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Since the value of an operator can be obtained in this way, it can be assigned
to a variable, and the operator can be called like a function or procedure. For
example, in

mult := proc("∗", 2)
write(mult(i, j))

writes the product of i and j.

The string names of prefix operators and infix operators consist of the operator
symbols as indicated previously. Some operators have special forms. These opera-
tors and their string names are:

operator string name

  s[i]     "[ ]"
  s[i:j]     "[:]"
  i to j by k     "..."

The value of i in proc(s, i) must be correct for the name of an operator. For example,
proc("…", 3) produces the operator for to-by, but proc("…") fails, since the default
value of the second argument is 1.

Although some control structures, such as alternation, are represented by an
infix syntax in the same fashion as operators, they are not values and do not have
string names. Field references and conjunction also are not values and do not have
string names.

The function args(p) produces the number of arguments expected by the
procedure p. args() produces –1 for a function, like write(), that accepts a variable
number of arguments. For a declared procedure with a variable number of argu-
ments, args() produces the negative of the number of formal parameters.

STRING INVOCATION

Functions, procedures, and operators can be invoked directly by using their string
names.

Functions and Operators

A string name of a function can be used in place of the function itself. For
example,

"write"(s)

has the same effect as

write(s)
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Similarly, operators can be invoked like procedures by using their string
names. For example,

"–"(i1, i2)

produces the difference of i1 and i2.

In string invocation, unary operators (which have operator symbols in prefix
position) are distinguished from binary operators (which have operator symbols in
infix position) by the number of arguments given. Thus,

"–"(i)

computes the negative of i.

Procedures

Procedures can be invoked by their string names in the same way as functions.
However, the Icon compiler removes declarations in a program that are not
explicitly referenced. For example, if the declaration

procedure alert(s)

   write("∗∗∗ ", s, " ∗∗∗")

   return

end

appears in a program, but there is no other appearance of the variable alert in the
program, its declaration is deleted. If an attempt is made to call alert() by its string
name, as in

messages := ["write", "alert", "stop"]
                       …

messages [2] ("no basis established")

a run-time error results because the procedure declaration for alert() has been
deleted. (The string literal "alert" is not an explicit reference to the procedure alert()
and hence does not prevent the removal of the procedure declaration.)

This problem can be avoided by using the invocable declaration, as in

invocable "alert"

which tells Icon that alert() may be called using string invocation.
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If several procedures may be called by string invocation, their names can be
given in a comma-separated list, as in

invocable "alert", "warning", "shutdown"

All procedures can be declared to be invocable by

invocable all

The invocable declaration is needed only for procedures, not for built-in
functions and operators.

DYNAMIC LOADING

The function loadfunc(lib, func) loads the C function func from the library lib and
returns a procedure. This procedure can be used to call the function in the usual
manner.

For example, if the C function bitcount() counts the number of bits in the binary
representation of an integer and is in /icon/lib/bits.so,

bitcount := loadfunc("/icon/lib/bits.so", "bitcount")

produces an Icon procedure bitcount(). For example,

bitcount(260)

produces 2.

Dynamic loading is not supported on all platforms, and the C functions must
be specifically tailored for use with Icon. For more information about dynamic
loading, see Griswold and Townsend (1995).

STORAGE MANAGEMENT

Storage is allocated automatically during program execution as strings and other
objects are created. Garbage collection occurs automatically when more space is
needed; it reclaims space used by objects that are no longer in use (Griswold and
Griswold, 1986).

This automatic management of storage normally is transparent to persons
writing and running Icon programs. However, Icon programs vary widely in their
utilization of storage, and the amount of computer memory available to Icon
programs varies from platform to platform. For these reasons, some understanding
of how Icon manages storage may be useful.
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Storage Regions

The storage that Icon allocates is divided into three parts:

1. static allocation for co-expressions and operating-system uses

2. strings

3. blocks for all other data objects (csets, lists, and so forth)

The default initial sizes of Icon’s storage regions vary somewhat from imple-
mentation to implementation. For most implementations, the default sizes for the
string and block regions are 500,000 bytes.

Appendix F describes how these default settings can be changed.

Four keywords can be used to measure the utilization of storage during
program execution. The keyword &collections generates four values: the total
number of garbage collections to date, followed by the number caused by allocations
in the static, string, and block regions respectively. For example,

write(&collections)

writes the total number of garbage collections that have occurred.

Since &collections is a generator, using a list to collect its results may be helpful.
For example, the following procedure writes all the values with identifying labels:

procedure notecol()
   local coll
   coll := [ ]
   every put(coll, &collections)
   write("static: ", coll[2])
   write("string: ", coll[3])
   write("block: ", coll[4])
   write("total: ", coll[1])
   return
end

The keyword &regions generates the sizes of the static, string, and block
regions. The value for the static region is not meaningful for most implementations
of Icon.

The keyword &storage generates the amount of space currently occupied in
the static, string, and block regions. The first value is not meaningful and is included
only for consistency with &regions. The values produced by &storage give the space
occupied; some of that space may be collectible.

The keyword &allocated generates the total amount of space allocated since
the beginning of program execution. The first value is the total for all regions. The
subsequent values are for the static, string, and block regions.
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Forcing Garbage Collection

As mentioned earlier, garbage collection occurs automatically when there is
not enough space available to satisfy an allocation request. When a garbage
collection occurs, unused space is reclaimed in all regions.

Sometimes it is useful to force a garbage collection — for example, to find out
how much space is available for future allocation. The function collect(i1, i2) causes
a garbage collection, requesting i2 bytes of storage in region i1. The regions are
identified by integers: 1 for the static region, 2 for the string region, and 3 for the
block region. The function fails if i bytes are not available in the region after
collection. If i1 is 0, a garbage collection is done, and contributes to the count of
garbage collections, but no region is identified and i2 has no effect. Both i1 and i2
default to zero, so that collect() performs an “anonymous” collection and always
succeeds.

Stacks

An Icon program uses two stacks: an evaluation stack and a system stack. The
evaluation stack contains intermediate results of computations and procedure call
information. The system stack contains calls of C functions (Icon is implemented in
C). In addition, every co-expression has an evaluation stack and a system stack.

The evaluation stack grows as a result of procedure calls and suspended
expressions. The system stack grows as a result of suspended expressions and
during garbage collection.

The evaluation stack may overflow in programs with deeply nested (or
runaway) procedure calls. The default size for the main evaluation stack usually is
10,000 words, which is ample for most programs. See Appendix F for information
about changing the size of the evaluation stack.

The system stack may overflow if there are too many simultaneously sus-
pended expressions. This may happen, for example, if there are many expressions
in conjunction in string scanning. The system stack also may overflow if long chains
of pointers are encountered during garbage collection.

The size of the system stack depends on the implementation. On a computer
with a large amount of memory, the system stack usually is very large and overflow
is unlikely. On personal computers with a limited amount of memory, the system
stack may be small and overflow may be a problem.

Unfortunately, system stack overflow may not be detected. If this happens,
adjacent memory may be overwritten, resulting in program or system malfunction.

The problem with stack overflow often is more severe in co-expressions. The
default size for created co-expressions usually is 2,000 words, with the space divided
evenly between an evaluation stack and a system stack. Thus, both are much smaller
than for the program itself. Furthermore, overflow detection is less effective in co-
expressions.
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MISCELLANEOUS FACILITIES

Executing Commands

In command-line environments, the function system(s) executes the com-
mand given by the string s as if it were entered on the command line. This facility
allows an Icon program to execute other programs and in particular to perform
platform-dependent operations that are not part of Icon itself. The value returned by
system(s) is the exit status returned by the command-line interpreter. For example,
with UNIX

system("ls  –l  ∗.icn")

lists, in long form, the files whose names end in .icn. Exit codes vary considerably,
depending on the platform and the specific program. The function system() is not
available on all platforms.

Changing Directories

The function chdir(s) changes the current directory to s but fails if there is no
such directory or the change cannot be made. For example, in UNIX

chdir("..")

changes the directory to the one above the current one.

Environment Variables

Environment variables communicate information about the environment in
which an Icon program executes. The function getenv(s) produces the value of the
environment variable s, but fails if the environment variable s is not set. For
example,

write(getenv("TRACE"))

prints the value of the environment variable TRACE, provided it is set.

On platforms that do not support environment variables, getenv() always fails.

Date and Time

The value of &date is the current date in the form yyyy/mm/dd. For example, the
value of &date for October 12, 1996 is "1996/10/12".

The value of &dateline is the date and time of day in a format that is easy to read.
An example is
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Saturday, October 12, 1996  7:21 am

The value of &clock is the current time in the form hh:mm:ss. For example, the
value of &clock for 7:21 p.m. is 19:21:00.

The value of &time is the elapsed CPU time in milliseconds, measured from the
beginning of program execution.

The function delay(i) delays program execution for i milliseconds.

Icon Identification

The value of &host identifies the computer on which Icon is running. The
format of the information varies from implementation to implementation. An
example is

jupiter.cs.arizona.edu

The value of &version is the version number and creation date of the Icon
implementation. An example is

Icon Version 9.3. October 15, 1996

Program Termination

The execution of an Icon program may be terminated for several reasons:
completion, programmer-specified termination, or error.

The normal way to terminate program execution is by return from the main
procedure. This produces a normal exit code for the process whether the main
procedure returns or fails.

Execution of the function exit(i) causes an Icon program to terminate with exit
code of i. If i is omitted, the normal exit code is produced. This function is useful for
terminating program execution in situations where it is not convenient to return to
the main procedure.

The function stop(x1, x2, …, xn) writes output in the manner of write() and then
terminates program execution with an error exit code. Output is written to standard
error output unless another file is specified.
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NOTES

Library Resources

The Icon program library contains several modules related to features de-
scribed in this chapter. The most commonly needed ones are:

datetime procedures related to date and time

sort enhanced sorting
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14

Running an Icon Program

The implementation of Icon is based on the concept of a virtual machine — an
imaginary computer that executes instructions for Icon programs. The Icon com-
piler translates Icon programs into assembly language for the virtual machine and
then converts the assembly language into virtual machine code. This virtual ma-
chine code is then “executed” on a real computer by an interpreter. This implemen-
tation method allows Icon to run on many different computer platforms.

Compiling and running Icon programs is easy and it is not necessary to
understand Icon’s virtual machine, but knowing the nature of the implementation
may help answer questions about what is going on in some situations. This chapter
describes the rudiments of running Icon programs. More information is found in
subsequent chapters and the appendices.

How Icon programs are run necessarily varies from platform to platform. On
some platforms, Icon is run from the command line. On others, it is run interactively
through a visual interface. This chapter describes how Icon is run in a command-line
environment. Even for this environment, details depend on the platform. In any
event, the user manual for a specific platform is the best guide to running Icon.

BASICS

The name of a file that contains an Icon source program must end with the suffix .icn,
as in hello.icn. The .icn suffix is used by the Icon compiler to distinguish Icon source
programs from other kinds of files.

 173
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The Icon compiler usually is named icont. To compile hello.icn, all that is
needed is

icont hello.icn

The suffix .icn is assumed if none is given, so that this can be written more simply
as

icont hello

The result is an executable icode file. The name of the icode file depends on the
platform on which Icon is run. On some platforms, notably UNIX, the name is the
same as the name of the source file, but without the suffix. On these platforms, the
compilation of hello.icn produces an icode file named hello. On other platforms,
such as MS-DOS, the icode file has the suffix .icn replaced by .exe, as in hello.exe.
For MicroSoft Windows, the suffix is .cmd and so on.

After compilation, entering

hello

runs the program.

An Icon program can be compiled and run in a single step using the –x option
following the program name. For example,

icont hello –x

compiles and executes hello.icn. An icode file also is created, and it can be executed
subsequently without recompiling the source program.

There are command-line options for icont. Options must appear before file
names on the icont command line. For example,

      icont –s hello

suppresses informative messages that icont ordinarily produces. Other command-
line options are described in Chapter 15 and Appendix E.

INPUT AND OUTPUT REDIRECTION

In a command-line environment, most input and output is done using standard
input, standard output, and standard error output. Standard input typically is read
from the keyboard, while standard output and standard error output are written to
the console.
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Standard input and standard output can be redirected so that files can be used
in place of the keyboard. For example,

hello < hello.dat > hello.out

executes hello with hello.dat as standard input and hello.out as standard output.
(The directions that the angular brackets point relative to the program name are
suggestive of the direction of data flow.)

COMMAND-LINE ARGUMENTS

Arguments on the command line following an icode file name are available to the
executing Icon program in the form of a list of strings. This list is the argument to the
main procedure. For example, suppose args.icn consists of

procedure main(arguments)

   every write(!arguments)

end

This program simply prints the arguments on the command line with which it
executed. Thus,

icont args
args Hello world

writes

Hello
world

When –x is used, the arguments follow it, as in

icont args –x Hello world

Arguments are separated by blanks. The treatment of special characters,
methods of embedding blanks in arguments, and so forth, varies from platform to
platform.

ENVIRONMENT VARIABLES

Environment variables can be used to configure Icon and specify the location of files.
For example, the environment variable IPATH can be used to specify the location of
library modules. If graphics is in
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/usr/icon/ipl/gprogs

and IPATH has that value, then

link graphics

will find it.

See Appendix F for a listing of the environment variables Icon uses.

NOTES

The Icon Optimizing Compiler

The compiler for the Icon virtual machine is fast, getting programs into
execution quickly. Programs compiled for Icon’s virtual machine run fast enough
for most purposes.

There also is an optimizing compiler for Icon, Walker (1991) and Griswold
(1996), that produces native code for platforms on which it runs. Programs compiled
by the optimizing compiler take much longer to get into execution but run faster
than those compiled for Icon’s virtual machine; a factor of 2 or 3 is typical.

In addition to longer compilation time than the compiler for Icon’s virtual
machine, the optimizing compiler requires a large amount of memory and a C
compiler for the platform on which it is run. For these reasons, the optimizing
compiler is recommended only for short programs where execution speed is the
paramount concern.

User Manuals

The best source of information for running Icon on a particular platform is the
user manual for Icon for that platform. User manuals are included with distributions
of Icon. They also are available on-line. See Appendix J.
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Libraries

Procedures provide the primary method of extending Icon’s built-in computational
repertoire. Many procedures, of course, are specific to a particular program. Other
procedures can be used in many programs.

This chapter describes procedure libraries: how to use them, the contents of
some existing libraries, and how to create your own.

USING PROCEDURE LIBRARIES

Procedure libraries are files that are prepared for linking with programs. A library
module is added to a program by a link declaration such as

link graphics

as shown in the chapter on Icon’s graphics facilities.

A module may contain one procedure or many. In order to link the procedures
needed, it is necessary to know which ones are contained in a module or, conversely,
what module contains the procedures required. In the case of graphics, it is enough
to know that the module contains all the procedures needed to extend the built-in
graphics repertoire. If the location of a library module is known, its complete path
can be specified, as in

link "/usr/icon/ipl/gprocs/graphics"

177
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Note that quotation marks must enclose specifications that do not have the syntax
of identifiers.

The path to use for linking also can be specified by the environment variable
IPATH as described in the last chapter. The use of IPATH is preferred for program
portability

THE ICON PROGRAM LIBRARY

The Icon program library is a large collection of programs, procedures, documenta-
tion, data, and support tools that is available to all Icon programmers. The library is
constantly changing. New material is added frequently and existing material is
improved. What is described here is a snapshot as of the time this book was written.
See Appendix J for instructions about obtaining the library.

Organization of the Icon Program Library

The main directories in the Icon program library hierarchy are:

docs packs procs progs gdata gdocs gpacks gprocsdata gprogs

basic graphics

As indicated, the hierarchy has two main parts: basic material and graphics
material. The initial character g indicates graphics material.

The source code for procedure modules is in the directories procs and gprocs.
As one might expect, the source code for graphics is in gprocs. The directories progs
and gprogs contain complete programs. The directories packs and gpacks contain
large packages. For example, the visual interface builder, VIB, is in a subdirectory
of gpacks.

Core Modules

The directories procs and gprocs contain hundreds of files, and in these there
are thousands of procedures. Some procedures are useful only for specialized
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applications. Others provide commonly used facilities and are designated as “core”
procedures. The core modules for the basic part of the library are:

convert type conversion and formatting procedures
datetime date and time procedures
factors procedures related to factoring and prime numbers
io procedures related to input and output
lists list manipulation procedures
math procedures for mathematical computation
numbers procedures for numerical computation and formatting
random procedures related to random numbers
records procedures to manipulate records
scan scanning procedures
sets set manipulation procedures
sort sorting procedures
strings string manipulation procedures
tables table manipulation procedures

Other Useful Procedures

Among all the procedures in the Icon program library, there are a few that are
particularly useful. The following two procedures illustrate how library procedures
can make programming easier. The code for these procedures is given in Appendix
I.

Command-Line Options

As described in Chapter 14, when Icon is run from the command line,
arguments are passed to the main procedure in the form of a list of strings, one string
for each argument. This is the main way in which information is passed to a program
that is run from the command line. For example, if a program named plot begins with

procedure main(args)

   shape := args[1]
   bound := args[2]
   points := args[3]
         …

and plot is called as

plot lemniscate 10.0 1000

shape is set to "lemniscate" , bound is set to "10.0", and points is set to "1000". A more
sophisticated program might issue an error message for an inappropriate value,
convert the second and third arguments to real and integer, respectively, and
provide defaults for omitted arguments.

Of course, command-line arguments can be used in any way one likes. The use
above has the disadvantages that the arguments must be in a fixed order and there
is only a hint in a call of what they mean.
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The standard format that is used by the Icon program library identifies options
by name, with a prefix – and follows the name by a value, if any. The program plot
then might be called as

plot –s lemniscate –b 10.0 –p 1000

In this form, the options can carry identification and be given in any order.

It is not difficult to write a preamble to a program to handle named options.
That is not necessary, however — the procedure options() in the Icon program
library takes care of almost everything.

options(args, opts) processes command-line options in the list args according
to the specifications given in the string opts. It returns a table with the option names
as keys and with corresponding values from the command line. The options and
values are deleted from args, leaving any remaining positional arguments for the
program to process.

Using options(), the program plot might start as follows:

link options

procedure main(args)

   opt_tbl := options(args, "s:b.p+")
   shape := opt_tbl["s"]
   bound := opt_tbl["b"]
   points := opt_tbl["p"]
         …

The option string consists of letters for the option names followed by a type
flag. The flag ":" indicates the option value must be a string, "." indicates a real
number, and "+" indicates an integer.

If an option appears on the command line, its value in the table is the result of
converting to the specified type. Otherwise, it is the null value.

An option that does not take a value also can be specified. In this case, no type
flag is specified. If such an option is given on the command line, its value in the table
returned by options() is 1 (and hence nonnull); otherwise it is null. An example is

link options

procedure main(args)

   opt_tbl := options(args, "s:b.p+t")
   shape := opt_tbl["s"]
   bound := opt_tbl["b"]
   points := opt_tbl["p"]
   if \opt_tbl["t"] then &trace := –1
         …
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Here, the command-line option –t turns on tracing in plot.

A test for a table value being null can be used to set defaults, as in

link options

procedure main(args)

   opt_tbl := options(args, "s:b.p+t")
   shape := \opt_tbl["s"] | "circle"
   bound := \opt_tbl["b"] | 1.0
   points := \opt_tbl["p"] | 100
   if \opt_tbl["t"] then &trace := –1
         …

Multi-character option names are supported. They must be preceded in the
option string by a – to distinguish them from single-character option names.

For the example above, this might take the form

link options

procedure main(args)

   opt_tbl := options(args, "–shape:–bound.–points+–trace")
   shape := opt_tbl["shape"] | "circle"
   bound := opt_tbl["bound"] | 1.0
   points := opt_tbl["points"] | 100
   if \opt_tbl["t"] then &trace := –1
         …

where a command-line call might be

plot –shape lemniscate –bound 10.0 –points 1000

Many other features are supported by options(). The most important ones are:

•        Options can appear in any order in the options string and on the command
line.

•   Blanks between single-character option names and the corresponding
values are optional on the command line.

•     If a command-line argument begins with an @, the subsequent string is
taken to be the name of a file that contains options, one per line.

•     options() removes option names and their values from the argument list,
leaving anything else for subsequent processing by the program.

•   The special argument – – terminates option processing, leaving  the
remaining values in the argument list.

•    options() normally terminates with a run-time error if an option value
cannot be converted to the specified type or if there is an unrecognized
option on the command line.
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•       If a third procedure-valued argument is supplied in a call of options(), that
procedure is called in case of an error instead of terminating execution

.

To include options() in a program,

link options

Structure Images

The procedure ximage(x) produces a string that describes x. If x is a structure,
it shows the structure and its elements, and if an element is itself a structure, it shows
that structure and so on. The result produced by ximage() resembles Icon code and
hence is easy for Icon programmers to understand. Indentation and newlines are
provided, so that if the result of ximage() is written, the output is nicely formatted.

It is easier to show what ximage() produces than it is to describe it. Suppose a
program contains the following lines of code:

source := table()
basis := list(6, 0)
filter := list(10)
basis[1] := filter
basis[2] := basis
filter[3] := basis
source["basis"] := basis
source["filter"] := filter

For this, write(ximage(source)) produces:

T1 := table(&null)
   T1["basis"] := L1 := list(6,0)
      L1[1] := L2 := list(10,&null)
         L2[3] := L1
      L1[2] := L1
   T1["filter"] := L2

Several things about this output are worth noting. One is that each structure is given
a name (tag). The first letter of the tag indicates its type, with the number following
producing a unique identification. The value of each structure is shown in the style
of assignment as a structure-creation function with its predominant element.

A table is shown with its default value. For example, most of the elements of
basis (L1) are 0, while most of the elements of filter (L2) are null. Only the elements
that are different from the predominant element are shown below the structure. The
result is a compact but easily understood representation of structures.

Since every structure has a unique tag, pointer loops present no problem. For
example,

Chap. 15 Libraries 183

node1 := [ ]
node2 := [ ]
put(node1, node2)
put(node2, node1)
put(node2, node2)

write(ximage(node1))

produces

L1 := list(1)
   L1[1] := L2 := list(2)
      L2[1] := L1
      L2[2] := L2

In addition to ximage(), there is a procedure xdump(x1, x2, …, xn) that applies
ximage() to x1, x2, …, xn in succession and writes the results to standard error
output. For example,

xdump("The basis:", basis)

writes

"The basis:"
L1 := list(6,0)
   L1[1] := L2 := list(10,&null)
      L2[3] := L1
   L1[2] := L1

to standard error output.

To include ximage() and xdump() in a program,

link ximage

Finding Procedures

Various listings and cross-references exist to help locate procedures in the Icon
program library. File listings provide brief summaries of each library file. A section
of a listing for procs looks like this:

keyword file description
…

argument apply apply a list of functions to an argument
argument pdae programmer-defined argument evaluation
arguments reduce perform operation on list of arguments
arguments sortff sortf with multiple field arguments
arithmetic complex perform complex arithmetic
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arithmetic rational arithmetic on rational numbers
arrange colmize arrange data into columns
array progary place program in a array
arrays array n-dimensional arrays
ascii asciinam ASCII name of unprintable character
ascii ebcdic convert between ASCII and EBCDIC
atomic tclass classify values as atomic or composite
backslash slshupto upto() with backslash escaping
backslashes slashbal balanced scanning with backslashes
balanced slashbal balanced scanning with backslashes
base basename produce base name of file
base gettext gettext (simple text-base routines)
based ansi ANSI-based terminal control

…

Procedure indexes provide information about specific procedures and the files
in which they are located. A section of the index for procs looks like this:

keyword file:procedure description
 …

character strings:charcnt character count
character strings:comb character combinations
character strings:compress character compression
characters strings:csort lexically ordered characters
characters strings:deletec delete characters
characters strings:diffcnt number of different characters
characters strings:ochars first appearance unique characters
characters strings:replc replicate characters
characters strings:schars lexical unique characters
characters strings:selectp select characters
characters strings:transpose transpose characters
chars adjuncts:Strip remove chars from string
closure genrfncs:starseq closure sequence
closure graphpak:closure transitive closure of graph
code evtmap:evtmap map event code name to event value
coefficient math:binocoef binomial coefficient
collation strings:collate string collation
combinations lists:lcomb list combinations
combinations strings:comb character combinations

…

Finally, each file itself contains detailed documentation about the procedures
in it.

CREATING NEW LIBRARY MODULES

It is easy to create a new library module. To prepare a procedure or collection of
procedures called, for example, mylibe, all that is needed is:
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icont –c mylibe

where mylibe.icn contains the desired procedures. The –c option tells the Icon
compiler to stop after translating the file instead of going on to link it to make an
executable program. (Files for library modules normally do not contain a main
procedure that is necessary to make an executable program.)

The result of using the –c option is to produce two “ucode” files with suffixes
.u1 and .u2. In the example above, these would be mylibe.u1 and mylibe.u2. This pair
of files is called a library module. (Since the names are paired, it is conventional to
refer to them as if they were a single file.)

Once the ucode files are created, mylibe can be linked in a program using

link mylibe

NOTES

Library Path Searching

On most platforms the environment variable IPATH is a blank-separated list
of paths, such as

/usr/icon/ipl/procs  /usr/icon/ipl/gprocs

When Icon searches for the location of a library file specified in a link
declaration, it always looks in the current directory first, regardless of the value of
IPATH. If the library file is not found there, the paths in IPATH are searched from left
to right.

More on Finding Things in the Library

Using World Wide Web is by far the easiest way to locate things in the Icon
program library. A variety of indexes are available in addition to the ones described
in this chapter. See Appendix J for information about Icon on the Web.

As an exercise in using the library, look in the progs directory for programs that
can help: ibrow for browsing the library and ipldoc for printing summary informa-
tion about the library.



187Chap. 16 Errors and Diagnostic Facilities

16

Errors and
Diagnostic Facilities

Errors are an inevitable by-product of programming. This chapter describes errors
that are detected by Icon and the diagnostic facilities that can be used in detecting
such errors, as well as program malfunctions that Icon doesn’t detect.

Some of the features described in this chapter have applications other than
debugging. They are included here because they usually are used for diagnostic
purposes.

ERRORS

Errors may be detected during compilation, linking, or program execution. If an
error is detected during compilation, linking is not performed. An error in compi-
lation or linking prevents the production of an executable program. A program that
compiles and links may, of course, encounter errors during execution.

Errors During Compilation

Syntactic errors in an Icon source program are detected during compilation.
Each such error produces an explanatory message and the location at which the
error was detected. Since some errors cannot be detected until after the point at
which the actual error occurred, previous portions of the program should be
examined if the problem at the specified location is not obvious.

187



Errors and Diagnostic Facilities      Chap. 16188

Compilation continues following the detection of a syntax error, but ucode
files are not produced. Since some kinds of errors cause a cascade of apparent errors
in subsequent program text, it often is advisable to correct only the first error and
attempt to compile the program again.

Errors During Linking

Inconsistent declarations may not be evident until ucode files from more than
one source file are combined to form a single icode file. For example, there may be
two declarations for a procedure or a procedure declaration and a record declaration
with the same name. Such errors are detected by the linker and result in the error
message

inconsistent redeclaration

This error prevents the production of an icode file.

Run-Time Errors

When a run-time error occurs, a diagnostic message is produced with an error
number, a brief explanation, where in the program the error occurred, and, when
possible, the offending value. Next, a traceback of procedure calls is given, followed
by the offending expression.

For example, suppose the following program is contained in the file max.icn:

procedure main()

   i := max("a", 1)

end

procedure max(i, j)

   if i > j then i else j

end

The execution of this program produces the following output:

Run–time error 102
File max.icn; Line 9
numeric expected
offending value: "a"
Traceback:
   main()
   max("a",1) from line 3 in max.icn
   {"a" > 1} from line 9 in max.icn
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ERROR CONVERSION

Most run-time errors can be converted to expression failure, rather than causing
termination of program execution.

If the value of &error is zero (its initial value), errors cause program termination
as shown above. If the value of &error is nonzero, errors are treated as failure of
expression evaluation and &error is decremented. For example, if the value of &error
had been nonzero when the expression i > j was executed in the previous example,
the expression simply would have failed.

There are a few errors that cannot be converted to failure: arithmetic overflow
and underflow, stack overflow, and errors during program initialization.

When an error is converted to failure, the value of &error is decremented and
the values of three other keywords are set:

• &errornumber is the number of the error (for example, 101).
• &errortext is the error message (for example, "integer expected").
• &errorvalue is the offending value. References to &errorvalue fail if there

is no offending value associated with the error.

A reference to any of these keywords fails if there has not been an error.

The function errorclear() removes the indication of the last error. Subsequent
references to the keywords above fail until another error occurs.

Error conversion is illustrated by the following procedure, which could be
used to process potential run-time errors:

procedure ErrorCheck()

   write("\nRun-time error ", &errornumber)
   write(&errortext)
   write("offending value: ", image(&errorvalue))
   writes("\nDo you want to continue? (n)")

   if map(read()) == ("y" | "yes") then return
   else exit(&errornumber)

end

For example,

   &error := –1
…

   write(s) | ErrorCheck()

could be used to check for an error during writing, while
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   (L := sort(T, 3)) | ErrorCheck()

could be used to detect failure to sort a table into a list (for lack of adequate storage).

A run-time error can be forced by the function runerr(i, x), which causes
program execution to terminate with error number i as if a corresponding run-time
error had occurred. If i is the number of a standard run-time error, the corresponding
error text is printed; otherwise no error text is printed. The value of x is given as the
offending value. If x is omitted, no offending value is printed.

This function makes it possible for library procedures to terminate in the same
fashion as built-in operations. It is advisable to use error numbers for programmer-
defined errors that are well outside the range of numbers used by Icon itself. Error
number 500 has the predefined text "program malfunction" for use with runerr(). This
number is not used by Icon itself.

A call of runerr() is subject to conversion to failure like any other run-time error.

STRING IMAGES

When debugging a program it often is useful to know what a value is. Its type can
be determined by type(x), but this is not helpful if the actual value is of interest. Its
value can be written, provided it is of a type that can be converted to a string,
although there is no way to differentiate among types whose written values are the
same, such as the integer 1 and the string "1". The function image(x) provides a string
representation of x for all types.

If x is numeric, image(x) produces a string showing that numerical value. For
example,

every write(image(30 | 10.7 | –150 | 2.37E20))

writes

30
10.7
–150
2.37e+20

Note that the image of real numbers may be in a different form from their literal
representation in a program.

Integer values on the order of 1030 and larger are given in an approximate form
as the nearest power of 10. For example, image(126 ^ 137) produces "~10^288".

If x is a string or cset, image(x) produces its string image with surrounding
quotes and escape sequences, if necessary, as for string and cset literals. For example,

write(image("Hello world"))
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writes "Hello world" (with the quotes). Similarly,

write(image('Hello world'))

writes ' Hdelorw'. Note that the characters in the image of a cset are in lexical order.

The data type, current size, and a serial number are given for structures. For
example,

image([1, 4, 9, 16])

produces a result such as "list_10(4)". The number after the underscore is the serial
number, which starts at 1 for the first list created during program execution and
increases with each newly created list. Lists, sets, tables, and each record type have
separate serial-number sequences.

The function serial(x) produces the serial number of x if x is a structure, co-
expression, or window but fails otherwise.

Although functions and procedures have the same type ("procedure"), they are
distinguished in string images. For example,

image(main)

produces "procedure main", while

image(trim)

produces "function trim".

In the case of a record declaration such as

record complex(rpart, ipart)

the record constructor is distinguished from functions, and

image(complex)

produces "record constructor complex". On the other hand, values of record types
have the same kind of string images that other structures have:

image(complex(0.0, 0.0))

produces a result such as "record complex_5(2)".
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Some built-in values have string images consisting of the keyword that
produces the value. For example,

image()

produces "&null".

The image of a co-expression includes its serial number and the number of
times it has been activated in parentheses. The serial number for &main is 1. For
example,

image(&main)

produces "co–expression_1(1)", assuming &main has not been activated since its
initial activation to start program execution.

PROGRAM INFORMATION

The values of the keywords &file and &line are, respectively, the name of the file and
line number in that file for the currently executing expression.

For example,

write("File ", &file, "; Line ", &line)

writes out the current file name and the line number in it. Note that a program may
consist of several parts that are compiled from different files.

The value of the keyword &progname is the name of the executing program.

TRACING

Tracing is the main debugging tool in Icon. Tracing is controlled by the value of the
keyword &trace. See Appendices E and F for other ways of enabling tracing.

Tracing Procedures

If the value of &trace is nonzero, a diagnostic message is written to standard
error output each time a procedure is called, returns, suspends, or is resumed. The
value of &trace is decremented by 1 each time a message is written, so the value
assigned to &trace can be used to limit the amount of trace output. On the other hand,

&trace := –1

allows tracing to continue indefinitely or until another value is assigned to &trace.
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A diagnostic message produced by tracing shows the name of the file contain-
ing the procedure, the line number in that file, the procedure called, the value
returned, and so on. The vertical bars indicate, by way of indentation, the level of
procedure call.

Suppose the following program is in the file fib.icn:

procedure main()

   &trace := –1

   write(fib(5))

end

procedure fib(i)

   if i = (1 | 2) then return 1
   else return fib(i – 1) + fib(i – 2)

end

The resulting trace output is:

fib.icn : 5 | fib(5)
fib.icn : 12 | | fib(4)
fib.icn : 12 | | | fib(3)
fib.icn : 12 | | | | fib(2)
fib.icn : 11 | | | | fib returned 1
fib.icn : 12 | | | | fib(1)
fib.icn : 11 | | | | fib returned 1
fib.icn : 12 | | | fib returned 2
fib.icn : 12 | | | fib(2)
fib.icn : 11 | | | fib returned 1
fib.icn : 12 | | fib returned 3
fib.icn : 12 | | fib(3)
fib.icn : 12 | | | fib(2)
fib.icn : 11 | | | fib returned 1
fib.icn : 12 | | | fib(1)
fib.icn : 11 | | | fib returned 1
fib.icn : 12 | | fib returned 2
fib.icn : 12 | fib returned 5
fib.icn : 7  main failed

The keyword &level also gives the current level of procedure call. It starts at 1
for the initial call of the main procedure and increases and decreases as procedures
are called and return.

Values in trace messages are shown in a manner similar to image(), but they
show more detail. For example, the trace output resulting from
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shape := ["cone", 0.0, 4.0, 1.2, 42.1, 11.3, &pi / 3]
build(shape)

has the form

shape.icn : 123 | build(list_5 = ["cone",0.0,4.0,...,42.1,11.3,1.047197551])

Ellipses in trace messages indicate values omitted to prevent very long lines.

Tracing Co-Expressions

Co-expression activation and return also is traced if the value of &trace is non-
zero. As for procedure calls and returns, the value of &trace is decremented for each
trace message. The form of co-expression tracing is illustrated by the following
program:

procedure main()
   local lower, upper

   &trace := –1

   lower := create !&lcase
   upper := create !&ucase

   while write(@lower, " ", @upper)

end

If this program is in the file trace.icn, the trace output is:

trace.icn : 9 | main; co-expression_1 : &null @ co-expression_2
trace.icn : 6 | main; co-expression_2 returned "a" to co-expression_1
trace.icn : 9 | main; co-expression_1 : &null @ co-expression_3
trace.icn : 7 | main; co-expression_3 returned "A" to co-expression_1
trace.icn : 9 | main; co-expression_1 : &null @ co-expression_2
trace.icn : 6 | main; co-expression_2 returned "b" to co-expression_1
trace.icn : 9 | main; co-expression_1 : &null @ co-expression_3
trace.icn : 7 | main; co-expression_3 returned "B" to co-expression_1
trace.icn : 9 | main; co-expression_1 : &null @ co-expression_2
trace.icn : 6 | main; co-expression_2 returned "c" to co-expression_1
trace.icn : 9 | main; co-expression_1 : &null @ co-expression_3
trace.icn : 7 | main; co-expression_3 returned "C" to co-expression_1

…

trace.icn : 9 | main; co-expression_1 : &null @ co-expression_2
trace.icn : 6 | main; co-expression_2 returned "x" to co-expression_1
trace.icn : 9 | main; co-expression_1 : &null @ co-expression_3
trace.icn : 7 | main; co-expression_3 returned "X" to co-expression_1
trace.icn : 9 | main; co-expression_1 : &null @ co-expression_2
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trace.icn : 6 | main; co-expression_2 returned "y" to co-expression_1
trace.icn : 9 | main; co-expression_1 : &null @ co-expression_3
trace.icn : 7 | main; co-expression_3 returned "Y" to co-expression_1
trace.icn : 9 | main; co-expression_1 : &null @ co-expression_2
trace.icn : 6 | main; co-expression_2 returned "z" to co-expression_1
trace.icn : 9 | main; co-expression_1 : &null @ co-expression_3
trace.icn : 7 | main; co-expression_3 returned "Z" to co-expression_1
trace.icn : 9 | main; co-expression_1 : &null @ co-expression_2
trace.icn : 6 | main; co-expression_2 failed to co-expression_1
trace.icn : 11 main failed

THE VALUES OF VARIABLES

Displaying Variable Values

The function display(i, f) writes the image of the current co-expression,
followed by a list of local identifiers and their values in i levels of procedure calls,
starting at the current level, followed by the program’s global identifiers and their
values. The output is written to the file f. An omitted value of i defaults to &level,
whose value is the current level of procedure. An omitted value of f defaults to
&errout. The function call display(1) includes only local identifiers in the currently
active procedure. The function call display(&level) includes local identifiers for all
procedure calls leading to the current procedure call, while display(0) includes only
global identifiers.

An example of the output of display() is given by the following program:

procedure main()
   local intext

   intext := open("build.dat") | stop("cannot open input file")

   write(linecount(intext))

end

procedure linecount(file)
   local count, line

   count := 0

   while line := read(file) do
      line ? {
         if ="stop" then break
         else count +:= 1
         }

   display()
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   return count

end

which produces the display output

co–expression_1(1)

linecount local identifiers:
   count = 39
   file = file(build.dat)
   line = "stop"
main local identifiers:
   intext = file(build.dat)
global identifiers:
   display = function display
   linecount = procedure linecount
   main = procedure main
   open = function open
   read = function read
   stop = function stop
   write = function write

Post-Mortem Dumps

If the keyword &dump has a nonzero value when program execution termi-
nates, whether by normal termination or a run-time error, a listing of the values of
variables in the style of display(1) is produced.

An example is

procedure main()

   words := set()

   &dump := 1

   while line := read() do
      every word := genword(line) do
         put(words, word)

   every write(!sort(words))

end

procedure genword(s)

   s ? {
      while tab(upto(&letters)) do {
         word := tab(many(&letters))
         suspend word
         }
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      }

end

Typical output on termination is:

Run–time error 108
File dump.icn; Line 9
list expected
offending value: set_1(0)
Traceback:
   main()
   put(set_1(0),"Icon") from line 9 in dump.icn

Termination dump:

co-expression #1 (1)
main local identifiers:
   line = "Icon Programming..."
   word = "Icon"
   words = set_1(0)

global identifiers:
   genword = procedure genword
   main = procedure main
   many = function many
   put = function put
   read = function read
   set = function set
   sort = function sort
   tab = function tab
   upto = function upto
   write = function write

VARIABLES AND NAMES

Since references to variables usually are explicit in a program, they are obvious
when reading a program. Sometimes, however, especially when debugging a
program, it is useful to know the name of a variable. This is provided by name(v),
which produces a string name for the variable v.

The names of identifiers and keywords are obvious. For example, name(main)
produces "main" and name(&subject) produces "&subject".

 For subscripted lists and tables, an indication of the type and subscript is
given.
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For subscripted string-valued variables, the variable name is given, followed
by the subscript range. For example, if the value of noun is "piano", name(noun[2])
produces "noun[2:3]".

The record type, field name, and serial number are used in the name of a field
reference. For example, in

record complex(r, i)
…

z := complex(2.0, 3.5)

name(z.r) produces a result such as "complex_4.r".

For identifiers and keywords that are variables, it is possible to get a variable
from its name. The function variable(s) produces the variable whose name is s,
provided s is an identifier or a keyword that is a variable. It fails otherwise. For
example, if summary is a global identifier, then

variable("summary") := 1

assigns 1 to the global identifier summary.

Scope rules apply to variable(s). If s is the name of a local variable in the current
procedure, the result is that local variable even if there is a global variable by the
same name.

NOTES

Images of Integers

As noted earlier in this chapter, for very large integers the function image()
produces a string showing the approximate value of the integer. This is done
because of the amount of time needed to produce a string for the exact value for a
very large integer, as mentioned in the Notes section of Chapter 10.

A consequence of using an approximation for very large integers is that

integer(image(i))

may fail, contrary to what might be expected.

Runaway Recursion

If a procedure calls itself endlessly, either directly or through a chain of calls
to other procedures, Icon’s evaluation stack eventually overflows.
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When this happens, program execution terminates with a run-time error and
a traceback is produced. Since Icon’s evaluation stack is large, the traceback may be
hundreds of lines long and very voluminous if the calls have many complicated
arguments. On occasion, it may appear that the traceback is in a loop.

In the case of an extensive traceback, it may be useful to suspect runaway
recursion first and start by examining the end of the traceback.

Using name() and variable()

The use of name() and variable() are illustrated by writing out the names and
values of local identifiers. Consider the following procedure declaration:

procedure encapsulate(term, value)
   local i, j
        …

Diagnostic lines such as

write("The value of term is: ", term)

could be provided in this procedure for each local identifier of interest. An interac-
tive interface, such as

while var := read() do
   write("The value of ", var, " is: ", image(variable(var))) |
      write(var, " is not a variable")

allows the user to find the values of variables of interest.

Some kinds of diagnostic output can be simplified by taking advantage of the
fact that name() and variable() are inverses for identifiers. For example,

every x := name(x1 | x2 | x3 | x4 | x5) do
   write(x, ":", image(variable(x)))

writes the names and values of x1, x2, x3, x4, and x5. It also is easy to change the
identifiers in such an expression.
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17

Programming
with Generators

Generators in combination with iteration and goal-directed evaluation allow com-
plex computations to be expressed in a concise and natural manner. In many cases
they internalize computations that otherwise would require complicated loops,
auxiliary identifiers, and tedious comparisons.

Few programming languages have generators. Consequently, using the full
capacity of generators requires new programming techniques and unconventional
ways of approaching problems. This chapter describes ways to use generators and
provides several idioms for computations that are natural in Icon.

NESTED ITERATION

Many problems that require the production of all possible solutions can be formu-
lated using nested iteration. For example, many word puzzles depend on the
intersection of two words in a common character. In constructing or solving such
puzzles, all the places that two words intersect may be of interest.

Given two words word1 and word2,

i := upto(word2, word1)

produces the position in word1 of one intersection. In this expression, the string
value of word2 is automatically converted to a cset consisting of the possible
characters at which an intersection in word1 can occur. While i gives the position of

201
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such an intersection in word1, the position in word2 is needed also. The pair of
positions can be determined by

if i := upto(word2, word1)
then j := upto(word1[i], word2)

This computation can be cast in terms of a procedure that locates the positions
and displays the intersection:

procedure cross(word1, word2)
   local i, j

   if i := upto(word2, word1) then {
      j := upto(word1[i], word2)
      every write(right(word2[1 to j – 1], i))
      write(word1)
      every write(right(word2[j + 1 to ∗word2], i))
      write()
      }

   return

end

For example, cross("lottery", "boat") produces

b
l o t t e r y

a
t

This approach produces at most one intersection. All intersections can be
produced by using nested iteration:

   every i := upto(word2, word1) do
      every j := upto(word1[i], word2) do {
         every write(right(word2[1 to j – 1], i))
         write(word1)
         every write(right(word2[j + 1 to ∗word2], i))
         write()
         }

In this procedure, i iterates over the positions in word1 at which there is a character
in word2, while j iterates over the positions in word2 at which this character occurs.
The results written for cross("lottery", "boat") are:
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b
 l o t t e r y

a
t

b
o
a

 l o t t e r y

b
o
a

 l o t t e r y

This nested iteration can be reformulated using a single iteration and conjunc-
tion:

every (i := upto(word2, word1)) & (j := upto(word1[i], word2)) do {
   every write(right(word2[1 to j – 1], i))
   write(word1)
   every write(right(word2[j + 1 to ∗word2], i))
   write()
   }

The effect is the same as for nested iteration because suspended generators are
resumed in a last-in, first-out manner. This is the same in a single iteration with
conjunction as it is in nested iterations.

GOAL-DIRECTED EVALUATION AND SEARCHING

Goal-directed evaluation is one of the more powerful programming techniques for
solving problems that involve searching through many possible combinations of
values. Goal-directed evaluation is commonly used in Icon for “small-scale” com-
putation, such as finding common positions in two strings. The real power of goal-
directed evaluation is evident in larger problems in which solutions are best
formulated in terms of searches over “solution spaces”.

The classical problem of this kind consists of placing eight queens on a
chessboard so that no two queens are on the same column, row, or diagonal. The
solution to this problem involves generation of possible solutions: Goal-directed
evaluation to find mutually consistent solutions and data backtracking to reuse
previous partial solutions. One solution to this problem is:
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Since there can be only one queen in a column, a natural approach to solving
this problem is to associate a queen with each column. The queens then can be placed
consecutively, starting with the first queen in the first column.

The first queen can be placed in any row, since there are no other queens on the
board yet. The natural place to put the first queen is in row one. The second queen
cannot be placed in row one, since the first queen is in this row, nor in row two, since
the first queen is on a diagonal through this position. Row three is an acceptable
place for the second queen, however. Continuing this process, each successive
queen is placed on the first free row. When an attempt is made to place the sixth
queen, however, there are no free rows:
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Some previously placed queen must be moved to another position. This is accom-
plished by backtracking to the previously placed queen, which can be placed in row
eight instead of row four:
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Another attempt is now made to place the sixth queen. No row is free,
however, and backtracking takes place to the fifth queen again. There are no more
free rows for the fifth queen, so backtracking takes place to the fourth queen, which
is now placed in row seven:

Now placement of the fifth queen is attempted again. Eventually, through
backtracking, the positions are finally adjusted so that all eight queens are placed,
as shown on the board at the beginning of this section. Notice that it is not necessary
to try all queens in all positions; a queen is moved only when its position cannot lead
to a final solution.

This informal description of the placement process corresponds to the way that
arguments are evaluated in Icon: left-to-right evaluation with last-in, first-out
resumption to obtain alternative results. The solution of the eight-queens problem
therefore can be formulated in terms of procedures that place the queens according
to the method described. A way of representing the chessboard and of determining
free positions is needed, however.

The geometrical representation of the chessboard as an eight-by-eight array is
not particularly useful. Instead, the important matter is the occupancy of columns,
rows, and diagonals. The columns are taken care of by the assignment of one queen
to each column. A list provides a natural way of representing the rows:

row := list(8, 0)
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where row [i] is zero if there is no queen on it and nonzero otherwise.

The diagonals are slightly more difficult, since there are 30 of them in all. One
approach is to divide the diagonals into two groups (see Dahl, Dijkstra, and Hoare,
1972). Fifteen of the diagonals are downward facing, with their left ends lower than
their right ends:

The other 15 diagonals are upward facing:
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In each case, the diagonals can be represented by lists:

down := list(15, 0)
up := list(15, 0)

with zero or nonzero values assigned as they were for the rows.

In placing a queen c on row r, it is necessary to assure that row, down, and up
for that position are zero. The expression

r + c – 1

selects the correct downward facing diagonal, while

8 + r – c

selects the correct upward facing diagonal. A queen c can be placed on row r if the
following comparison succeeds:

row[r] = down[r + c –1] = up[8 + r – c] = 0

To place a queen, a nonzero value is assigned to the corresponding positions in row,
down, and up. The row number is a convenient value to use, since it records the row
on which the queen is placed and can be used in displaying the resulting solution:
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row[r] <– down[r + c – 1] <– up[8 + r – c] <– r

Reversible assignment is used so that the queen can be removed automatically
during backtracking. The complete program is

procedure main()

   write(q(1), q(2), q(3), q(4), q(5), q(6), q(7), q(8))

end

procedure q(c)

   suspend place(1 to 8, c) # look for a row

end

procedure place(r, c)
   static up, down, row

   initial {
      up := list(15, 0)
      down := list(15, 0)
      row := list(8, 0)

      }

   if row[r] = down[r + c –1] = up[8 + r – c] = 0 # place if free
   then suspend row[r] <– down[r + c – 1] <– up[8 + r – c] <– r

end

The procedure q(c) corresponds to the queen on column c. The procedure
place(r, c) places queen c on row r if that position is free. If place(r, c) is successful,
it suspends so that if it is resumed because the next queen cannot be placed, the
queen is removed by reversing the assignment.

The expression

write(q(1), q(2), q(3), q(4), q(5), q(6), q(7), q(8))

serves to place the queens. When all the queens are successfully placed, the row
positions are written:

15863724

All possible solutions can be obtained by iteration:
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every write(q(1), q(2), q(3), q(4), q(5), q(6), q(7), q(8))

There are 92 solutions in all, although because of symmetries only 12 are unique.

See Appendix I for more general solutions to the n-queens problem.

RECURSIVE GENERATORS

Recursion is a powerful programming tool. While recursive procedure calls are
widely used, the use of recursion in combination with generation is not as obvious.

Consider the problem of generating all the strings from a set of characters with
the strings produced in the order of their length. For example, the results for "abc"
would be "", "a", "b", "c", "aa", "ab", "ac", "ba", … . A procedure that produces these
results is

procedure star(chars)

   suspend "" | (star(chars) || !chars)

end

In order to understand the sequence of results for this procedure, consider

star("abc")

The first result is the empty string, produced by suspending with "". The subsequent
results consist of each result in the results for star("abc") followed by each character
in "abc". Since !chars is repeatedly resumed for each value produced by star(chars),
each character in chars is appended to the first value in the results for star(chars).
Therefore, the results are "", "a", "b", "c", … . When star(chars) is resumed for its
second result, it produces "a", onto which are appended in succession "a", "b", and
"c", and so on.

Recursive generators also can be used to produce the sequences for many
recursively defined functions. For example, the Fibonacci numbers are generated by
fibseq(1, 1) using the following procedure:

procedure fibseq(i, j)

   suspend i | fibseq(j, i + j)

end
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18

String Scanning and
Pattern Matching

Although string scanning involves only a few functions and operations, its apparent
simplicity is deceptive. Except for generators, string scanning adds more to the
power of Icon and influences programming techniques more than any other feature
of the language. Furthermore, some of the ways that string scanning can be used are
not obvious. This chapter explores string scanning, concentrating on examples and
techniques that exploit its potential and lead to good programming style.

ARITHMETIC EXPRESSIONS

Arithmetic expressions are usually written in infix form with operators between the
arguments and with parentheses used for grouping. Rules of precedence and
associativity for operators are used to avoid excessive numbers of parentheses.
Icon’s syntax itself is typical in this respect. Such a syntax is designed for human use.
In computer processing, it is more convenient to dispense with precedence and
associativity rules and to use parentheses to group all arguments with their
operators or to use some other similar representation. Furthermore, it often is
convenient to have operators appear before or after their arguments; that is, to have
operations in prefix form or suffix form rather than the infix form that is easier for
human beings to read. The conversion of strings from one form to another provides
a good example of string scanning.

211
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Some typical infix operators with their relative precedences and associativities
are

operator precedence associativity

^ 3 right to left
∗ 2 left to right
/ 2 left to right
+ 1 left to right
– 1 left to right

For example, the fully parenthesized form of

"x–y–z∗delta"

is

"((x–y)–(z∗delta))"

and

"u+v/n^e^2"

is equivalent to

"(u+(v/(n^(e^2))))"

The prefix forms of these two expressions are:

"–(–(x, y),∗(z,delta))"
"+(u /(v,^(n,^(e,2))))"

Note that the variables and constants have the same form in both infix and prefix
notation.

A typical problem is to convert infix expressions with the preceding operators
into prefix form. There may be superfluous parentheses, but the infix expressions
otherwise are assumed to be well formed (that is, syntactically correct). The general
approach to the problem is recursive, with a procedure fix(exp) that converts an infix
expression exp into prefix form. Therefore, the transformation has the form

expr1 operator expr2 →  operator (fix(expr1), fix(expr2))

The first problem is to remove any outer parentheses that may occur around
the argument of fix(). Since there may be superfluous parentheses, this process must
be repeated. One approach is:
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while exp ?:= {
   2(="(", tab(bal(')')), pos(–1))
   }

As long as exp begins with a left parenthesis, the balanced string up to a right
parenthesis is matched, and pos(−1) checks that this parenthesis is the last character
of the string being scanned. If the right parenthesis is the last character of the string
being scanned, the scanning expression succeeds. The value produced by tab(bal(')'))
is assigned to exp, and the while loop continues with exp being scanned again.

The next step is to analyze exp to get the proper operator for the pattern

expr1 operator expr2

This pattern may occur in an infix expression in many ways. For example, in

"x–y∗2"
  ↑  ↑

the pattern occurs in two ways, as indicated by the arrows beneath the operators.
Precedence is used to select the correct operator. The first occurrence of the pattern
is the correct one in this example, since multiplication has higher precedence than
subtraction, and hence y is an argument of the multiplication, not the subtraction.
The correct pattern therefore is obtained by looking for the operators of lowest
precedence first.

A similar problem occurs in selecting among several operators of equal
precedence. Therefore, in "x–y–z" there are two ways the pattern could be applied.
Since subtraction is left-associative, this expression is equivalent to "(x–y)–z" and the
rightmost left-associative operator is the correct one. On the other hand, the opposite
is true of right-associative operators. For example, "x^e^2" is equivalent to "x^(e^2)".

In summary, there are two rules:

1. Look for the operator of lowest precedence first and then for operators with
increasingly higher precedence.

2. Locate the rightmost left-associative operator but the leftmost right-asso-
ciative operator.

Since string scanning operates from left to right, it is easiest to handle right-
associative operators. A procedure is:

procedure rassoc(exp, op)

   return exp ? {
      form(tab(bal(op)), move(1), tab(0))
      }

end
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where form(arg1, op, arg2) constructs the desired prefix expression:

procedure form(arg1, op, arg2)

   return op || "(" || fix(arg1) || "," || fix(arg2) || ")"

end

Note that form(arg1, op, arg2) performs the necessary rearrangement of the strings
produced by scanning.

The rightmost left-associative operator can be located by iterating over the
result sequence for the positions of all such operators to find the last one:

procedure lassoc(exp, op)
   local j

   return exp ? {
      every j := bal(op)
      form(tab(\j), move(1), tab(0))
      }

end

The expression \j determines whether any value was assigned to j in the every
loop. If bal(op) does not produce any result, the initial null value of j is not changed,
tab(\j) fails, and lassoc() fails, indicating that op does not occur in exp.

The procedures rassoc() and lassoc() must be applied in the correct order. The
obvious approach is:

if exp := lassoc(exp, '+ –') then return exp
else if exp := lassoc(exp, '∗/') then return exp
else if exp := rassoc(exp, '^') then return exp
else return exp

Note that the second arguments of lassoc() and rassoc() are character sets, allowing
all operators in a class to be processed at the same time. The final component of this
expression returns exp unchanged if it contains no operators, that is, if it is an
identifier or a constant. This presumes, of course, that exp is well formed.

The preceding program segment can be made considerably more concise by
using goal-directed evaluation in the return expression:

return lassoc(exp,'+ –' | '∗/') | rassoc(exp, '^') | exp

The argument of the return expression consists of the possible alternatives, which are
evaluated from left to right. Notice that the argument of lassoc() also contains two
alternatives, an application of the fact that
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p(expr1) | p(expr2)

and

p(expr1 | expr2)

are equivalent.

The procedure to convert infix expressions into prefix form first removes outer
parentheses and then applies lassoc() and rassoc(), as shown previously:

procedure fix(exp)

   while exp ?:= {
      2(="(", tab(bal(')')), pos(–1))
      }

   return lassoc(exp, '+ –' | '∗/') | rassoc(exp, '^') | exp

end

The rest of the program for infix-to-prefix conversion is:

procedure main()

   while write(fix(read()))

end

procedure lassoc(exp, op)
   local j

   return exp ? {
      every j := bal(op)
      form(tab(\j), move(1), tab(0))
      }

end

procedure rassoc(exp, op)

   return exp ? {
      form(tab(bal(op)), move(1), tab(0))
      }

end

procedure form(arg1, op, arg2)

   return op || "(" || fix(arg1) || "," || fix(arg2) || ")"

end
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Note that the prefix form is determined in form(); suffix or fully parenthesized infix
forms can be produced by rearranging the concatenation.

PATTERN MATCHING

The operations for transforming infix to prefix forms in the preceding sections use
patterns such as

expr1 operator expr2

to describe the structure of the string and to identify its components.

A pattern is a powerful conceptual tool for describing the structure of strings.
This section develops a methodology for describing and implementing patterns
using string scanning.

Matching Expressions

The functions tab(i) and move(i) are called matching functions because they
change the position in the subject and produce the substring of the subject between
the old and new positions. While the value of i in tab(i) can be computed in many
ways using string analysis functions, actual matching is done only by tab(i) and
move(i).

Matching expressions that extend the repertoire of matching functions provide
a way of expressing more complicated matching operations. Matching expressions
must obey a protocol that allows them to be used like matching functions. The
protocol for a matching expression expr is as follows:

1. Evaluation of expr does not change the subject.

2. If expr succeeds, it produces the substring of the subject between the
positions before and after its evaluation.

3. If expr does not produce a result, it leaves the position where it was prior
to the time expr was evaluated.

The first rule assumes that matching expressions all apply to the same subject.
The second rule is concerned with the values produced by matching expressions,
while the third rule assures that alternative matches start at the same place in the
subject. The third rule includes the possibility that a matching expression may
change the position but later restore it if a subsequent match is unsuccessful. The
three rules are largely independent.

For example,

tab(upto(',')) || move(1)
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is a matching expression, but

tab(upto(',')) || move(–1)

is not, since the value it produces is not the substring between the old and new
positions. Similarly,

tab(upto(',')) & move(1)

is not a matching expression, since it does not produce the substring of the subject
between the positions before tab(upto(',')) is evaluated and after move(1) is evalu-
ated. The expression

&subject[.&pos:&pos := upto(',')]

is not a matching expression either, since, if it is resumed, it does not restore the
previous position. On the other hand,

&subject[.&pos:&pos <– upto(',')]

is a matching expression, since, if it is resumed, the reversible assignment operation
restores the previous position. Note that in both cases the first occurrence of &pos
in the range specification must be dereferenced before a new value is assigned to
&pos.

In general, bounded expressions prevent restoration of the position, so that

{s := move(1); s || tab(0)}

is not a matching expression even though it produces the matched substring.

When using string scanning to do pattern matching, it is generally good
practice to use matching expressions. Most pattern matching is done from left to
right. In such cases,

expr1 || expr2

should be used instead of

expr1 & expr2

since the former expression produces the matched substring, while the latter does
not. Both operations perform data backtracking, however. If production of matched
substrings is not important, conjunction may be used in place of concatenation.
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Matching Procedures

A matching procedure is a procedure that is a matching expression. As an
example, consider a procedure that does what the function tab(i) does.

procedure tab(i)

   suspend .&subject[.&pos:&pos <– i]

end

Such a procedure is merely an encapsulation of a matching expression and satisfies
all the rules of protocol for matching expressions. The value returned is dereferenced;
otherwise the result would be a variable to which a value could be assigned to
change the subject. The matching function move(i) can be written as a procedure in
an analogous manner.

Using this technique, a variety of matching procedures can be written. For
example,

procedure arb()

   suspend .&subject[.&pos:&pos <– &pos to ∗&subject + 1]

end

matches any string from the current position through the end of the subject. Note
that arb() may generate more than one value. Therefore,

arb() || ="load" || arb() || ="r6"

matches any string that contains the substring "load" followed by the substring "r6";
"load" need not appear at the beginning of the subject, and "load" and "r6" need not
be consecutive substrings.

A similar procedure that matches the longest possible string first is

procedure rarb()

   suspend .&subject[.&pos: &pos <– ((∗&subject + 1) to &pos by –1)]

end

For example,

rarb() || ="."

matches the string up to and including the last period in the subject.
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Another example is a matching procedure that matches any one of several
strings in a list:

procedure lmatch(slist)

   suspend =!slist

end

For example,

lmatch(["black", "white", "gray"])

matches "black", "white", or "gray".

One advantage of using a matching procedure for high-level string processing
is that a procedure is a value. As such, it can be used as an argument to other
matching procedures. An example of such a use is given by:

procedure arbno(p)

   suspend "" | (p() || arbno(p))

end

The procedure arbno(p) matches zero or more instances of whatever p() matches.
The first alternative, the empty string, corresponds to zero matches of p(). The
second alternative matches whatever p() matches, concatenated with whatever
arbno(p) matches: zero or more instances of whatever p() matches. For example,
given

procedure shades()

   suspend arb() || lmatch(["black", "white", "gray"])

end

then arbno(shades) matches strings that contain zero or more occurrences of
"black", "white", or "gray".

The argument of arbno() must be a matching procedure. It cannot be an
arbitrary matching expression, since the argument is called in the body of the
procedure for arbno(). For example, in

arbno(lmatch(["black", "white", "gray"]))

the call of lmatch() is evaluated before arbno() is called. Not only is this order of
evaluation incorrect, but also the value assigned to the parameter p is a string, not
a procedure.
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Note that arbno() is a recursive generator. Compare it to star() given in  Chapter
17.

GRAMMARS AND LANGUAGES

A pattern characterizes a set of strings — the strings that it matches. A set of strings
is called a language. The strings in a language (its “sentences”) are derived or
described according to grammatical rules.

Natural languages, such as English, are very complex. The grammatical rules
of such languages (their syntax) describe these languages only superficially. In fact,
there are many aspects of natural languages that defy precise description. There are,
however, many interesting languages, including programming languages, in which
the structure can be defined by precise and comparatively simple grammatical rules.

Patterns and the grammars for languages have a close relationship. For some
kinds of grammars, there is a direct mapping from the rules of the grammar to
patterns that match strings in the corresponding language.

A language for a simple class of arithmetic expressions can be described
informally in terms of mutually recursive definitions:

1. An expression is a term or a term followed by a + followed by an expression.

2. A term is an element or an element followed by a ∗ followed by a term.

3. An element is one of the characters x, y, z or an expression enclosed in
parentheses.

Words in italics, like element, describe sets of strings and are called nonterminal
symbols. Specific strings, like x, are called terminal symbols.

These definitions can be expressed more formally in terms of a grammar as
follows. Let X, T, and E stand for expression, term, and element, respectively. Then a
grammar corresponding to the preceding definitions is:

X ::= T | T+X
T ::= E | E∗T
E ::= x | y | z | (X)

Uppercase letters are used here to denote nonterminal symbols, while other charac-
ters, including parentheses, stand for themselves. The symbol ::= stands for “is
defined to be”. The concatenation of symbols replaces “followed by” in the informal
definition, and the vertical bar replaces “or”. Note the similarity of this use of the
vertical bar to the alternation control structure in Icon. In a grammar, the vertical bar
has lower precedence than concatenation.

Each nonterminal symbol defines its own language: a language for expres-
sions defined by X, a language for terms defined by T, and a language for elements
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defined by E. One nonterminal symbol is designated as a “goal” for the language of
interest. X is the goal in the examples that follow.

In deriving the strings for the language defined by a nonterminal symbol, the
symbol ::= in the grammar means that an instance of the nonterminal symbol on its
left can be replaced by any one of the alternatives on the right. For example, T can
be replaced by either E or E∗T. Starting with the goal symbol X, a possible derivation
of a sentence is:

X goal
T+X second alternative for X
T+T first alternative for X
E+T first alternative for first instance of T
x+T first alternative for E
x+E first alternative for T
x+(X) fourth alternative for E
x+(T) first alternative for X
x+(E∗T) second alternative for T
x+(y∗T) second alternative for E
x+(y∗E) first alternative for T
x+(y∗z) third alternative for E

Since there are no more nonterminal symbols in this string, x+(y∗z) is a sentence in
the language defined by X.

The alternatives in the preceding derivation were chosen at random. Applica-
tion of all the rules in all possible ways produces all strings in the language. As in
most interesting languages, the language for X contains an infinite number of
strings.

Recognizers

Recognition is the process of determining whether or not a string belongs to a
language and is the converse of derivation. In the present context, this amounts to
matching the strings that are in a language and only those strings.

In the case of grammars like the preceding one, there is a straightforward and
mechanical way of producing patterns that match the strings in the language:

1. Terminal symbols are matched by corresponding matching expressions for
 the specific strings. For example, x is matched by ="x".

2. Nonterminal symbols are matched by matching procedures. For example,
X is matched by X(). The form of such matching procedures is given later.

3. A concatenation of symbols is matched by the concatenation of the match-
ing expressions for the individual symbols. For example, T+X is matched
by
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T() || ="+" || X()

4. Alternatives are matched by the alternation of matching expressions. For
 example,

E|E∗T

is matched by

E() | (E() || ="∗" || T())

5. A matching procedure encapsulates the matching expression for the corre-
sponding nonterminal symbol. For example, the matching procedure for

X ::= T|T+X

is:

procedure X()

   suspend T() | (T() || ="+" || X())

end

These rules can be used to convert any context-free grammar of the kind given
previously directly into matching procedures.

The procedure for the nonterminal goal symbol is called within a scanning
expression. Since recognition requires that the entire string be matched, not just an
initial substring of it, the scanning operation has the form

line ? {
   X() & pos(0)
   }

A program to recognize strings in the language defined by X is:

procedure main()

   while writes(line := read()) do
      if line ? {
         X() & pos(0)
         }
      then write(" accepted") else write(" rejected")

end
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The kind of recognizer given here is called a top-down, recursive-descent
recognizer with backtracking. Recognizers of this kind have two problems: they are
inefficient, and they cannot handle left recursion in the grammar. Left recursion
occurs when the definition of a nonterminal symbol has an alternative that begins
with a nonterminal symbol leading back to itself. For example, in a rule such as

X ::= X+T|T

the matching procedure

procedure X()

   suspend (X() || ="+" || T()) | T()

end

calls itself indefinitely, which causes internal stack overflow and program termina-
tion with an error message.

Despite these problems, this approach to recognizing strings is sometimes
useful. It also provides insights into the relationship between grammars and pattern
matching.

There are other possibilities. The previous matching procedures have no
arguments. By adding arguments, recognizers can be constructed for classes of
languages that are more general than context-free ones. Consider, for example, the
program

procedure main()

   while writes(line := read()) do
      if line ? {
         ABC("") & pos(0)
         }
      then write(" accepted") else write(" rejected")

end

procedure ABC(s)

   suspend =s | (="a" || ABC("b" || s) || ="c")

end

This program matches sentences in the language an bn cn for n = 0, 1, … : the empty
string, abc, aabbcc, aaabbbccc, … . This is a well-known context-sensitive lan-
guage, which cannot be derived from any context-free grammar. While there are
more obvious ways of recognizing such strings than the procedure given above, it
is representative of a general class of recognizers for context-sensitive languages.
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Tracing provides insight into the matching process. For the input line aaabbbccc,
the trace output for the procedure ABC() is:

abc.icn: 5 | ABC("")
abc.icn: 13 | ABC suspended ""
abc.icn: 5 | ABC resumed
abc.icn: 13 | | ABC("b")
abc.icn: 13 | | | ABC("bb")
abc.icn: 13 | | | | ABC("bbb")
abc.icn: 13 | | | | ABC suspended "bbb"
abc.icn: 13 | | | ABC suspended "abbbc"
abc.icn: 13 | | ABC suspended "aabbbcc"
abc.icn: 13s | ABC suspended "aaabbbccc"

Parsers

The process of recognizing strings in a language has limited usefulness.
Recognition produces only a “yes” or a “no”, but no information is produced about
how the string is matched or how its structure is related to the grammar.

It is relatively easy to convert matching procedures like those given previously
into parsing procedures that produce a “parse tree” that retains the structure of the
match. The technique produces lists of matched strings rather than concatenations
of matched strings. A matching procedure such as

procedure X()

   suspend T() | (T() || ="+" || X())

end

can be rewritten as a parsing procedure:

procedure X()

   suspend [T()] | [T(), ="+", X()]

end

Since parsing procedures produce lists, the result is a list of lists, or a tree, that shows
the details of the parse. For example, the value produced for the string "x+(y∗z)" is

[ [ ["x"] ], "+", [ [ [ "(", [ [ ["y"], "∗", [ ["z"] ] ] ], ")" ] ] ] ]

Such a list is more easily understood if it is drawn as a tree:
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It may be useful to provide a tag as the first value in each list in order to identify
the nonterminal symbol. With this addition, the parsing procedures for the gram-
mar in the preceding section are:

procedure T()

   suspend ["T", E()] | ["T", E(), ="∗", T()]

end

procedure E()

   suspend ["E", =!"xyz"] | ["E", ="(", X(), =")"]

end

procedure X()

   suspend ["X", T()] | ["X", T(), ="+", X()]

end
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Note that the more compact formulation

=!"xyz"

is used in place of the direct translation

="x" | ="y" | ="z"

The tree produced for the preceding example is:
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19

Using Structures

Icon provides the facilities that are needed for processing structures, such as the
parse trees that were developed in Chapter 18. This chapter describes how records,
lists, sets, and tables can be used for representing and manipulating trees, graphs,
and other structures.

TREES

A tree is a collection of nodes connected by directed arcs. At most one arc can be
directed into any node, although there may be many arcs directed out of a node. One
node, the root, has no arcs directed into it. Nodes that have no arcs directed out of
them are leaves. A value usually is associated with each node.

A common way to represent trees with strings corresponds to the way that
arithmetic expressions are given in prefix form (see Chapter 18). For example, the
arithmetic expression

"(a/b)+(c–d)"

has the prefix form

"+(/(a,b),–(c,d))"

and corresponds to the tree

227
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   "+"

 "/"    "–"

"a"  "b"  "c"  "d"

As shown here, trees usually are drawn with the root at the top. This is a binary tree.
That is, there are two arcs out of all nodes except the leaves.

When a tree is represented by a string, the parentheses and commas indicate
the structural relationships. The string representation of a tree is compact, but it is
awkward to process for many purposes. There are several ways that a tree can be
represented with structures. A natural method uses lists, as in

["+", ["/", ["a"], ["b"]], ["–", ["c"], ["d"]]]

In this representation each node of the tree is represented by a list. The first value in
each list is the value that is associated with the node, and subsequent values in a list
correspond to arcs to other nodes. Note that this representation is somewhat
different from the one used for parse trees in Chapter 18. In that representation,
leaves are represented by strings, not lists. The representation here is more general.

A more structured way of representing a binary tree is to use records for the
nodes:

record node(value, lptr, rptr)

where the lptr and rptr fields contain pointers to the left and right subtrees,
respectively.

Using this representation, the tree shown above can be constructed as follows:

leaf1 := node("a")
leaf2 := node("b")
leaf3 := node("c")
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leaf4 := node("d")
inode1 := node("/", leaf1, leaf2)
inode2 := node("–", leaf3, leaf4)
root := node("+", inode1, inode2)

Of course, this tree could be constructed in a single large expression.

While such a representation of a tree is useful for processing data within a
program, information read into a program and written out of a program consists of
strings. Consequently, procedures are needed to convert between the string and
record representations of trees. A procedure to do this is naturally recursive, since
the structure of a tree is recursive.

A procedure to convert the string representation of a tree to its corresponding
record representation is:

procedure rtree(stree)
   local R

   stree ? {
      if R := node(tab(upto('('))) then { # new node
         move(1) # skip paren
         R.lptr := rtree(tab(bal(','))) # left subtree
         move(1) # skip comma
         R.rptr := rtree(tab(bal(')'))) # right subtree
         }
      else R := node(tab(0)) # leaf
      }

   return R

end

This formulation assumes that the string representation of the tree is well-formed.
The two branches of the selection expression differentiate between interior and leaf
nodes. For interior nodes, rtree() is called recursively to construct the subtrees. Note
that the fields lptr and rptr have null values for leaf nodes.

Conversion from the record representation of a tree to the corresponding
string representation is similar in structure, with concatenation replacing assign-
ments to fields:

procedure stree(rtree)

   if /rtree.lptr then return rtree.value # leaf
   else return rtree.value || "(" || stree(rtree.lptr) || "," || stree(rtree.rptr) || ")"

end

This formulation assumes that if one pointer from a node is null the other one is also.
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For some purposes it is useful to be able to visit all the nodes (subtrees) of a tree.
This can be done easily with a recursive generator:

procedure visit(rtree)

   suspend rtree
   suspend visit(\(rtree.lptr | rtree.rptr)) # not leaf, continue

end

Note that this procedure reflects the recursive definition of a tree. The root node itself
is produced first, followed by the nodes for its subtrees. Here it is more convenient
to check that each pointer is non-null.

The procedure visit(rtree) can be used in a variety of ways. For example,

every write(stree(visit(rtree)))

writes all the subtrees in rtree, while

every write(visit(rtree).value)

writes the values of all nodes in the tree. Similarly,

every R := visit(rtree) do
   if /R.lptr then write(R.value)

writes the values of all leaves in rtree.

Sometimes it is necessary to know whether or not two trees have the same
structure and the same node values, that is, if they are equivalent. The operation

R1 === R2

does not determine whether or not two trees are equivalent, but only if they are
identical; that is, if R1 and R2 are the same record (see Chapter 10). A procedure to
compare two trees for equivalence is

procedure rtreeq(R1,R2)

   if R1 === R2 then return R2 # identical subtrees
   else if /(R1 | R2) then fail # only one is null
   else if {
      R1.value === R2.value & # check values and subtrees
      rtreeq(R1.lptr, R2.lptr) &
      rtreeq(R1.rtpr, R2.rptr)
      }
      then return R2
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   else fail

end

The first test checks whether R1 and R2 are identical. If they are, it is not necessary
to check anything else. If this fails, the values and subtrees are checked for
equivalence, calling rtreeq() recursively. The recursion terminates for equivalent
trees when null-valued pointers (for leaf nodes) are compared. If all subtrees are the
same, R2 is returned, conforming to the convention for built-in comparison opera-
tions.

DAGS

A directed acyclic graph, or dag, is a graph in which there are no loops leading from
a node back to itself. A rooted dag is like a tree except that there may be several arcs
directed into any node other than the root. Rooted dags occur, for example, as the
result of common subexpression elimination, where a subtree that is the same as
another is eliminated and the two arcs are directed to one of the subtrees. For
example, the infix expression

 (a/b)+((a/b)–b)

has the tree

   "+"

 "/"    "–"

"a"  "b"  "/"  "b"

   "a"  "b"
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Duplicate subtrees can be eliminated by converting this tree to a dag:

   "+"

 "/"    "–"

"a"  "b"  

Instead of converting a tree to a dag, it is easier to construct the dag in the first
place. The technique used here is to tabulate the parts of the structure that have been
built already and to direct arcs to them rather than constructing equivalent parts:

procedure rdag(stree,done)
   local R

   /done := table() # new table

   if R := \done[stree] then return R # return part already done

   stree ? {
      if R := node(tab(upto('('))) then { # new node
         move(1) # skip paren
         R.lptr := rdag(tab(bal(',')), done) # left subdag
         move(1) # skip comma
         R.rptr := rdag(tab(bal(')')), done) # right subdag
         }
      else R := node(tab(0)) # leaf
      }

   return done[stree] := R

end

The table done keeps track of portions of the dag that already have been constructed.
Its keys are strings and its values point to the corresponding nodes. When rdag() is
called to construct a dag for stree, the second argument is omitted, since no parts of
the dag have been constructed yet. Thus, the table is created on the initial call of
rdag(). The recursive call of rdag() includes the table done as its second argument,
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passing the table of the parts that have been constructed. Finally, the newly
constructed dag is added as the value corresponding to the key stree.

The method of handling the table of constructed parts deserves note. Since the
table done is created at the “top-level” call of rdag() and subsequently passed as an
argument to recursive calls of rdag(), done is local to the processing of a particular
tree. If it were global instead, independent uses of rdag() might interfere with each
other. The table cannot be constructed in an initial clause for the same reason.

Note that the tree-processing functions in the preceding section all work
properly on rooted dags. The procedure stree() processes dags as well as trees,
effectively “unfolding” them. Similarly, rtreeq() works properly on dags. The
procedure visit() works on dags, although nodes with more than one arc into them
are visited once for each arc. This causes a dag to appear to be a tree.

GRAPHS

In general, directed graphs have cycles and unconnected subgraphs, as in:

 

D

A

C

B

One way to build the corresponding structure is to represent each node in the
graph by a set. Then the values in the set are pointers — arcs to the nodes to which
the node points. For example, the program structures for the graph shown above are:

A := set()
B := set()
C := set()
D := set()
insert(A, B)
insert(A, C)
insert(B, B)
insert(D, D)

The important conceptual point is that a set is a collection of pointers to other
sets. A slightly different visualization of the structures in the programming domain
illustrates this:
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A

C

B
D

Thus, an arc is represented by (a pointer to) a set and a node is represented by the
values in the set.

The ease of manipulating this representation of graphs is illustrated by a
procedure to compute the transitive closure of a node (the node and all nodes
reachable from it by a succession of arcs):

procedure closure(n, S)
   local n1

   /S := set()

   insert(S, n)

   every n1 := !n do
      member(S, n1) | closure(n1, S)

   return S

end

Note that a set also is used to keep track of nodes as they accumulate.

Several problems arise in computations on graphs that may require a some-
what more sophisticated representation of structures. For example, values may be
associated with arcs:

D

A

C

B

2.0

1.5

3.7 5.0
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In this case, the set-of-sets approach is inadequate. However, a record type can be
used for arcs, as in

record arc(value, node)

where the value field contains the value associated with the arc and the node field
contains the set to which the arc points. Then the graph can be represented in a
program as follows:

insert(A, arc(2.0, B))
insert(A, arc(1.5, C))
insert(B, arc(3.7, B))
insert(D, arc(5.0, D))

TWO-WAY TABLES

Programs that manipulate graphs generally need to be able to read a representation
of a graph in string form and write the results in string form. For example, the
(unweighted) form of the graph in the preceding section might be represented by
strings such as:

"A–>B"
"A–>C"
"B–>B"
"D–>D"

One problem is associating labels for the nodes with corresponding program
structures. The natural solution in Icon is to use a table in which the keys are the
labels and the corresponding values are the corresponding sets. Written out expli-
citly for the graph above, this might be:

Node := table()
Node["A"] := A
Node["B"] := B
Node["C"] := C
Node["D"] := D

Consequently, Node["A"] produces the node (set) labeled A. Such a table might
be used, for example, in constructing a graph from its string representation.

On the other hand, the converse association may be needed. For example, in
writing out the results of a computation on a graph (such as the transitive closure of
a node), the labels associated with nodes may be needed.

Since any kind of value can be used as a key, a table with the keys and
corresponding values reversed can be used:
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Label := table()
Label[A] := "A"
Label[B] := "B"
Label[C] := "C"
Label[D] := "D"

It is not necessary to have two tables, however. Since the keys in a table need
not all be of the same type, the same table can be keyed with both the labels and the
nodes (sets):

Graph := table()
Graph["A"] := A
Graph["B"] := B
Graph["C"] := C
Graph["D"] := D
Graph[A] := "A"
Graph[B] := "B"
Graph[C] := "C"
Graph[D] := "D"

Such a ‘‘two-way’’ table keeps all the information needed to associate labels
with nodes and vice versa in one structure. Subscripting it with a label produces the
corresponding node, and subscripting it with a node produces the corresponding
label.
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20

Mappings and Labelings

MAPPING TECHNIQUES

The function map(s1, s2, s3) normally is used to perform a character substitution
on s1 by replacing characters in s1 that occur in s2 by the characters of s3 that are
in corresponding positions to those in s2. In this kind of use, s2 and s3 are
parameters that characterize the substitution, and s1 varies, as in

map(line, "aeiou", "∗∗∗∗∗")

which replaces all lowercase vowels in line by asterisks.

If s1 and s2 are considered to be parameters and s3 is allowed to vary, some
surprising results are possible.

Transpositions

If the value of labels is a string of distinct characters (that is, containing no
duplicates), and the value of trans is a rearrangement, or transposition, of the value
of labels, then

map(trans, labels, s3)

produces the corresponding transposition of s3. For example,

237
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map("654321", "123456", s3)

produces the reversal of the value of s3. Suppose the value of s3 is "quotas" as in

map("654321", "123456", "quotas")

Then the "6" in the first argument is replaced by the character corresponding to the
"6" in the second argument, that is, "s". Similarly, the character "5" in the first
argument is replaced by the character corresponding to the "5" in the second
argument, that is, "a", and so on:

6 5 4 3 2 1

1 2 3 4 5 6

q u o t a s

s a t o u q

The value produced is "satouq", the reversal of "quotas", since the specified transpo-
sition, "654321", is the reversal of the labeling string, "123456". If the transposition
is different, as in

map("561234", "123456", s3)

the result produced is correspondingly different. In this case it is the rotation of s3
two characters to the right (or four to the left).

Any characters can be used for the labeling as long as there are no duplicates.
The maximum size of a transposition is limited to 256. The more important
restriction is that the sizes of the second and third arguments must be the same.
Therefore,

map("654321", "123456", s3)
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only can be used to reverse six-character strings. In many cases, however, the
transposition of longer strings can be performed piece by piece. That is,

reverse(s1 || s2) == (reverse(s2) || reverse(s1))

Although there is a built-in function reverse(s), a corresponding procedure using
mapping techniques provides a model for a variety of transpositions. A procedure
is:

procedure reverse(s)
   static labels, trans, max

   initial {
      labels := "abcdefghijklmnopqrstuvwxyz"
      trans := "zyxwvutsrqponmlkjihgfedcba"
      max := ∗labels
      }

   if ∗s <= max then return map(right(trans, ∗s), left(labels, ∗s), s)
   else return reverse(right(s, ∗s – max)) || map(trans, labels, left(s, max))

end

The values chosen for labels and trans are two strings of reasonable size that are easy
to write. If s is not too long, it can be reversed by one application of map(). The
expression

left(labels, ∗s)

truncates s at the right and produces a labeling of the correct length. The expression

right(trans, ∗s)

produces the corresponding transposition from the other end of trans. Subscripting
expressions also could also be used for these purposes.

If s is too long to be reversed by one application of map(), recursion is used.
Piece-by-piece reversals of long strings can be done iteratively, of course; recursion
simply provides a more compact solution for the purposes of illustration.

The reversal process is more efficient for longer values of labels and trans. The
longest possible labeling is 256, as mentioned earlier. Strings of all 256 characters are
impractical to write out literally, but they can be computed by

labels := string(&cset)
trans := ""
every trans := !labels || trans
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A more sophisticated approach is to obtain the longest labeling and transpo-
sition strings by bootstrapping, starting with short labeling and transposition
strings. For example,

labels := "12"
trans := "21"

characterizes reversal. The procedure reverse() can be modified to perform the
bootstrapping in its initial clause:

procedure reverse(s)
   static labels, trans, max

   initial {
      labels := "12" # short label
      trans := "21" # short transposition
      max := ∗labels
      trans := reverse(string(&cset)) # long transposition
      labels := string(&cset) # long label
      max := ∗labels # new length
      }

…

When reverse() is called the first time, it calls itself to change short values of labels
and trans to the longest possible values. Note that labels, trans, and max must be
defined consistently when reverse() calls itself in its initial clause.

The two strings

labels := "12"
trans := "21"

characterize the reversal of two-character strings. The extension of this transposition
to the reversal of strings of arbitrary length depends on the way substrings of labels
and trans are selected and on the handling of the case in which s is too long to be
transposed by a single call of map(). Consider a transposition in which every odd-
numbered character is swapped with its even-numbered neighbor. For six-character
strings, this has the form

map("214365", "123456", s3)

This transposition also can be characterized by

labels := "12"
trans := "21"

which is the same labeling as used for reversal. The procedure to swap characters is
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very similar to reverse(). The two procedures differ in the way that substrings of
labels and trans are selected and in the handling of strings that are too long to be
transposed by a single call of map(), which is based on

swap(s1 || s2) == (swap(s1) || swap(s2))

The complete procedure for swapping adjacent characters is:

procedure swap(s)

   static labels, trans, max
   initial {
      labels := "12"
      trans := "21"
      max := ∗labels
      trans := swap(string(&cset))
      labels := string(&cset)
      max := ∗labels
      }

   if ∗s <= max then return map(left(trans, ∗s), left(labels, ∗s), s)
   else return swap(left(s, ∗s – max)) || map(trans, labels, right(s, max))

end

This procedure only works properly if the size of s is even.

It is reasonable to question the use of mapping techniques for transpositions
of this kind, since the procedures are relatively complicated and many transposi-
tions can be written concisely using more conventional techniques. Mapping
techniques have two advantages. First, they are fast, especially when the same
transposition is performed many times, overcoming the initialization overhead for
procedures. Second, mapping techniques also provide a clear characterization of the
transposition process.

Positional Transformations

For transpositions like

map(trans, labels, s3)

labels cannot contain duplicate characters and trans must be a transposition of
labels. If these two constraints are relaxed, other kinds of positional transformations
are possible (see Gimpel, 1976).

The strings trans and labels do not have to be the same size. If some characters
in labels are omitted from trans, the corresponding characters in s3 are omitted from
the result. For example,
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map("124578", "12345678", s3)

deletes the third and sixth characters of an eight-character string, s3. Therefore,

map("124578", "12345678", "03:56:42")

produces "035642". In cases like this, labels that are more mnemonic make the intent
clearer. Furthermore, the labels that correspond to deleted characters can be
anything; they need not be distinct. An equivalent positional transformation is:

map("HhMmSs", "Hh:Mm:Ss", s3)

If there are characters in trans that do not occur in labels, these characters are
added to the result. Consequently,

map("Hh:Mm:Ss", "HhMmSs", "035642")

produces "03:56:42".

If labels contains duplicate characters, the rightmost correspondences with
characters in s3 apply. For example,

map("be", "beeeeee", s3)

produces the first and last characters of strings s3 of length seven.

Characters in labels also can be duplicated in trans. For instance,

map("123321", "123", s3)

produces the three-character string s3 followed by its reversal. An example is:

map("123321", "123", "–∗|")

which produces " – ∗||∗ –" .

LABELINGS

In the preceding sections, characters are used as labels to identify positions of
characters in strings. Characters can also be used to stand for objects. Since there are
only 256 different characters, their use for labeling objects is limited, but when they
can be used they often allow a compact representation and efficient manipulation.
Two examples follow.
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Manipulating Decks of Cards

Since a standard deck of playing cards consists of 52 different cards, it is a
natural candidate for representation by characters, such as

deck := string(&letters)

In this string, the correspondence between characters and individual playing cards
is arbitrary. For example, "a" might correspond to the ace of clubs, "b" to the two of
clubs, "n" to the ace of diamonds, and so on.

To illustrate the ease of performing computations on such a representation,
consider shuffling a deck of cards. One approach is:

procedure shuffle(deck)
   local i

   every i := ∗deck to 2 by –1 do
      deck[?i] :=: deck[i]

   return deck

end

In order to display a shuffled deck or any hand of cards, the implied correspon-
dence between characters and cards must be converted to a readable format.
Suppose that in a “fresh” deck the first 13 characters are clubs, the second 13 are
diamonds, and so on. Then if

fresh := string(&letters)

and

suits := repl("C", 13) || repl("D", 13) || repl("H", 13) || repl("S", 13)

the mapping

map(deck, fresh, suits)

produces a string showing the suit of each card in deck. Similarly, if the denomina-
tions in each suit of a fresh deck are arranged with the ace first, followed by the two,
and so on through the jack, queen, and king, then

denoms := repl("A23456789TJQK", 4)

used in the mapping

map(deck, fresh, denoms)
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produces a string showing the denomination of each card in deck. A complete
procedure for displaying the cards with suits on one line and denominations below
is:

procedure disp(deck)
   static fresh, suits, denoms

   initial {
      fresh := string(&letters)
      suits := repl("C", 13) || repl("D", 13) || repl("H", 13) || repl("S", 13)
      denoms := repl("A23456789TJQK", 4)
      }

   write(map(deck, fresh, suits)) # suits
   write(map(deck, fresh, denoms)) #denominations

end

A typical display might be:

C D C H S S …
5 3 K T Q8 …

While such a display is understandable, it is not attractive. Consider the
problem of displaying a bridge hand in the conventional way, with each suit given
separately. One way to extract all the cards of a given suit from a hand is to map all
characters that are not in that suit into a single character. A blank provides a
convenient representation for all cards in the suits that are not of interest. If the first
13 cards in a fresh deck are clubs, then in ASCII

clubs := "ABCDEFGHIJKLM" || repl(" ", 39)

characterizes the clubs. If hand contains characters from fresh, then

map(hand, fresh, clubs)

maps all clubs in hand into distinct characters and all other characters in hand into
spaces. Characters that do not correspond to clubs are “filtered out”. Diamonds can
be obtained by using

diamonds := repl(" ", 13) || "ABCDEFGHIJKLM" || repl(" ", 26)

in a similar manner. Since the same string is used to label the characters in both suits,
corresponding clubs and diamonds are mapped into the same characters. These
characters correspond to the ranks of the card in the suit: Cards of the same rank in
different suits are mapped into the same character. Furthermore

string(cset(map(hand, fresh, clubs)))
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places the clubs in order. Any blanks are condensed into a single blank which,
because of the order of the ASCII characters, is at the beginning of the resulting
string. This blank is essentially “invisible”.

Manipulating Graphs

Chapter 19 presented a general way of representing directed graphs. In many
cases, a considerably more concise representation is possible. If the number of nodes
in a graph is small and only the structural properties of graphs are of interest, a graph
can be represented by labeling each node with a different character. An arc from one
node to another can be represented by the two characters for the nodes, in order
according to the direction of the arc. For example, the graph

c   e

a   b   d

      f

can be represented by the string

g := "abbdbfcacbcedddf"

where "ab" represents the arc from a to b, "bd" represents the arc from b to d, and so
on.

Many computations are particularly simple if such a representation is used.
For example, the number of arcs in a graph g is given by

∗g / 2

and the number of nodes is given by

∗cset(g)
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This representation assumes there is no isolated node that has no arc into it or out
of it. If such a node exists, a separate list of nodes is necessary.

Computing transitive closure illustrates the methods of manipulating this
representation of directed graphs. The first step in determining transitive closure is
to obtain the immediate successors of a set of nodes (those to which there is an arc
from any of the nodes in the set):

procedure successors(graph, nodes)
   local snodes

   snodes := ' ' # start with none

   graph ? repeat {
      if tab(any(nodes)) then snodes ++:= move(1)
      else move(2) | break # exit at end of string
      }

   return snodes

end

The successor of every odd-numbered character in graph that is contained in nodes
is added to snodes by the augmented assignment operation.

Transitive closure starts with the single node of interest and successively
expands the set of nodes that can be reached from it until no new nodes are added:

procedure closure(graph, nodes)
   local snodes

   snodes := nodes # start with given nodes

   while snodes ~=== (nodes ++:= successors(graph, nodes)) do
      snodes := nodes # update if changed

   return nodes

end

Note that at each step all the successors that can be reached from any node currently
in the closure are added to the closure.
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A

Syntax

The description of the syntax of Icon that follows uses an italic typeface to denote
syntactic classes, such as program, and a sans serif typeface to denote literal program
text, such as global. An optional symbol is denoted by the subscript opt, so that

( expressionopt )

denotes an optional expression that is enclosed in parentheses.

Alternatives are denoted by vertical stacking. For example,

program:
declaration
declaration program

defines a program to be a declaration or a declaration followed by a program. In effect,
a program is a sequence of one or more declarations.
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PROGRAMS

declaration:
global-declaration
invocable-declaration
link-declaration
procedure-declaration
record-declaration

invocable-declaration:
invocable all
invocable proc-list

proc-list:
string-literal
string-literal , proc-list

global-declaration:
global identifier-list

identifier-list:
identifier
identifier , identifier-list

link-declaration:
link link-list

link-list:
file-name
file-name , link-list

file-name:
identifier
string-literal

procedure-declaration:
header localsopt initial-clauseopt expression-sequenceopt end

header:
procedure identifier ( parameter-listopt ) ;

parameter-list:
identifier-list
identifier-list , identifier [ ]
identifier [ ]
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locals:
local-specification identifier-list ;
local-specification identifier-list ; locals

local-specification:
local
static

initial-clause:
initial expression ;

record-declaration:
record identifier ( field-listopt )

field-list:
field-name
field-name ,  field-list

expression-sequence:
expressionopt
expressionopt ; expression-sequence

expression:
parenthesized-expression
compound-expression
list-expression
field-reference-expression
subscripting-expression
invocation-expression
mutual-evaluation-expression
prefix-expression
infix-expression
to-by-expression
create-expression
return-expression
break-expression
next-expression
case-expression
if-then-else-expression
loop-expression
identifier
keyword
literal
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parenthesized-expression:
( expressionopt )

compound-expression:
{ expression-sequence }

list-expression:
[ expression-list ]

expression-list:
expressionopt
expressionopt , expression-list

field-reference-expression:
expression . field-name

subscripting-expression:
expression [ expression-list ]
expression [ range-specification ]

range-specification:
expression : expression
expression +: expression
expression –: expression

invocation-expression:
expressionopt ( expression-list  )
expressionopt  { expression-list }

mutual-evaluation-expression:
( expression-list  )

prefix-expression
prefix-operator expression

infix-expression
expression infix-operator expression

to-by expression:
expression to expression by-clauseopt

by-clause:
by  expression
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create-expression:
create  expression

return-expression
return  expressionopt
suspend  expressionopt do-clauseopt
fail

do-clause:
do  expression

break-expression:
break  expressionopt

next-expression:
next

case-expression:
case  expression of  {  case-list  }

case-list:
case-clause
case-clause  ;  case-list

case-clause:
expression : expression
default  : expression

if-then-else expression:
if  expression  then expression else-clauseopt

else-clause:
else  expression

loop-expression:
repeat  expression
while  expression do-clauseopt
until  expression do-clauseopt
every  expression do-clauseopt
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 LANGUAGE ELEMENTS

The most elementary components of Icon expressions are identifiers, reserved
words, keywords, and literals.

Identifiers

An identifier must begin with a letter or an underscore, which may be followed
by any number of letters, underscores, and digits. Upper- and lowercase letters are
distinct. The syntax for field names is the same as the syntax for identifiers.

Reserved Words

Reserved words may not be used as identifiers or field names. Reserved words
are all lowercase. The reserved words are:

break global record
by if repeat
case initial return
create invocable static
default link suspend
do local then
else next to
end not until
every of while
fail procedure

Keywords

Keywords consist of an ampersand followed by one of a selected set of
identifiers. Keyword meanings are summarized in Appendix D. The keywords,
which are lowercase, are:

&allocated &errorvalue &phi
&ascii &errout &pi
&clock &fail &pos
&collections &features &progname
&cset &file &random
&current &host &regions
&date &input &source
&dateline &lcase &storage
&digits &letters &subject
&dump &level &time
&e &line &trace
&error &main &ucase
&errornumber &null &version
&errortext &output
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Note: Keywords related to graphics are not included in the list above.

Literals

There are two categories of literals:

literal:
numeric-literal
quoted-literal

Numeric literals, in turn, are divided into two categories:

numeric-literal:
integer-literal
real-literal

Integer literals have two forms:

integer-literal:
digit-literal
radix-literal

Digit literals consist of one or more digits. Radix literals allow the radix for digits to
be specified:

radix-literal:
digit-literal radix-specification digit-specification

radix-specification:
r
R

The value of the digit literal specifies the radix and must be between 2 and 36,
inclusive. The digit specification consists of a sequence of digits and letters, where
a stands for 10, b stands for 11, and so forth through z. Upper- and lowercase letters
in digit specifications are equivalent. The characters in digit specifications must
stand for values that are less than the radix.

Real literals have two forms:

real-literal:
decimal-literal
exponent-literal

decimal-literal:
digit-literal . digit-literalopt
digit-literalopt . digit-literal
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exponent-literal:
digit-literal exponent-specification signopt digit-literal
decimal-literal exponent-specification signopt digit-literal

exponent-specification:
e
E

sign:
+
–

Quoted literals are divided into two categories:

quoted-literal:
cset-literal
string-literal

A cset literal consists of a string of characters enclosed in single quotes. A single
quote may not appear within the enclosing quotes unless it is escaped. Escape
sequences are described below.

A string literal consists of a string of characters enclosed in double quotes. A
double quote may not appear within the enclosing quotes unless it is escaped.

Escape sequences allow characters to be included in string literals that other-
wise would be awkward or impossible to include. An escape sequence consists of a
backslash followed by one or more characters that have special meanings. The
escape sequences and the characters that they stand for are:

\b backspace
\d delete
\e escape
\f formfeed
\l linefeed
\n newline
\r return
\t horizontal tab
\v vertical tab
\' single quote
\" double quote
\\ backslash
\ddd octal code
\xdd hexadecimal code
\^c control code

The linefeed and newline characters are the same in ASCII; both are included to
accommodate the terminologies of different computer systems.
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The sequence \ddd stands for the character with octal code ddd, where d is an
octal digit 0, 1, …, 7. The sequence \xdd stands for the character with hexadecimal
code dd, where d is a hexadecimal digit 0, 1, …, a, … f. Upper- and lowercase
hexadecimal digits, such as a and A, are equivalent. Only enough digits need to be
given to specify the desired octal or hexadecimal number, provided the characters
that follow cannot be interpreted as part of the escape sequence. For example, \43
specifies the ASCII character #, and \xa is equivalent to \x0a.

The control code sequence \^c stands for the ASCII character control-c. For
example, \^A stands for control-A. Specifically, \^c stands for the character corre-
sponding to the five low-order bits of c.

If the character following a backslash is not one of those in the preceding list,
the backslash is ignored. Therefore, \a stands for a.

PROGRAM LAYOUT

White Space

Program text that has no meaning in itself is collectively called “white space”.
Except in quoted literals, blanks and tabs serve as white space to separate tokens that
otherwise could be construed as a single token. For example,

ifnot expr1 then expr2

is syntactically erroneous, since ifnot is interpreted as an identifier rather than two
reserved words.

Blanks and tabs otherwise have no significance. For example, blanks and tabs
can appear between a prefix operator and its argument. Blanks and tabs can also be
used as optional separators to improve the visual appearance of a program. Blanks
or tabs are necessary to separate infix operators from prefix operators in situations
that are ambiguous. For example,

expr1||expr2

might be interpreted in two ways, as concatenation or as alternation followed by
repeated alternation of the second expression. The Icon compiler resolves such
potential ambiguities by taking the longest legal sequence of operator symbols to be
a single token, so this example is interpreted as concatenation. A blank between the
two bars would cause the expression to be interpreted as alternation followed by
repeated alternation.

A #, except in a quoted literal, introduces a comment, which terminates at the
end of the line. A comment is considered to be white space by the Icon compiler.
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 Semicolons and Line Breaks

The Icon compiler generally is indifferent to program layout, but it automati-
cally inserts a semicolon at the end of a line if an expression ends on that line and the
next line begins with another expression. Therefore,

x := 1
y := 2
z := 0

is equivalent to

x := 1; y := 2; z := 0

Because the compiler inserts semicolons at the ends of lines where possible, it
usually is not necessary to use semicolons explicitly. However, care must be taken
in splitting an expression between two lines. In the case of an infix operation, the
operator should be placed at the end of the first line, not the beginning of the second.
Therefore,

expr1 || expr2

should be split as

expr1 ||
   expr2

The compiler does not insert a semicolon at the end of the first line, since the
expression at the end of that line is not complete. However, in

expr1
   || expr2

a semicolon is inserted at the end of the first line, since

expr1; || expr2

is syntactically correct. Here || is two prefix repeated alternation operators.

Identifiers can be arbitrarily long, but they must be contained on one line. A
quoted literal can be continued from one line to the next by placing an underscore
after the last character of the literal on a line and omitting the closing quote. If a
quoted literal is continued in this way, the underscore as well as any white space at
the beginning of the next line are ignored. For example,

257App. A Syntax

cons := "abcdfghjklmno_
   pqrstvwxyz"

is equivalent to

cons := "abcdfghjklmnopqrstvwxyz"

PRECEDENCE AND ASSOCIATIVITY

Icon has many operators. Precedence determines how different operators, in com-
bination, group with their arguments. Associativity determines whether operations
group to the left or to the right.

The list that follows gives operators by precedence from highest to lowest.
Operators with the same precedence are grouped together; lines separate groups.
Most infix operators are left-associative. Those that associate to the right are marked
as such.

( expr )
{ expr1; expr2; … }
[ expr1, expr2, … ]
expr. f
expr1 [ expr2, expr3, … ]
expr1 [ expr2 : expr3 ]
expr1 [ expr2 +: expr3 ]
expr1 [ expr2 –: expr3 ]
expr ( expr1, expr2, … )
expr { expr1, expr2, … }
___________________________________

not expr
| expr
! expr
∗ expr
+ expr
– expr
. expr
/ expr
\ expr
= expr
? expr
~ expr
@ expr
^ expr
___________________________________
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expr1 \ expr2
expr1 @ expr2
expr1 ! expr2
___________________________________

expr1 ∧ expr2  (right associative)
___________________________________
expr1 ∗ expr2
expr1 / expr2
expr1 % expr2
expr1 ∗∗ expr2
___________________________________
expr1 + expr2
expr1 – expr2
expr1 ++ expr2
expr1 – – expr2
___________________________________

expr1 || expr2
expr1 ||| expr2
___________________________________

expr1 < expr2
expr1 <= expr2
expr1 = expr2
expr1 >= expr2
expr1 > expr2
expr1 ~= expr2
expr1 << expr2
expr1 <<= expr2
expr1 == expr2
expr1 >>= expr2
expr1 >> expr2
expr1 ~== expr2
expr1 === expr2
expr1 ~=== expr2
___________________________________

expr1 | expr2
___________________________________

expr1 to expr2 by expr3
___________________________________
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expr1 := expr2 (right associative)
expr1 <– expr2 (right associative)
expr1 :=: expr2 (right associative)
expr1 <–> expr2 (right associative)
expr1 op:= expr2 (right associative)
___________________________________

expr1 ? expr2
___________________________________

expr1 & expr2
___________________________________

break expr
case expr of { expr1 : expr2; expr3 : expr4; … }
create expr
every expr1 do expr2
fail
if expr1 then expr2 else expr3
next
repeat expr
return expr
suspend expr1 do expr2
until expr1 do expr2
while expr1 do expr2
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B

Characters

Characters serve two purposes: the representation of text using glyphs and control
operations.

GLYPHS

The glyphs assigned to character codes associate meaning with the codes. Many sets
of glyphs are used for purposes ranging from textual material to pictograms and
printer’s ornaments.

For textual material, on most computer platforms the underlying interpreta-
tion for letters, digits, and common punctuation marks is based on the 7-bit ASCII
character set (American National Standards Institute, 1986) that assigns glyphs and
other interpretations to the first 128 characters.

Various computer platforms extend ASCII in different ways, using different
glyphs or associating them with different character codes.

It is now common to assign glyphs to the 128 remaining characters. This allows
the use of characters from various languages, as well as various symbols. A
collection of glyphs is called a font. Thousands of different fonts are available for
various computer platforms.

One standard set of glyphs, which includes ASCII as a subset, is defined by
ISO8859-1 (ISO, 1987) and is called Latin-1. This set is used on most UNIX worksta-
tions.
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Another set of glyphs, called ECS (“extended character set”) (Microsoft, 1991)
is used by MS-DOS in the absence of other fonts.

Finally, there is the EBCDIC character set (Ralston and Reilly, 1993) used on
IBM mainframes. It assigns glyphs for letters, digits, and common punctuation
marks to different character codes than ASCII does. Several different versions of
EBCDIC are in use. The most commonly used one is shown in the table in this
appendix.

In the table that follows, columns one through three show the decimal, octal,
and hexadecimal values for codes. The Latin-1 encoding is shown in column four.
Columns five and six show typical text fonts for the Macintosh and Microsoft
Windows. The seventh column shows ECS, and the eighth EBCDIC. Finally, the last
two columns show the Macintosh versions of symbols and printer ornaments
(“dingbats”).

000 000 00
001 001 01 b
002 002 02 a
003 003 03 c
004 004 04 d
005 005 05 e
006 006 06 f
007 007 07 g
008 010 08 h
009 011 09 i
010 012 0a j
011 013 0b k
012 014 0c l
013 015 0d m
014 016 0e n
015 017 0f o
016 020 10 p
017 021 11 q
018 022 12 r
019 023 13 s
020 024 14 t
021 025 15 u
022 026 16 v
023 027 17 w
024 030 18 x
025 031 19 y
026 032 1a z
027 033 1b {
028 034 1c |
029 035 1d }
030 036 1e ~
031 037 1f 0

dec. oct. hex. Latin-1 Macintosh Windows ECS EBCDIC symbols dingbats
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dec. oct. hex. Latin-1 Macintosh Windows ECS EBCDIC symbols dingbats

032 040 20
033 041 21
034 042 22
035 043 23
036 044 24
037 045 25
038 046 26
039 047 27
040 050 28
041 051 29
042 052 2a
043 053 2b
044 054 2c
045 055 2d
046 056 2e
047 057 2f
048 060 30
049 061 31
050 062 32
051 063 33
052 064 34
053 065 35
054 066 36
055 067 37
056 070 38
057 071 39
058 072 3a
059 073 3b
060 074 3c
061 075 3d
062 076 3e
063 077 3f
064 100 40
065 101 41
066 102 42
067 103 43
068 104 44
069 105 45
070 106 46
071 107 47
072 110 48
073 111 49
074 112 4a
075 113 4b
076 114 4c
077 115 4d
078 116 4e
079 117 4f
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dec. oct. hex. Latin-1 Macintosh Windows ECS EBCDIC symbols dingbats

080 120 50
081 121 51
082 122 52
083 123 53
084 124 54
085 125 55
086 126 56
087 127 57
088 130 58
089 131 59
090 132 5a
091 133 5b
092 134 5c
093 135 5d
094 136 5e
095 137 5f
096 140 60
097 141 61
098 142 62
099 143 63
100 144 64
101 145 65
102 146 66
103 147 67
104 150 68
105 151 69
106 152 6a
107 153 6b
108 154 6c
109 155 6d
110 156 6e
111 157 6f
112 160 70
113 161 71
114 162 72
115 163 73
116 164 74
117 165 75
118 166 76
119 167 77
120 170 78
121 171 79
122 172 7a
123 173 7b
124 174 7c
125 175 7d
126 176 7e
127 177 7f
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dec. oct. hex. Latin-1 Macintosh Windows ECS EBCDIC symbols dingbats

128 200 80
129 201 81
130 202 82
131 203 83
132 204 84
133 205 85
134 206 86
135 207 87
136 210 88
137 211 89
138 212 8a
139 213 8b
140 214 8c
141 215 8d
142 216 8e
143 217 8f
144 220 90
145 221 91
146 222 92
147 223 93
148 224 94
149 225 95
150 226 96
151 227 97
152 230 98
153 231 99
154 232 9a
155 233 9b
156 234 9c
157 235 9d
158 236 9e
159 237 9f
160 240 a0
161 241 a1
162 242 a2
163 243 a3
164 244 a4
165 245 a5
166 246 a6
167 247 a7
168 250 a8
169 251 a9
170 252 aa
171 253 ab
172 254 ac
173 255 ad
174 256 ae
175 257 af
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dec. oct. hex. Latin-1 Macintosh Windows ECS EBCDIC symbols dingbats

176 260 b0
177 261 b1
178 262 b2
179 263 b3
180 264 b4
181 265 b5
182 266 b6
183 267 b7
184 270 b8
185 271 b9
186 272 ba
187 273 bb
188 274 bc
189 275 bd
190 276 be
191 277 bf
192 300 c0
193 301 c1
194 302 c2
195 303 c3
196 304 c4
197 305 c5
198 306 c6
199 307 c7
200 310 c8
201 311 c9
202 312 ca
203 313 cb
204 314 cc
205 315 cd
206 316 ce
207 317 cf
208 320 d0
209 321 d1
210 322 d2
211 323 d3
212 324 d4
213 325 d5
214 326 d6
215 327 d7
216 330 d8
217 331 d9
218 332 da
219 333 db
220 334 dc
221 335 dd
222 336 de
223 337 df
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dec. oct. hex. Latin-1 Macintosh Windows ECS EBCDIC symbols dingbats

224 340 e0
225 341 e1
226 342 e2
227 343 e3
228 344 e4
229 345 e5
230 346 e6
231 347 e7
232 350 e8
233 351 e9
234 352 ea
235 353 eb
236 354 ec
237 355 ed
238 356 ee
239 357 ef
240 360 f0
241 361 f1
242 362 f2
243 363 f3
244 364 f4
245 365 f5
246 366 f6
247 367 f7
248 370 f8
249 371 f9
250 372 fa
251 373 fb
252 374 fc
253 375 fd
254 376 fe
255 377 ff
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ASCII CONTROL CHARACTERS

The first 32 characters in ASCII are called control characters and are entered by
depressing the control key while typing another character. These characters have
associated names and functions, such as backspacing and tabbing. These are shown
in the following table.

dec. oct. hex. escape seq. coding function

000 000 00 control-@ null
001 001 01 control-a
002 002 02 control-b
003 003 03 control-c
004 004 04 control-d
005 005 05 control-e
006 006 06 control-f
007 007 07 control-g bell
008 010 08 \b control-h backspace
009 011 09 \t control-i tab
010 012 0a \n control-j linefeed
011 013 0b \v control-k vertical tab
012 014 0c \f control-l formfeed
013 015 0d \r control-m return
014 016 0e control-n
015 017 0f control-o
016 020 10 control-p
017 021 11 control-q
018 022 12 control-r
019 023 13 control-s
020 024 14 control-t
021 025 15 control-u
022 026 16 control-v
023 027 17 control-w
024 030 18 control-x
025 031 19 control-y
026 032 1a control-z
027 033 1b \e control-[ escape
028 034 1c control-\
029 035 1d control-]
030 036 1e control-^
031 037 1f control-_

269App. C Preprocessing

C

Preprocessing

All Icon source code passes through a preprocessor before compilation. Preproces-
sor directives control the actions of the preprocessor and are not passed to the Icon
compiler. If no preprocessor directives are present, the source code passes through
the preprocessor unaltered.

A source line is a preprocessor directive if its first non-white-space character
is a $ and if that $ is not followed by another punctuation character. The general form
of a preprocessor directive is

$directive   arguments # comment

White space separates tokens when needed, and case is significant, as in Icon
proper. The entire preprocessor directive must appear on a single line, which cannot
be continued but can be arbitrarily long. The comment portion is optional. An
invalid preprocessor directive produces an error except when skipped by condi-
tional compilation.

Preprocessor directives can appear anywhere in an Icon source file without
regard to procedure, declaration, or expression boundaries.

INCLUDE DIRECTIVES

An include directive has the form

$include filename
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An include directive causes the contents of the specified file to be interpolated in the
source file. The file name must be quoted if it is not in the form of an Icon identifier.

Included files may be nested to arbitrary depth, but a file may not include itself
either directly or indirectly. File names are looked for first in the current directory
and then in the directories listed in the environment variable LPATH. Relative paths
are interpreted in the preprocessor’s context and not in relation to the including file’s
location.

LINE DIRECTIVES

A line directive has the form

$line n filenameopt

The line containing the preprocessing directive is considered to be line n of the given
file (or the current file, if unspecified) for diagnostic and other purposes. The line
number is a simple unsigned integer. The file name must be quoted if it is not in the
form of an Icon identifier.

DEFINE DIRECTIVES

A define directive has the form

$define name text

The define directive defines the text to be substituted for later occurrences of the
identifier name in the source code. text is any sequence of characters except that any
string or cset literals must be properly terminated within the definition. Leading and
trailing white space are not part of the definition. The text can be empty.

Duplicate definition of a name is allowed if the new text is exactly the same as
the old text. This prevents problems from arising if a file of definitions is included
more than once. The text must match exactly: For example, 3.0 is not the same as
3.000.

Definitions remain in effect through the end of the current original source file,
crossing include boundaries, but they do not persist from one source file to another.

If the text begins with a left parenthesis, it must be separated from the name by
at least one space. Note that the Icon preprocessor does not provide parameterized
definitions.

It is possible to define replacement text for Icon reserved words or keywords,
but this generally is dangerous and ill-advised.
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UNDEFINE DIRECTIVES

An undefine directive has the form

$undef name

The current definition of name is removed, allowing its redefinition if desired. It is
not an error to undefine a nonexistent name.

PREDEFINED SYMBOLS

At the start of each source file, several symbols are automatically defined to indicate
the Icon system configuration. If a feature is present, the symbol is defined with a
value of 1. If a feature is absent, the symbol is not defined. The most commonly used
predefined symbols are listed below. See Griswold, Jeffery, and Townsend (1996)
for a complete list.

predefined symbol &features value

_MACINTOSH Macintosh
_MSDOS MS-DOS
_MSDOS_386 MS-DOS/386
_MS_WINDOWS_NT MS Windows NT
_OS2 OS/2
_UNIX UNIX
_VMS VMS

_WINDOW_FUNCTIONS window functions

_MS_WINDOWS MS Windows
_PRESENTATION_MGR Presentation Manager
_X_WINDOW_SYSTEM X Windows

_PIPES pipes
_SYSTEM_FUNCTION system function

Predefined symbols have no special status. Like other symbols, they can be
undefined and redefined.

SUBSTITUTION

As input is read, each identifier is checked to see if it matches a previously defined
symbol. If it does, the value replaces the identifier in the input stream.

No white space is added or deleted when a definition is inserted. The
replacement text is scanned for defined identifiers, possibly causing further substi-
tution, but recognition of the original identifier name is disabled to prevent infinite
recursion.
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Occurrences of defined names within comments, literals, or preprocessor
directives are not altered. The preprocessor is ignorant of multi-line string literals,
however, and it potentially can be fooled by these.

Substitution cannot produce a preprocessor directive. By then it is too late.

CONDITIONAL COMPILATION

Conditional compilation directives have the form

$ifdef name

and

$ifndef name

$ifdef or $ifndef cause subsequent code to be accepted or skipped depending on
whether name has been previously defined. $ifdef succeeds if a definition exists;
$ifndef succeeds if a definition does not exist. The value of the definition does not
matter.

A conditional block has this general form:

$ifdef name   or   $ifndef name
   … code to use if test succeeds …
$else
   … code to use if test fails …
$endif

The $else section is optional. Conditional blocks can be nested provided that all of
the $if/$else/$endif directives for a particular block are in the same source file. This
does not prevent the conditional inclusion of other files via $include as long as any
included conditional blocks are similarly self-contained.

ERROR DIRECTIVES

An error directive has the form

$error text

An $error directive forces a fatal compilation error displaying the given text. This is
typically used with conditional compilation to indicate an improper set of defini-
tions.
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D

Language Reference Manual

This reference manual summarizes Icon’s built-in repertoire. The descriptions are
brief; they are intended for reference only. Operations related to graphics are not
included.

The operations fall into four main categories: functions, operators, keywords,
and control structures. Functions, operators, and keywords perform computations;
control structures determine the order of expression evaluation. Function names
provide a vocabulary with a common syntax in which computations are performed
on argument lists. Different operators, on the other hand, have different syntactic
forms. They are divided into prefix (unary) operators, infix (binary) operators, and
operators with distinctive syntax. Keywords all have a common syntax.

Data types are important in Icon, especially the types of data a function or
operator expects and the type it returns. Types are indicated by letters as follows:

c cset C co-expression
f file L list
i integer N numeric (i or r)
n null R record (any record type)
p procedure S set
r real T table
s string X any structure type (R, L, S, or T)
x any type
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In addition, the symbol v indicates a situation in which a variable is required or
always produced.

Numeric suffixes are used to distinguish different arguments of the same type.
For example,

center(s1, i, s2)

indicates that center() has three arguments. The first and third are strings; the second
is an integer.

The type of the result produced by a function follows the function prototype,
with a separating colon. For example,

center(s1, i, s2) : s3

indicates that center() produces a string. The format of entries for operators and
keywords is similar.

The results for generators are indicated by a sequence, as in

!s : s1, s2, …, sn

Icon performs type conversion automatically if an argument does not have the
expected type, so the types of arguments may be different from the expected type
and still be acceptable. For example, center(s1, 10, s2) and center(s1, "10", s2)
produce the same result, since the string "10" is converted to the integer 10.

Default values are provided automatically in some cases when an argument is
omitted (or has the null value). For example, the default for the second argument of
center() is 1, while the third argument defaults to a single blank. Consequently,
center(s1) is equivalent to center(s1, 1, " "). Refer to the entry for center() to see how
this information is shown.

Errors may occur for a variety of reasons. The possible errors and their causes
are listed for each function and operation. Again, see the entry for center() for
examples. In particular, note that a phrase such as “s not string” means s is neither
a string nor a type that can be converted to a string.

In addition to the errors listed in the entries that follow, an error also can occur
if there is not enough memory to convert an argument to the expected type. For
example, converting a very long string to an integer for use in a numerical compu-
tation conceivably could run out of memory. Such errors are unlikely and are not
listed.

Cross references among entries have two forms. Most cross references refer to
functions and operators that perform related computations, such as center(), left(),
and right(). There also are cross references among operators and control structures
with similar syntax, such as ∗x and N1 ∗ N2, even though the computations per-
formed are not related.

A list of generators appears at the end of this appendix.
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FUNCTIONS

The arguments of functions are evaluated from left to right. If the evaluation of an
argument fails, the function is not called. Some functions may generate a sequence
of results for a given set of arguments. If an argument generates more than one value,
the function may be called repeatedly with different argument values.

abs(N1) : N2 compute absolute value

abs(N1) produces the absolute value of N1.

Error: 102 N1 not numeric

acos(r1) : r2 compute arc cosine

acos(r1) produces the arc cosine of r1 in the range of 0 to π for r1 in the range of –1
to 1.

Errors: 102 r1 not real
205 |r1| greater than 1

See also: cos()

any(c, s, i1, i2) : i3 locate initial character

any(c, s, i1, i2) succeeds and produces the position of the first character in s[i1:i2] if
that character is in c; otherwise it fails.

Defaults: s &subject
i1 &pos if s is defaulted, otherwise 1
i2 0

Errors: 101 i1 or i2 not integer
103 s not string
104 c not cset

See also: many() and match()
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args(p) : i get number of procedure arguments

args(p) produces the number of arguments for procedure p. For procedures with a
variable number of arguments, the value returned is the negative of the number of
formal parameters.

Error: 106 p not procedure

See also: proc()

asin(r1) : r2 compute arc sine

asin(r1) produces the arc sine of r1 in the range of –π/2 to π/2 for r1 in the range –1
to 1.

Errors: 102 r1 not real
205 |r1| greater than 1

See also: sin()

atan(r1, r2) : r3 compute arc tangent

atan(r1, r2) produces the arc tangent of r1 / r2 in the range of –π to π with the sign
of r1.

Default: r2 1.0

Error: 102 r1 or r2 not real

See also: tan()

bal(c1, c2, c3, s, i1, i2) : i3, i4, …, in locate balanced characters

bal(c1, c2, c3, s, i1, i2) generates the sequence of integer positions in s preceding a
character of c1 in s[i1:i2] that is balanced with respect to characters in c2 and c3, but
fails if there is no such position.

Defaults: c1 &cset
c2 '('
c3 ')'
s &subject
i1 &pos if s is defaulted, otherwise 1
i2 0
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Errors: 101 i1 or i2 not integer
103 s not string
104 c1, c2, or c3 not cset

See also: find() and upto()

center(s1, i, s2) : s3 position string at center

center(s1, i, s2) produces a string of size i in which s1 is centered, with s2 used for
padding at left and right as necessary.

Defaults: i 1
s2 " " (blank)

Errors: 101 i not integer
103 s1 or s2 not string
205 i < 0

See also: left() and right()

char(i) : s produce character

char(i) produces a one-character string whose internal representation is i.

Errors: 101 i not integer
205 i not between 0 and 255, inclusive

See also: ord()

chdir(s) : n change directory

chdir(s) changes the current directory to s but fails if there is no such directory or if
the change cannot be made. Whether the change in directory persists after program
termination depends on the operating system.

Error: 103 s not string

close(f) : x close file

close(f) closes f. If f is an ordinary file, the value returned is f. If f is a pipe, the value
returned is the exit code.

Error: 105 f not file

See also: flush() and open()
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collect(i1, i2) : n perform garbage collection

collect(i1, i2) causes a garbage collection in region i1, requesting i2 bytes of space in
that region. It fails if the requested space is not available. The regions are identified
as follows:

i1 region

1 static
2 string
3 block

If i1 is 0, a collection is done, but no region is identified and i2 has no effect. The value
of i2 is ignored for the static region.

Defaults: i1 0
i2 0

Errors: 101 i1 or i2 not integer
205 i1 not between 0 and 3 inclusive or i2 < 0.

copy(x1) : x2 copy value

copy(x1) produces a copy of x1 if x1 is a structure; otherwise it produces x1.

cos(r1) : r2 compute cosine

cos(r1) produces the cosine of r1 in radians.

Error: 102 r1 not real

See also: cos()

cset(x) : c convert to cset

cset(x) produces a cset resulting from converting x, but fails if the conversion is not
possible.

delay(i) : n delay execution

delay() delays program execution i milliseconds.

Error: 101 i not integer
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delete(X, x) : X delete element

If X is a set, delete(X, x) deletes x from X. If X is a table, delete(X, x) deletes the element
for key x from X. delete(X, x) produces X.

Error: 122 X not set or table.

See also: insert() and member()

detab(s1, i1, i2, …, in) : s2 replace tabs by blanks

detab(s1, i1, i2, …, in) produces a string based on s1 in which each tab character is
replaced by one or more blanks. Tab stops are at i1, i2, …, in, with additional stops
obtained by repeating the last interval.

Default: i1 9

Errors: 101 i1, i2, …, in not integer
103 s1 not string
210 i1, i2, …, in not positive or in increasing sequence

See also: entab()

display(i, f) : n display variables

display(i, f) writes the image of the current co-expression and the values of the local
variables in the current procedure call. If i is greater than 0, the local variables in the
i preceding procedure calls are displayed as well. After all local variables are
displayed, the values of global variables are displayed. Output is written to f.

Defaults: i &level
f &errout

Errors: 101 i not integer
105 f not file
205 i < 0
213 f not open for writing

dtor(r1) : r2 convert degrees to radians

dtor(r1) produces the radian equivalent of r1 given in degrees.

Error: 102 r1 not real

See also: rtod()
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entab(s1, i1, i2, …, in) : s2 replace blanks by tabs

entab(s1, i1, i2, …, in) produces a string based on s1 in which runs of blanks are
replaced by tabs. Tab stops are at i1, i2, …, in, with additional stops obtained by
repeating the last interval.

Default: i1 9

Errors: 101 i1, i2, …, in not integer
103 s1 not string
210 i1, i2, …, in not positive or in increasing sequence

See also: detab()

errorclear() : n clear error indication

errorclear() clears the indications of the last error.

See also: &error

exit(i) exit program

exit(i) terminates program execution with exit status i.

Default: i normal exit (machine dependent)

Error: 101 i not integer

See also: stop()

exp(r1) : r2 compute exponential

exp(r1) produces e raised to the power r1.

Errors: 102 r1 not real
204 overflow

See also: log() and N1 ^ N2

find(s1, s2, i1, i2) : i3, i4, …, in find string

find(s1, s2, i1, i2) generates the sequence of integer positions in s2 at which s1 occurs
as a substring in s2[i1:i2], but fails if there is no such position.
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Defaults: s2 &subject
i1 &pos if s2 is defaulted, otherwise 1
i2 0

Errors: 101 i1 or i2 not integer
103 s1 or s2 not string

See also: bal(), match(), and upto()

flush(f) : f flush output

flush() flushes any accumulated output for file f.

See also: close()

function() : s1, s2, ..., sn generate function names

function() generates the names of the Icon (built-in) functions.

get(L) : x get value from list

get(L) produces the leftmost element of L and removes it from L, but fails if L is
empty. get is a synonym for pop.

Error: 108 L not list

See also: pop(), pull(), push(), and put()

getch() : s get character

getch() waits until a character has been entered from the keyboard and then
produces the corresponding one-character string. The character is not displayed.
The function fails on an end of file.

See also: getche() and kbhit()

getche() : s get and echo character

getche() waits until a character has been entered from the keyboard and then
produces the corresponding one-character string. The character is displayed. The
function fails on an end of file.

See also: getch() and kbhit()



282 Language Reference Manual App. D

getenv(s1) : s2 get value of environment variable

getenv(s1) produces the value of the environment variable s1, but fails if s1 is not
set.

Error: 103 s1 not string

iand(i1, i2) : i3 compute bitwise and

iand(i1, i2) produces an integer consisting of the bitwise and of i1 and i2.

Error: 101 i1 or i2 not integer

See also: icom(), ior(), ishift(), and ixor()

icom(i1) : i2 compute bitwise complement

icom(i1) produces the bitwise complement of i1.

Error: 101 i1 not integer

See also: iand(), ior(), ishift(), and ixor()

image(x) : s produce string image

image(x) produces the string image for x.

insert(X, x1, x2) : X insert element

If X is a  table,  insert(X, x1, x2) inserts key x1 with value x2 into X. If X  is  a set,
insert(X, x1) inserts x1 into X. insert(X, x1, x2) produces X.

Default: x2 &null

Errors: 122 X not set or table

See also: delete() and member()

integer(x) : i convert to integer

integer(x) produces the integer resulting from converting x, but fails if the conver-
sion is not possible.

See also: numeric() and real()

App. D Language Reference Manual 283

ior(i1, i2) : i3 compute bitwise inclusive or

ior(i1, i2) produces the bitwise inclusive or of i1 and i2.

Error: 101 i1 or i2 not integer

See also: iand(), icom(), ishift(), and ixor()

ishift(i1, i2) : i3 shift bits

ishift(i1, i2) produces the result of shifting the bits in i1 by i2 positions. Positive values
of i2 shift to the left with zero fill; negative values shift to the right with sign
extension. Vacated bit positions are zero-filled.

Error: 101 i1 or i2 not integer

See also: iand(), icom(), ior(), and ixor()

ixor(i1, i2) : i3 compute bitwise exclusive or

ixor(i1, i2) produces the bitwise exclusive or of i1 and i2.

Error: 101 i1 or i2 not integer

See also: iand(), icom(), ior(), and ishift()

kbhit() : n check for keyboard character

kbhit() succeeds if a character is available for getch() or getche() but fails otherwise.

See also: getch() and getche()

key(T) : x1, x2, …, xn generate keys from table

key(T) generates the keys in table T.

Error: 124 T not table

left(s1, i, s2) : s3 position string at left

left(s1, i, s2) produces a string of size i in which s1 is positioned at the left, with s2
used for padding at the right as necessary.

Defaults: i 1
s2 " " (blank)
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Errors: 101 i not integer
103 s1 or s2 not string
205 i < 0

See also: center() and right()

list(i, x) : L create list

list(i, x) produces a list of size i in which each value is x.

Defaults: i 0
x &null

Errors: 101 i not integer
205 i < 0

loadfunc(s1, s2) : p  load external function

loadfunc(s1, s2) loads the function named s2 from the library file s1 and produces
a procedure for it. s2 must be a C or compatible function that provides a particular
interface expected by loadfunc().

Errors: 216 function not found
103 s1 or s2 not string

log(r1, r2) : r3 compute logarithm

log(r1, r2) produces the logarithm of r1 to the base r2.

Default: r2  e

Errors: 102 r1 or r2 not real
205 r1 <= 0 or r2 <= 1

See also: exp()

many(c, s, i1, i2) : i3 locate many characters

many(c, s, i1, i2) succeeds and produces the position in s after the longest initial
sequence of characters in c within s[i1:i2]. It fails if s[i1] is not in c.

Defaults: s &subject
i1 &pos if s is defaulted, otherwise 1
i2 0
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Errors: 101 i1 or i2 not integer
103 s not string
104 c not cset

See also: any() and match()

map(s1, s2, s3) : s4 map characters

map(s1, s2, s3) produces a string of size ∗s1 obtained by mapping characters of s1
that occur in s2 into corresponding characters in s3.

Defaults: s2 string(&ucase)
s3 string(&lcase)

Errors: 103 s1, s2, or s3 not string
208 ∗s2 ~= ∗s3

match(s1, s2, i1, i2) : i3 match initial string

match(s1, s2, i1, i2) produces the position beyond the initial substring of s2[i1:i2],
if any, that is equal to s1; otherwise it fails.

Defaults: s2 &subject
i1 &pos if s2 is defaulted, otherwise 1
i2 0

Errors: 101 i1 or i2 not integer
103 s1 or s2 not string

See also: =s, any(), and many()

member(X, x) : x test for membership

If X is a set, member(X, x) succeeds if x is a member of X but fails otherwise. If X is
a table, member(X, x) succeeds if x is a key of an element in X but fails otherwise.
member(X, x) produces x if it succeeds.

Error: 122 X not set or table

See also: delete() and insert()

move(i) : s move scanning position

move(i) produces &subject[&pos:&pos + i] and assigns &pos + i to &pos, but fails if
i is out of range. move(i) reverses the assignment to &pos if it is resumed.
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Error: 101 i not integer

See also: tab()

name(v) : s produce name

name(v) produces the name of the variable v. If v is an identifier or a keyword that
is a variable, the name of the identifier or keyword is produced. If v is a record field
reference, the record type and field name are produced with a separating period. If
v is a string, the name of the string and the subscript range are shown. If v is a
subscripted list or table, the type name followed by the subscripting expression is
produced.

Error: 111 v not a variable

See also: variable()

numeric(x) : N convert to numeric

numeric(x) produces an integer or real number resulting from converting x, but fails
if the conversion is not possible.

See also: integer() and real()

open(s1, s2) : f open file

open(s1, s2) produces a file resulting from opening s1 according to options given
in s2, but fails if the file cannot be opened. The options are:

character effect

"r" open for reading
"w" open for writing
"a" open for writing in append mode
"b" open for reading and writing
"p" open a pipe
"c" create
"t" translate line termination sequences to linefeeds
"u" do not translate line termination sequences to linefeeds

The default mode is to translate line termination sequences to linefeeds on input and
conversely on output. The untranslated mode should be used when reading and
writing binary files.

Default: s2 "rt"
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Errors: 103 s1 or s2 not string
209 invalid option

See also: close()

ord(s) : i produce ordinal

ord(s) produces an integer (ordinal) between 0 and 255 that is the character code for
the one-character string s.

Errors: 103 s not string
205 ∗s not 1

See also: char()

pop(L) : x pop from list

pop(L) produces the leftmost element of L and removes it from L, but fails if L is
empty. pop is a synonym for get.

Error: 108 L not list

See also: get(), pull(), push(), and put()

pos(i1) : i2 test scanning position

pos(i1) produces &pos if i1 or its positive equivalent is equal to &pos, but fails
otherwise.

Error: 101 i1 not integer

See also: &pos and &subject

proc(s, i) : p convert to procedure

proc(s, i) produces the procedure, function, or operator corresponding to s, but fails
if s is not the name of one. If s is the string name of an operator, i specifies the number
of arguments: 1 for unary (prefix), 2 for binary (infix), and 3 for ternary. proc(s, 0)
produces the built-in function named s even if the global identifier having that name
has been assigned another value. proc(s, 0) fails if s is not the name of a function.

The first argument of proc() may be a procedure, function, or operator, in which case
proc() simply returns the first argument.
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Default: i 1

Errors: 101 i not integer
205 i not 0, 1, 2, or 3

See also: args()

pull(L) : x pull from list

pull(L) produces the rightmost element of L and removes it from L, but fails if L is
empty.

Error: 108 L not list

See also: get(), pop(), push(), and put()

push(L, x1, x2, …, xn) : L push onto list

push(L, x1, x2, …, xn) pushes x1, x2, …, onto the left end of L. Values are pushed in
order from left to right, so xn becomes the first (leftmost) value of L. push(L) with no
second argument pushes a null value onto L.

Errors: 108 L not list

See also: get(), pop(), pull(), and put()

put(L, x1, x2, …, xn) : L put onto list

put(L, x1, x2, …, xn) puts x1, x2, …, xn onto the right end of L. Values are added in
order from left to right, so xn becomes the last (rightmost) value of L. put(L) with no
second argument puts a null value onto L.

Errors: 108 L not list

See also: get(), pop(), pull(), and push()

read(f) : s read line

read(f) produces the next line from f but fails on an end of file.

Default: f &input

Errors: 105 f not file
212 f not open for reading

See also: reads()
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reads(f, i) : s read string

reads(f, i) produces a string consisting of the next i characters from f, or the remaining
characters of f if fewer remain, but fails on an end of file. In reads(), unlike read(), line
termination sequences have no special significance. reads() should be used for
reading binary data.
Defaults: f &input

i 1

Errors: 101 i not integer
105 f not file
205 i <= 0
212 f not open for reading

See also: read()

 real(x) : r convert to real

real(x) produces a real number resulting from converting x, but fails if the conver-
sion is not possible.

See also: integer() and numeric()

remove(s) : n remove file

remove(s) removes (deletes) the file named s, but fails if s cannot be removed.

Error: 103 s not string

See also: rename()

rename(s1, s2) : n rename file

rename(s1, s2) renames the file named s1 to be s2, but fails if the renaming cannot
be done.

Error: 103 s1 or s2 not string

See also: remove()

repl(s1, i) : s2 replicate string

repl(s1, i) produces a string consisting of i concatenations of s1.
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Errors: 101 i not integer
103 s1 not string
205 i < 0

reverse(s1) : s2 reverse string

reverse(s1) produces a string consisting of the reversal of s1.

Errors: 103 s1 not string

right(s1, i, s2) : s3 position string at right

right(s1, i, s2) produces a string of size i in which s1 is positioned at the right, with
s2 used for padding at the left as necessary.

Defaults: i 1
s2 " " (blank)

Errors: 101 i not integer
103 s1 or s2 not string
205 i < 0

See also: center() and left()

rtod(r1) : r2 convert radians to degrees

rtod(r1) produces the degree equivalent of r1 given in radians.

Error: 102 r1 not real

See also: dtor()

runerr(i, x) terminate with run-time error

runerr(i, x) terminates program execution with error i and offending value x.

Default: x no offending value

seek(f, i) : f seek to position in file

seek(f, i) seeks to position i in f but fails if the seek cannot be performed. The first byte
in the file is at position 1. seek(f, 0) seeks to the end of file f.
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Errors: 101 i not integer
105 f not file

See also: where()

seq(i1, i2) : i3, i4, … generate sequence of integers

seq(i1, i2) generates an endless sequence of integers starting at i1 with increments
of i2.

Defaults: i1 1
i2 1

Errors: 101 i1 or i2 not integer
211 i2 = 0

See also: i1 to i2 by i3

serial(x) : i produce serial number

serial(x) produces the serial number of x if it is a type that has one but fails otherwise.

set(L) : S create set

set(L) produces a set whose members are the distinct values in the list L.

Default: L [ ]

Errors: 108 L not list

sin(r1) : r2 compute sine

sin(r1) produces the sine of r1 given in radians.

Error: 102 r1 not real

See also: asin()

sort(X, i) : L sort structure

sort(X, i) produces a list containing values from x. If X is a record, list, or set, sort(X,
i) produces the values of X in sorted order. If X is a table, sort(X, i) produces a list
obtained by sorting the elements of X, depending on the value of i. For i = 1 or 2, the
list elements are two-element lists of key/value pairs. For i = 3 or 4, the list elements
are alternative keys and values. Sorting is by keys for i odd, by values for i even.
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Default: i 1

Errors: 101 i not integer
115 X not list, set, table, or a record
205 i not 1, 2, 3, or 4

See also: sortf()

sortf(X, i) : L sort structure by field

sortf(X, i) produces a sorted list of the values from the record, list, or set X. List and
record values in X are ordered by comparing the values of their ith fields. The value
of i can be negative but not zero. Two structure values in X having equal ith fields are
ordered as they would be in regular sorting, but structures lacking an ith field appear
before structures having them.

Default: i 1

Errors: 101 i not integer
125 X not list, set, or a record
205 i = 0

See also: sort()

sqrt(r1) : r2 compute square root

sqrt(r1) produces the square root of r1.

Errors: 102 r1 not real
205 r1 < 0

See also: N1 ^ N2

stop(x1, x2, …, xn) stop execution

stop(x1, x2, …, xn) terminates program execution with an error exit status after
writing strings x1, x2, …, xn. If xi is a file, subsequent output is to xi. Initial output
is to standard error output.

Default: xi "" (empty string)

Errors: 109 xi not string or file
213 xi file not open for writing

See also: exit() and write()
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string(x) : s convert to string

string(x) produces a string resulting from converting x, but fails if the conversion is
not possible.

system(s) : i call system function

system(s) calls the C library function system to execute s and produces the resulting
integer exit status.

Error: 103 s not string

tab(i) : s set scanning position

tab(i) produces &subject[&pos:i] and assigns i to &pos, but fails if i is out of range. It
reverses the assignment to &pos if it is resumed.

Error: 101 i not integer

See also: move()

table(x) : T create table

table(x) produces a table with a default value x.

Default: x &null

tan(r1) : r2 compute tangent

tan(r1) produces the tangent of r1 given in radians.

Errors: 102 r1 not real
204 r1 a singular point of tangent

See also: atan()

trim(s1, c) : s2 trim string

trim(s1, c) produces a string consisting of the characters of s1 up to the trailing
characters contained in c.

Default: c ' ' (blank)
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Errors: 103 s1 not string
104 c not cset

type(x) : s produce type name

type(x) produces a string corresponding to the type of x.

upto(c, s, i1, i2) : i3, i4, … in locate characters

upto(c, s, i1, i2) generates the sequence of integer positions in s preceding a character
of c in s[i1:i2]. It fails if there is no such position.

Defaults: s &subject
i1 &pos if s is defaulted, otherwise 1
i2 0

Errors: 101 i1 or i2 not integer
103 s not string
104 c not cset

See also: bal() and find()

variable(s) : v produce variable

Produces the variable for the identifier or keyword named s, but it fails if there is no
such variable. Local identifiers override global identifiers.

Error: 103 s not string

See also: name()

where(f) : i produce position in file

where(f) produces the current byte position in f. The first byte in the file is at position
1.

Error: 105 f not file

See also: seek()
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write(x1, x2, …, xn) : xn write line

write(x1, x2, …, xn) writes strings x1, x2, …, xn with a line termination sequence
added at the end or when switching files. If xi is a file, subsequent output is to xi.
Initial output is to standard output.

Default: xi "" (empty string)

Errors: 109 xi not string or file
213 xi file not open for writing

See also: writes()

writes(x1, x2, …, xn) : xn write string

writes(x1, x2, …, xn) writes strings x1, x2, …, xn without a line termination sequence
added at the end. If xi is a file, subsequent output is to xi. Initial output is to standard
output.

Default: xi "" (empty string)

Errors: 109 xi not string or file
213 xi file not open for writing

See also: write()

PREFIX OPERATIONS

In a prefix operation, the operator symbol appears before the argument on which it
operates. If evaluation of the argument fails, the operation is not performed. If the
argument generates a sequence of results, the operation may be performed several
times.

There are comparatively few prefix operations. They are listed in the order of
the types of arguments: numeric, cset, string, co-expression, and then those that
apply to arguments of several different types.

+N : N compute positive

+N produces the numeric value of N.

Error: 102 N not integer or real

See also: N1 + N2
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–N : N compute negative

–N produces the negative of N.

Errors: 102 N not integer or real
203 integer overflow

See also: N1 − N2

~c1 : c2 compute cset complement

~c1 produces the cset complement of c1 with respect to &cset.

Errors: 104 c1 not cset

=s : s match string in scanning

=s is equivalent to tab(match(s)).

Error: 103 s1 not string

See also: match(), tab(), and N1 = N2

@C : x activate co-expression

@C produces the outcome of activating C.

Error: 118 C not co–expression

See also: x @ C

^C1 : C2 create refreshed co-expression

^C1 produces a refreshed copy of C1.

Errors: 118 C1 not co–expression

See also: N1 ^ N2

∗∗∗∗∗x : i compute size

∗x produces the size of x.

Error: 112 x not cset, string, co–expression, or a structure

See also: N1 ∗ N2
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?x1 : x2 generate random value

If x1 is an integer, ?x1 produces a number from a pseudorandom sequence. If x1 >
0, it produces an integer in range 1 to x1, inclusive. If x1 = 0, it produces a real number
in range 0.0 to 1.0.

If x1 is a string, ?x1 produces a randomly selected one-character substring of x1 that
is a variable if x1 is a variable.

If x1 is a list or record, ?x1 produces a randomly selected element, which is a variable,
from x1.

If x1 is a set, ?x1 produces a randomly selected member of x1.

If x1 is a table, ?x1 produces the value of a randomly selected element of x1 as a
variable.

Errors: 113 x1 not integer, string, or a structure
205 x1 < 0

See also: s ? expr

!x1 : x2, x3, …, xn generate values

If x1 is a file, !x1 generates the remaining lines of x1.

If x1 is a string, !x1 generates the one-character substrings of x1, and produces
variables if x1 is a variable.

If x1 is a list or record, !x1 generates the elements of x1, which are variables. The order
of generation is from the beginning to the end.

If x1 is a set, !x1 generates the members of x1 in no predictable order.

If x1 is a table, !x1 generates the  elements of x1 as variables in no predictable order.

Errors: 103 x1 originally string, but type changed between resumptions
116 x1 not string, file, or a structure
212 x1 is file but not open for reading

/x : x check for null value

/x produces x if the value of x is the null value, but fails otherwise. It produces a
variable if x is a variable.

See also: N1 / N2
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\x : x check for non-null value

\x produces x if the value of x is not the null value, but fails otherwise. It produces
a variable if x is a variable.

See also: expr \  i

.x : x dereference variable

.x produces the value of x.

See also: R. f

INFIX OPERATIONS

In an infix operation, an operator symbol stands between the two arguments on
which it operates. If evaluation of an argument fails, the operation is not performed.
If an argument generates a sequence of results, the operation may be performed
several times.

There are many infix operations. They are listed first by those that perform
computations (such as N1 + N2) and then by those that perform comparisons (such
as N1 < N2). Assignment operations are listed last. See the index, if necessary.

N1 + N2 : N3 compute sum

N1 + N2 produces the sum of N1 and N2.

Errors: 102 N1 or N2 not integer or real
203 integer overflow
204 real overflow or underflow

See also: +N

N1 – N2 : N3 compute difference

N1 – N2 produces the difference of N1 and N2.

Errors: 102 N1 or N2 not integer or real
203 integer overflow
204 real overflow or underflow

See also: −N
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N1 ∗∗∗∗∗ N2 : N3 compute product

N1 ∗ N2 produces the product of N1 and N2.

Errors: 102 N1 or N2 not integer or real
203 integer overflow
204 real overflow or underflow

See also: ∗x

N1 / N2 : N3 compute quotient

N1 / N2 produces the quotient of N1 and N2.

Errors: 102 N1 or N2 not integer or real
201 N2 = 0
204 real overflow or underflow

See also: /x

N1 % N2 : N3 compute remainder

N1 % N2 produces the remainder of N1 divided by N2. The sign of the result is the
sign of N1.

Errors: 102 N1 or N2 not integer or real
202 N2 = 0
204 real overflow or underflow

N1 ^ N2 : N3 compute exponential

N1 ^ N2 produces N1 raised to the power N2.

Errors: 102 N1 or N2 not integer or real
204 real overflow, underflow, or N1 = 0 and N2 <= 0
206 N1 < 0 and N2 real

See also: ^C, exp(), and sqrt()

x1 ++ x2 : x3 compute cset or set union

x1 ++ x2 produces the cset or set union of x1 and x2.

Errors: 120 x1 and x2 not both cset or both set
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x1 – – x2 : x3 compute cset or set difference

x1 – – x2 produces the cset or set difference of x1 and x2.

Errors: 120 x1 and x2 not both cset or both set

x1 ∗∗∗∗∗∗∗∗∗∗ x2 : x3 cset or set intersection

x1 ∗∗ x2 produces the cset or set intersection of x1 and x2.

Error: 120 x1 and x2 not both cset or both set

s1 || s2 : s3 concatenate strings

s1 || s2 produces a string consisting of s1 followed by s2.

Errors: 103 s1 or s2 not string

See also: L1 ||| L2

L1 ||| L2 : L3 concatenate lists

L1 ||| L2 produces a list consisting of the values in L1 followed by the values in L2.

Errors: 108 L1 or L2 not list

See also: s1 || s2

R.f : x get field of record

R.f produces a variable for the f field of record R.

Errors: 107 R not a record type
207 R does not have field f

See also: .x

x1 @ C : x2 transmit value to co-expression

x1 @ C activates C, transmitting the value of x1 to it; it produces the outcome of
activating C.
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Error: 118 C not co–expression

See also: @C

x1 & x2 : x2 evaluate in conjunction

x1 & x2 produces x2. It produces a variable if x2 is a variable.

N1 > N2 : N2 numerically greater than
N1 >= N2 : N2 numerically greater than or equal
N1 = N2 : N2 numerically equal
N1 <= N2 : N2 numerically less than or equal
N1 < N2 : N2 numerically less than
N1 ~= N2 : N2 numerically not equal

The numerical comparison operators produce N2 if the condition is satisfied, but fail
otherwise.

Error: 102 N1 or N2 not integer or real

s1 >> s2 : s2  lexically greater than
s1 >>= s2 : s2 lexically greater than or equal
s1== s2 : s2 lexically equal
s1 <<= s2 : s2 lexically less than or equal
s1 << s2 : s2 lexically less than
s1 ~== s2 : s2 lexically not equal

The lexical comparison operators produce s2 if the condition is satisfied, but fail
otherwise.

Error: 103 s1 or s2 not string

x1 === x2 : x2 value equal
x1 ~=== x2 : x2 value not equal

The value comparison operators produce x2 if the condition is satisfied, but fail
otherwise.
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v := x : v assign value

v := x assigns the value of x to v and produces the variable v.

Errors: 101 v requires integer, but x not integer
103 v requires string, but x not string
111 v not a variable

See also: v op:= x, v1 :=: v2, v <– x2, and v1 <–> v2

v op:= x : v augmented assignment

v op:= x performs the operation v op x and assigns the result to v; it produces the
variable v. For example, i1 +:= i2 produces the same result as i1 := i1 + i2. There are
augmented assignment operators for all infix operations except assignment opera-
tions. The error conditions for augmented assignment operations are the same as for
the basic operations.

Error: 101 v requires integer, but x not integer
103 v requires string, but x not string
111 v not variable

See also: v := x

v1 :=: v2 : v1 exchange values

v1 :=: v2 exchanges the values of v1 and v2 and produces the variable v1.

Errors: 101 v1 or v2 requires integer, but other argument not integer
103 v1 or v2 requires string, but other argument not string
111 v1 or v2 not a variable

See also: v := x and v1 <−> v2

v <– x : v assign value reversibly

v <– x assigns the value of x to v and produces the variable v. It reverses the
assignment if it is resumed.

Errors: 101 v requires integer, but x not integer
103 v requires string, but x not string
111 v not a variable

See also: v := x and v1 <−> v2
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v1 <–> v2 : v1 exchange values reversibly

v1 <–> v2 exchanges the values v1 and v2 and produces the variable v1. It reverses
the exchange if it is resumed.

Errors: 101 v1 or v2 requires integer, but other argument not integer
103 v1 or v2 requires string, but other argument not string
111 v1 or v2 not a variable

See also: v <− x and v1 :=: v2

OTHER OPERATIONS

The operations on the following pages have varying types of syntax. Some have
more than two arguments. If evaluation of an argument fails, the operation is not
performed. If an argument generates a sequence of results, the operation may be
performed several times.

i1 to i2 by i3 : i1, …, in generate integers in sequence

i1 to i2 by i3 generates the sequence of integers from i1 to i2 in increments of i3.

Default: i3 1 if by clause is omitted

Errors: 101 i1, i2, or i3 not integer
211 i3 = 0

See also: seq()

[x1, x2, …, xn] : L create list

[x1, x2, …, xn] produces a list containing the values x1, x2, …, xn. [ ] produces an
empty list.

See also: list()

x1[x2] : x3 subscript

If x1 is a string, x1[x2] produces a one-character string consisting of character x2 of
x1. x1[x2] produces a variable if x1 is a variable.

If x1 is a list or record, x1[x2] produces element x2 of x1.

If x1 is a table, x1[x2] produces the element corresponding to key x2 of x1.
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In all cases, x2 may be nonpositive.

In all cases, the subscripting operation fails if the subscript is out of range.

Errors: 101 x1 is string, list, or a record, but x2 not integer
114 x1 not string, list, table, or record

See also: x[x1, x2, …, xn], x[i1:i2], x[i1+i2], and x[i1–:i2]

x[x1, x2, …, xn] : Xn multiple subscript

x[x1, x2, …, xn] is equivalent to x[x1, x2, …, xn].

See also: x[x1]

x1[i1:i2] : x2 produce substring or list section

If x1 is a string, x1[i1:i2] produces the substring of x1 between i1 and i2. x1[i1:i2]
produces a variable if x1 is a variable.

If x1 is a list, x1[i1:i2] produces a list consisting of the values of x1 in the given range.

In either case, i1 and i2 may be nonpositive.

In either case, the subscripting operation fails if a subscript is out of range.

Errors: 101 i1 or i2 not integer
114 x1 not string or list

See also: x1[x2], x[i1+:i2], and x[i1−:i2]

x1[i1+:i2] : x2 produce substring or list section

If x1 is a string, x1[i1+:i2] produces the substring of x1 between i1 and i1 + i2.
x1[i1+:i2] produces a variable if x1 is a variable.

If x1 is a list, x1[i1+:i2] produces a list consisting of the values of x1 in the given range.

In either case, i1 and i2 may be nonpositive.

In either case, the subscripting operation fails if a subscript is out of range.

Errors: 101 i1 or i2 not integer
114 x1 not string or list

See also: x1[x2], x[i1:i2], and x[i1–:i2]
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x1[i1–:i2] : x2 produce substring or list section

If x1 is a string, x1[i1–:i2] produces the substring of x1 between i1 and i1 – i2.
x1[i1–:i2] produces a variable if x1 is a variable.

If x1 is a list, x1[i1–:i2] produces a list consisting of the values of x1 in the given range.

In either case, i1 and i2 may be nonpositive.

In either case, the subscripting operation fails if a subscript is out of range.

Errors: 101 i1 or i2 not integer
114 x1 not string or list

See also: x1[x2], x[i1:i2], and x[i1+:i2]

x(x1, x2, …, xn) : xm process argument list

If x is a function or procedure, x(x1, x2, …, xn) produces the outcome of calling x with
arguments x1, x2, …, xn.

If x is an integer, x(x1, x2, …, xn) produces the outcome of xi, but fails if i is out of
the range 1, …, n. In this case, it produces a variable if xi is a variable; i may be
nonpositive.

Default: x –1

Errors: 106 x not procedure or integer
117 x is main, but there is no main procedure (during startup)

See also: x ! X, x{…}

x1 ! X : x2 process argument list

If x1 is a function or procedure, x1 ! X produces the outcome of calling x1 with the
arguments in the list or record X. If x1 is an integer, x1 ! X produces X[x1] but fails
if x1 is out of range of X.

Errors: 106 x not procedure or integer
108 X not list or record

See also: x(…)
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x{x1, x2, …, xn} : xm process argument list as co-expressions

x{x1, x2, …, xn} is equivalent to x([create x1, create x2, …, create xn]).

Error: 106 x not procedure or integer

See also: x(…)

KEYWORDS

Keywords are listed in alphabetical order.

Some keywords are variables; values may be assigned to these. However, the
allowable type depends on the keyword. See the assignment operations for error
conditions.

&allocated : i1, i2, i3, i4 cumulative allocation

&allocated generates the total amount of space, in bytes, allocated since the begin-
ning of program execution. The first value is the total for all regions, followed by the
totals for the static, string, and block regions, respectively. The space allocated in the
static region is always given as zero. Note: &allocated gives the cumulative alloca-
tion; &storage gives the current allocation; that is, the amount that has not been freed
by garbage collection.

&ascii : c ASCII characters

The value of &ascii is a cset consisting of the 128 ASCII characters.

&clock : s time of day

The value of &clock is a string consisting of the current time of day, as in "19:21:00".

&collections : i1, i2, i3, i4 garbage collections

&collections generates the total number of garbage collections followed by the
numbers caused by allocation in the static, string, and block regions, respectively.

&cset : c all characters

The value of &cset is a cset consisting of all 256 characters.
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&current : C current co-expression

The value of &current is the currently active co-expression.

&date : s date

The value of &date is the current date, as in "1996/10/15".

&dateline : s date and time of day

The value of &dateline is the current date and time of day, as in "Tuesday, October
15, 1996  7:21 p.m.".

&digits : c digits

The value of &digits is a cset containing the ten digits.

&dump : i termination dump

If the value of &dump is nonzero when program execution terminates, a dump in the
style of display() is provided.

&e : r  base of natural logarithms

The value of &e is the base of the natural logarithms, 2.71828... .

&error : i control error conversion

If the value of &error is nonzero, a run-time error is converted to expression failure
and &error is decremented. &error is zero initially. &error is a variable.

&errornumber : i number of last error

The value of &errornumber is the number of the last error converted to failure.
&errornumber fails if no error has occurred.
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&errortext : s description of last error

The value of &errortext is the error message corresponding to the last error converted
to failure. &errortext fails if no error has occurred.

&errorvalue : x value causing last error

The value of &errorvalue is the value that caused the last error converted to failure.
&errorvalue fails if no error has occurred or no specific value caused the error.

&errout : f standard error output

The value of &errout is the standard error output file.

&fail failure

&fail produces no result.

&features : s1, s2, …, sn implementation features

The value of &features generates strings identifying the features of the executing
version of Icon.

&file : s source file

The value of &file is the name of the file from which the current program line was
compiled.

&host : s host system

The value of &host is a string that identifies the host system on which Icon is running.

&input : f standard input

The value of &input is the standard input file.
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&lcase : c lowercase letters

The value of &lcase is a cset consisting of the 26 lowercase letters.

&letters : c letters

The value of &letters is a cset consisting of the 52 upper- and lowercase letters.

&level : i procedure level

The value of &level is the level of the current procedure call.

&line : i source line number

The value of &line is the number of the source-program line in which it appears.

&main : C main co-expression

The value of &main is the co-expression for the main procedure.

&null : n null value

The value of &null is the null value.

&output : f standard output

The value of &output is the standard output file.

&phi : r golden ratio

The value of &phi is the golden ratio, 1.61803... .

&pi : r ratio of circumference to diameter of a circle

The value of &pi is the ratio of the circumference of a circle to its diameter,
3.14159... .
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&pos : i scanning position

The value of &pos is the position of scanning in &subject. The scanning position may
be changed by assignment to &pos. Such an assignment fails if it would be out of
range of &subject. &pos is a variable.

&progname : s program name

The value of &progname is the file name of the executing program. A string value
can be assigned to &progname to replace its initial value.

&random : i random seed

The value of &random is the seed for the pseudorandom sequence. The seed may be
changed by assignment to &random. &random is zero initially. &random is a
variable.

&regions : i1, i2, i3 storage regions

&region generates the current sizes of the static, string, and block regions, respec-
tively. The size of the static region may not be meaningful.

&source : C source co-expression

The value of &source is the co-expression for the activator of the current co-
expression.

&storage : i1, i2, i3 storage utilization

&storage generates the current amount of space used in the static, string, and block
regions, respectively. The space used in the static region may not be meaningful.

&subject : s subject of scanning

The value of &subject is the string being scanned. The subject of scanning may be
changed by assignment to &subject. &subject is a variable.
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&time : i elapsed time

The value of &time is the number of milliseconds of CPU time since the beginning
of program execution.

&trace : i procedure tracing

If the value of &trace is nonzero, a trace message is produced when a co-expression
is activated or a procedure is called, returns, suspends, or is resumed. &trace is
decremented for each message produced. &trace is zero initially. &trace is a variable.

&ucase : c uppercase letters

The value of &ucase is a cset consisting of the 26 uppercase letters.

&version : s Icon version

The value of &version is a string identifying the version of Icon.

CONTROL STRUCTURES

The way that arguments of a control structure are evaluated depends on the control
structure; in fact, that is what distinguishes a control structure from a function or
operation.

Most control structures are identified by reserved words. They are arranged
alphabetically on the following pages, with the few control structures that use
operator symbols appearing at the end.

break expr : x break out of loop

break expr exits from the enclosing loop and produces the outcome of expr.

Default: expr &null

See also: next

case expr of { … } : x select according to value

case expr of { … } produces the outcome of the case clause that is selected by the value
of expr.
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create expr : C create co-expression

create expr produces a co-expression for expr.

See also: ^C

every expr1 do expr2 generate every result

every expr1 do expr2 evaluates expr2 for each result generated by expr1; it fails when
expr1 does not produce a result. The do clause is optional.

fail fail from procedure

fail returns from the current procedure, causing the call to fail.

See also: return and suspend

if expr1 then expr2 else expr3 : x select according to outcome

if expr1 then expr2 else expr3 produces the outcome of expr2 if expr1 succeeds,
otherwise the outcome of expr3. The else clause is optional.

next go to beginning of loop

next transfers control to the beginning of the enclosing loop.

See also: break

not expr : n invert failure

not expr produces the null value if expr fails, but fails if expr succeeds.

repeat expr evaluate repeatedly

repeat expr evaluates expr repeatedly.

return expr return from procedure

return expr returns from the current procedure, producing the outcome of expr.
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Default: expr &null

See also: fail and suspend

suspend expr1 do expr2 suspend from procedure

suspend expr1 do expr2 suspends from the current procedure, producing each result
generated by expr1. If suspend is resumed, expr2 is evaluated before resuming expr1.
The do clause is optional.

Default: expr1 &null (only if the do clause is omitted)

See also: fail and return

until expr1 do expr2 loop until result

until expr1 do expr2 evaluates expr2 each time expr1 fails; it fails when expr1 succeeds.
The do clause is optional.

See also: while expr1 do expr2

while expr1 do expr2 loop while result

while expr1 do expr2 evaluates expr2 each time expr1 succeeds; it fails when expr1 fails.
The do clause is optional.

See also: until expr1 do expr2

expr1 | expr2 : x1, x2, … evaluate alternatives

expr1 | expr2 generates the results for expr1 followed by the results for expr2.

See also: |expr

|expr : x1, x2, … evaluate repeatedly

|expr generates the results for expr repeatedly, terminating if expr fails.

See also: expr1 | expr2
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expr \ i : x1, x2, …, xi limit generator

expr \ i generates at most i results from the outcome for expr.

Errors: 101 i not integer
205 i < 0

See also: \x

s ? expr : x  scan string

s ? expr saves the current subject and position and then sets them to the values of s
and 1, respectively. It then evaluates expr. The outcome is the outcome of expr. The
saved values of the subject and position are restored on exit from expr.

Error: 103 s not string

See also: ?x

GENERATORS

The following expressions may produce more than one result if the context in which
they are evaluated requires it.

bal(c1, c2, c3, s, i1, i2) &allocated
find(s1, s2, i1, i2) &collections
function() &features
key(T) &regions
seq(i1, i 2) &storage
upto(c, s, i1, i2) |expr
!x expr1 | expr2
i1 to i2 by i3
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Command-Line Options

The following command-line options are recognized by the Icon compiler, icont:

–c Stop after producing ucode files and do not delete them.

–e file Redirect standard error output to file.

–f s Enable full string invocation.

–o name Name the output file name.

–s Suppress informative messages. Normally, both informative
messages and error messages are sent to standard error output.

–t Set &trace to an initial value of –1.

–u Issue warning messages for undeclared identifiers.

–v i Set verbosity level of informative messages to i.

–E Direct the results of preprocessing to standard output and
inhibit further processing.

See user manuals for information about platform-specific command-line
options.
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Environment Variables

Most operating systems support environment variables. (There are different names
for environment variables on different systems, but the facilities generally are the
same.)

Since environment variables are used by Icon primarily to set run-time
parameters such as storage region sizes, the absence of environment variables
usually does not, in itself, directly affect Icon programs. Systems that do not support
environment variables usually provide another way of setting run-time parameters.

When an Icon program is executed, several environment variables are exam-
ined to determine certain execution parameters. Values in parentheses are the
defaults; other values can be set.

BLKSIZE (500000) The initial size of the allocated block region, in
bytes.

COEXPSIZE (2000) The size, in words, of each co-expression.

IPATH (undefined) The location of ucode files specified in link
declarations for the Icon compiler. IPATH is a
blank–separated list of directories. The current
directory is always searched first, regardless of
the value of IPATH.
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LPATH (undefined) The location of source files specified in prepro-
cessor $include directives. LPATH is otherwise
similar to IPATH.

MSTKSIZE (10000) The size, in words, of the main interpreter
stack.

NOERRBUF (undefined) By default, &errout is buffered. If this variable
is set, &errout is not buffered.

STRSIZE (500000) The initial size of the allocated string region, in
bytes.

TRACE (undefined) The initial value of &trace. If this variable has
a value, it overrides the –t option to icont.

See user manuals for information about platform-specific environment vari-
ables.
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Error Messages

Chapter 16 describes the various kinds of errors that may occur when compiling,
linking, and running Icon programs. The corresponding error messages are de-
signed to be self-explanatory. They are listed here for reference.

PREPROCESSOR ERRORS

The messages for preprecessor errors are:

$define: "(" after name requires preceding space
$define: missing name
$define: unterminated literal
$ifdef/$ifndef: missing name
$ifdef/$ifndef: too many arguments
$include: invalid file name
$include: too many arguments
$line: invalid file name
$line: no line number
$line: too many arguments
$undef: missing name
$undef: too many arguments
circular include
explicit $error
extraneous arguments on $else/$endif
filename: cannot open
invalid preprocessing directive
unexpected $else
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unexpected $endif
unterminated $if
value redefined

SYNTAX ERRORS

There are many possible syntax errors. As mentioned in Chapter 16, the actual
source of an error may precede the place where an erroneous construction is
detected. The messages for syntax errors are:

end of file expected
global, record, or procedure declaration expected
invalid argument list
invalid by clause
invalid case clause
invalid case control expression
invalid create expression
invalid declaration
invalid default clause
invalid do clause
invalid else clause
invalid every control expression
invalid field name
invalid global declaration
invalid if control expression
invalid initial expression
invalid keyword construction
invalid local declaration
invalid argument
invalid argument for unary operator
invalid argument in alternation
invalid argument in assignment
invalid argument in augmented assignment
invalid repeat expression
invalid section
invalid then clause
invalid to clause
invalid until control expression
invalid while control expression
link list expected
missing colon
missing colon or ampersand
missing end
missing field list in record declaration
missing identifier
missing left brace
missing link file name
missing of
missing parameter list in procedure declaration
missing procedure name
missing record name
missing right brace
missing right brace or semicolon
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missing right bracket
missing right bracket or ampersand
missing right parenthesis
missing semicolon
missing semicolon or operator
missing then
syntax error

If any of these errors occurs in a program, no ucode files are produced and the
program is not linked.

LINKING ERROR

There is one error that can occur during linking:

inconsistent redeclaration

If this error occurs, no icode file is produced.

RUN-TIME ERRORS

Run-time error messages are numbered and divided into categories, depending on
the nature of the error.

Category 1: Invalid Type or Form

101 integer expected or out of range
102 numeric expected
103 string expected
104 cset expected
105 file expected
106 procedure or integer expected
107 record expected
108 list expected
109 string or file expected
110 string or list expected
111 variable expected
112 invalid type to size operation
113 invalid type to random operation
114 invalid type to subscript operation
115 structure expected
116 invalid type to element generator
117 missing main procedure
118 co-expression expected
119 set expected
120 two csets or two sets expected
121 function not supported
122 set or table expected
123 invalid type
124 table expected
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125 list, record, or set expected
126 list or record expected

Category 2: Invalid Value or Computation

201 division by zero
202 remaindering by zero
203 integer overflow
204 real overflow, underflow, or division by zero
205 invalid value
206 negative first argument to real exponentiation
207 invalid field name
208 second and third arguments to map of unequal length
209 invalid second argument to open
210 non-ascending arguments to detab/entab
211 by value equal to zero
212 attempt to read file not open for reading
213 attempt to write file not open for writing
214 input/output error
215 attempt to refresh &main
216 external function not found

Category 3: Capacity Exceeded

301 evaluation stack overflow
302 memory violation
303 inadequate space for evaluation stack
304 inadequate space in qualifier list
305 inadequate space for static allocation
306 inadequate space in string region
307 inadequate space in block region
308 system stack overflow in co-expression
316 interpreter stack too large
318 co–expression stack too large

Category 4: Feature Not Implemented

401 co–expressions not implemented

Category 5: Programmer-Specified Error

500 program malfunction
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Platform-Specific Differences

Implementations of Icon are available for many platforms, ranging from personal
computers to mainframes. In some cases, Icon is implemented for different operat-
ing systems on the same computer, and in some cases there are several different
implementations for the same operating system and computer.

All of these implementations are based on a generic implementation devel-
oped at The University of Arizona. Consequently, all implementations are the same
in most respects, and most programs written on one platform run on other platforms
with little or no change.

Different computer architectures and operating systems, however, vary some-
what in the environments they provide. This may affect some features of Icon. In
addition, the generic implementation of Icon is written in C. Different C compilers
themselves differ in the features they support. Some implementations of Icon also
contain additional platform-dependent features.

While differences in Icon due to different computer architectures, operating
systems, and C compilers are relatively minor and only affect portions of Icon,
persons who write Icon programs for use on a variety of platforms should be aware
of possible problems.

Icon user manuals for specific platforms of Icon contain information about
features that are not supported or that differ from the standard implementation, as
well as information about platform-dependent extensions.

The following sections list areas where differences are likely to be encountered.
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CHARACTER SETS

Most computers use the ASCII character set. The notable exceptions are IBM 370
mainframes, which use the EBCDIC character set.

Both ASCII and EBCDIC have 256 characters. The difference between the two
character sets lies in the correspondence between character codes and glyphs. See
Appendix B for a listing of both character sets.

Since Icon operates internally on characters without regard for their associated
glyphs, differences in character sets do not affect most programs. For example,
although the letter A is assigned to character code 65 in ASCII but to character code
193 in EBCDIC, most operations that use the letter A do not depend on its specific
character code.

The places where differences in character sets are most apparent is in sorting
and lexical comparison, which are based on character codes. For example, in ASCII
the uppercase letters have smaller codes than the lowercase ones, but the converse
is true for EBCDIC. Consequently,

"A" << "a"

succeeds for ASCII implementations of Icon but fails for EBCDIC implementations
of Icon. Sorting produces correspondingly different results in ASCII and EBCDIC
platforms.

It is worth noting that different implementations of Icon on EBCDIC platforms
treat this matter differently. Some map EBCDIC to ASCII on input and vice-versa on
output, thus obtaining the ASCII correspondence between character codes and
graphics internally.

The cset &ascii presents a different problem. On ASCII implementations of
Icon, it consists of characters with codes 0 through 127 — the first half of the entire
character set. Different EBCDIC implementations of Icon treat &ascii differently.
Some assign the same character codes to it as on ASCII platforms, so that the
corresponding graphics are different from those on ASCII platforms. Other EBCDIC
implementations assign character codes to &ascii so that the graphics are the same
as on ASCII implementations. Similarly, the interpretation of ASCII control charac-
ters given in \^ escape sequences in literals varies for EBCDIC implementations.

Since most EBCDIC consoles do not support brackets, the combination $< and
$> can be used in place of  [ and ] in program text. Similarly, $( and $) are equivalent
to { and } . These multi-character equivalents also are available on ASCII implemen-
tations of Icon, allowing programs that use them to run on both ASCII and EBCDIC
platforms.
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LANGUAGE FEATURES

The following features are not supported on all platforms.

Co-Expressions

Co-expressions require a platform-specific context switch. If co-expressions
are not implemented, features related to them are not available, but the rest of Icon
is unaffected.

Large-Integer Arithmetic

Large-integer arithmetic may not be supported on platforms with small
amounts of memory. If large-integer arithmetic is not supported, integer overflow
results in error termination.

Executing Commands

The system() function is supported on most, but not all, implementations of
Icon that run in command-line environments. It is not supported (and has no
meaning) for platforms that use visual interfaces unless the platform also provides
command-line facilities. In any event, the use of system() is highly specific to the
platform on which Icon runs.

Pipes

Pipes and the "p" option for the open() function generally are supported only
on UNIX platforms. Some other options for open() also are platform-dependent.

Keyboard Functions

The keyboard functions kbhit(), getch(), and getche() are useful on personal-
computer platforms where program operation can be controlled by user-typed
characters, independently of standard input. Not all platforms support these
keyboard functions.

Environment Variables

On platforms on which environment variables do not exist per se, the imple-
mentation of Icon may provide an equivalent feature that supports getenv(). If
environment variables are not supported, getenv() fails.

The syntax for the IPATH and LPATH environment variables depends on the
platform.
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Dynamic Loading

Dynamic loading requires an operating system facility that is not available on
all platforms. If dynamic loading is not supported, loadfunc() is not defined.

Graphics Facilities

Not all platforms support Icon’s graphic facilities. For platforms that do, there
may be minor differences and a few features that are not supported.

Determining Features

The presence or absence of features of a particular implementation of Icon can
be checked during program execution. The keyword &features generates strings
listing the features available in an implementation. The first value is the name of the
platform for the implementation, and the second value is the character set, followed
by specific features. For example,

every write(&features)

might produce

UNIX
ASCII
co–expressions
dynamic loading
environment variables
large integers
pipes
system function

Some implementations support additional features.

Supported language features are of particular interest for programs that are to
be run on platforms that are different from those on which they are developed. For
example, a program that uses co-expressions can check for their presence as follows:

if not(&features == "co–expressions") then
   stop("∗∗∗ co–expressions not supported")

Determining Functions

The function function() generates the names of the (built-in) functions.
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OTHER ISSUES

Real Numbers

The precision and range of real numbers varies considerably from platform to
platform. In addition, the string representation for real numbers may vary.

Changing Directories

Whether the change in directory produced by chdir() persists after program
execution depends on the operating system.

Input and Output

As noted in Chapter 11, random-access input and output may behave strangely
on text files in translated mode for platforms that use multi-character line termina-
tors.

Some platforms support special file names for input and output to devices,
such as the console, printer, and auxiliary ports.

Some platforms, notably VAX/VMS and IBM mainframes, use different
notions of file naming than are used in examples in this book.

Exit Codes

On most operating systems, the exit code for the normal termination of a
program is 0 and the exit code for error termination is 1. Some platforms, however,
use other values.

Command-Line Option

The –x option to icont for launching an icode file automatically is not supported
on some platforms and may malfunction on other platforms if the amount of
available memory is inadequate. Since this option is only a shortcut, the lack of
support for –x is only an inconvenience. On most platforms it is easy to provide a
script that accomplishes the same thing.
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Sample Programs

This appendix contains several sample programs that illustrate Icon programming
techniques in the context of somewhat larger problems than those given in the body
of the book.

These programs were written by several different programmers. Conse-
quently, they have somewhat different programming styles and layouts than those
used elsewhere in this book. Some programs have been modified slightly for
presentation here.

All of these programs can be found in the Icon program library.

COMMAND-LINE OPTIONS

The procedure options() was mentioned in Chapter 15 as being particularly useful
for programs that run in command-line environments. The code for this procedure
follows.

In the initialization section, notice the use of tests for the null value to provide
defaults for omitted arguments.

#  Author: Robert J. Alexander with additions by Gregg M. Townsend

procedure options(arg, optstring, errproc)
   local f, fList, fileArg, fn, ignore, ptname, opttable, opttype, p, x, option
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   #  Initialize.
   #
   /optstring := string(&letters)
   /errproc := stop
   option := table()
   fList := [ ]
   opttable := table()

   #  Scan the option specification string.
   #
   optstring ? {
      while optname := move(1) do {
         if optname == " " then next
         if optname == "–" then
         optname := tab(many(&letters)) | move(1) | break
         opttype := tab(any('!:+.')) | "!"
         opttable[optname] := opttype
         }
      }

   #  Iterate over program invocation argument words.
   #
   while x := get(arg) do {
      if /x then ignore := &null     # if end of args from file, stop ignoring
      else x ? {
         if ="–" & not pos(0) & /ignore then {
            if ="–" & pos(0) then ignore := 1       # ignore following args if – –
         else {
            tab(0) ? until pos(0) do {
            if opttype := \opttable[
            optname := ((pos(1), tab(0)) | move(1))] then {
            option[optname] :=
               if any(':+.', opttype) then {
                  p := "" ~== tab(0) | get(arg) |
                      return errproc("No parameter following –" || optname)
                  case opttype of {
                      ":": p
                      "+": integer(p) | return errproc("–" || optname ||

   " needs numeric parameter")
                      ".": real(p) | return errproc("–" || optname ||

   " needs numeric parameter")
               }
            else 1
            }
          else return errproc("Unrecognized option: –" || optname)
          }
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       }
     }

  #  If the argument begins with the character "@", fetch option
  #  words from lines of a text file.
  #
  else if ="@" & not pos(0) & /ignore then {
     f := open(fn := tab(0)) | return errproc("Can't open " || fn)
     fileArg := [ ]
         while put(fileArg, read(f))
         close(f)
         push(arg) # push null to signal end of args from file
         while push(arg, pull(fileArg))
         }
      else put(fList, x)
      }

   while push(arg, pull(fList))

   return option

end

STRUCTURE IMAGES

The procedures ximage() and xdump(x), also discussed in Chapter 15, illustrate how
values of any type can be handled. These procedure are worth study; they contain
many sophisticated programming techniques.

#  Author: Robert J. Alexander

procedure ximage(x,  indent, done)
   local i, s, ss, state, t, xtag, tp, sn, sz
   static tr

   #  If this is the outer invocation, do some initialization.
   #
   if /(state := done) then {
      tr := &trace ; &trace := 0  # postpone tracing while in here
      indent := ""
      done := table()
      }

   #  Determine the type and process accordingly.
   #
   indent := (if indent == "" then "\n" else "") || indent || "   "
   ss := ""
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   tp := type(x)
   s := if xtag := \done[x] then xtag else case tp of {

      #  Unstructured types just return their image().
      #
      "null" | "string" | "integer" | "real" | "cset" | "co–expression" |
         "file" | "procedure" | "window": image(x)
      "list": { # list

 image(x) ? {
    tab(6)
    sn := tab(find("("))
    sz := tab(0)
    }
 done[x] := xtag := "L" || sn

 #  Figure out if there is a predominance of any object in the
 #  list. If so, make it the default object.
 #
 t := table(0)

 every t[!x] +:= 1

 s := [, 0]

 every t := !sort(t) do if s[2] < t[2] then s := t

 if s[2] > ∗x / 3 & s[2] > 2 then {
    s := s[1]
    t := ximage(s, indent || "   ", done)
    if t ? (not any('\'"') & ss := tab(find(" :="))) then

               t := "{" || t || indent || "   " || ss || "}"
    }
 else s := t := &null

 #  Output the non–defaulted elements of the list.
         #

 ss := ""

 every i := 1 to ∗x do if x[i] ~=== s then {
    ss ||:= indent || xtag || "[" || i || "] := " ||

               ximage(x[i], indent, done)
    }

 s := tp || sz
 s[–1:–1] := ", " || \t
 xtag || " := " || s || ss

         }
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      "set": { #  set
 image(x) ? {
    tab(5)
    sn := tab(find("("))
    }

 done[x] := xtag := "S" || sn

 every i := !sort(x) do {
    t := ximage(i, indent || "   ", done)
    if t ? (not any('\'"') & s := tab(find(" :="))) then

               t := "{" || t || indent || "   " || s || "}"
    ss ||:= indent || "insert(" || xtag || ", " || t || ")"
    }

 xtag || " := " || "set()" || ss
 }

      "table": { #  table
 image(x) ? {
    tab(7)
    sn := tab(find("("))
    }

 done[x] := xtag := "T" || sn

 #  Output the table elements. This is a bit tricky, since
 #  the subscripts might be structured, too.

         #
 every i := !sort(x) do {
    t := ximage(i[1], indent || "   ", done)
    if t ? (not any('\'"') & s := tab(find(" :="))) then

               t := "{" || t || indent || "   " || s || "}"
    ss ||:= indent || xtag || "[" ||

               t || "] := " || ximage(i[2], indent, done)
            }

 #  Output the table, including its default value (which might
 #  also be structured.

         #
 t := ximage(x[[ ]], indent || "   ", done)

 if t ? (not any('\'"') & s := tab(find(" :="))) then
            t := "{" || t || indent || "   " || s || "}"

 xtag || " := " || "table(" || t || ")" || ss
 }
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      default: { # record
 image(x) ? {
    move(7)
    t := ""
    while t ||:= tab(find("_")) || move(1)
    t[–1] := ""
    sn := tab(find("("))
    }
 done[x] := xtag := "R_" || t ||  "_" || sn
 every i := 1 to ∗x do {
    name(x[i]) ? (tab(find(".")), sn := tab(0))
    ss ||:= indent || xtag || sn || " := " || ximage(\x[i], indent, done)
    }
 xtag || " := " || t || "()" || ss
 }

      }

   #  If this is the outer invocation, clean up before returning.
   #
   if /state then {
      &trace := tr                        # restore &trace
      }

   return s

end

#  Write ximages of x1, x1, ..., xn.

procedure xdump(x[ ])

   every write(&errout, ximage(!x))

   return x[–1] | &null

end

CONCORDANCES

This program produces a simple concordance, a listing of all words in the input and
the numbers of the lines in which they appear. Words less than three characters long
are ignored. If a word occurs more than once on a line, the number of occurrences
is given in parentheses after the line number.

There are two options:

–l n set maximum line length to n (default 72); wraps
–w n set maximum width for word to n (default 15); truncates
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Note that the program is organized to make it easy, via item(), to handle other
kinds of tabulations.

# Author: Ralph E. Griswold

link options

$define ColMax 72
$define MinLength 3
$define NameWidth 15

global uses, colmax, namewidth, lineno

procedure main(args)
   local opts, uselist, name, line, pad, i, j, fill

   opts := options(args, "l+w+") # process options
   colmax := \opts["l"] | ColMax
   namewidth := \opts["w"] | NameWidth

   pad := repl(" ", namewidth)
   uses := table()
   lineno := 0

   every tabulate(item(), lineno) # tabulate all citations

   uselist := sort(uses, 3) # sort by uses

   while fill := left(get(uselist), namewidth) do {
      line := format(get(uselist)) # line numbers
      while (∗line + namewidth) > colmax do { # handle long lines
         line ?:= {
            i := j := 0
             every i := upto(' ') do {
                if i > (colmax – namewidth) then break
                else j := i
                }
             write(fill, tab(j))
             move(1)
             fill := pad
             tab(0) # new value of line
             }
         }
         if ∗line > 0 then write(fill, trim(line))
      }

end

#  Add to count of line number to citations for name.
#
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procedure tabulate(name, lineno)

   /uses[name] := table(0)
   uses[name][lineno] +:= 1

   return

end

#  Format the line numbers, breaking long lines as necessary.
#
procedure format(linenos)
   local i, line

   linenos := sort(linenos, 3)
   line := ""

   while line ||:= get(linenos) do
      line ||:= ("(" || (1 < get(linenos)) || ") ") | " "

   return line

end

#  Get an item. Different kinds of concordances can be obtained by
#  modifying this procedure.
#
procedure item()
   local i, word, line

   while line := read() do {
      lineno +:= 1
      write(right(lineno, 6), "  ", line)
      line := map(line) # fold to lowercase
      i := 1
      line ? {
         while tab(upto(&letters)) do {
            word := tab(many(&letters))
            if ∗word >= MinLength then # skip short words
               suspend word
            }
         }
      }

end
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ANIMAL GAME

This is the familiar “animal game”, written in Icon. The program asks its human
opponent a series of questions in an attempt to guess the animal about which the
human opponent is thinking. It is an “expert system”' that starts out with limited
knowledge, knowing only one question, but gets smarter as it plays and learns from
its opponents. At the conclusion of a session, the program asks permission to
remember what it learned for future sessions. The saved file is a text file that can be
edited, so typographical errors entered during the heat of battle can be corrected.

The game is not limited to guessing about animals. Simply by modifying the
first two lines of the main procedure, the user can create a program that builds a
knowledge base in other categories. An example is:

GameObject := "president"
Tree := Question("Did he write the Gettysburg address", "Reagan",
   "Lincoln")

Typing list at any yes/no prompt shows an inventory of animals known, and
there are some other commands too (see the procedure Confirm()).

# Author: Robert J. Alexander

global GameObject, Tree, Learn

record Question(question, yes, no)

procedure main()

   GameObject := "animal"
   Tree := Question("Does it live in water", "goldfish", "canary")

   Get() # Recall prior knowledge

   Game() # Play a game

   return

end

#  Game() –– Conducts a game.
#
procedure Game()

   while Confirm("Are you thinking of ", Article(GameObject), " ",
      GameObject) do Ask(Tree)

   write("Thanks for a great game.")

   if \Learn &Confirm("Want to save knowledge learned this session")
   then Save()

   return

end
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#  Confirm() –– Handles yes/no questions and answers.
#
procedure Confirm(q[])
   local answer, s
   static ok

   initial {
      ok := table()
      every ok["y" | "yes" | "yeah" | "uh huh"] := "yes"
      every ok["n" | "no"  | "nope" | "uh uh" ] := "no"
      }

   while /answer do {
      every writes(!q)
      write("?")
      case s := read() | exit(1) of {

 #  Commands recognized at a yes/no prompt.
 #
 "save": Save()
 "get": Get()
 "list": List()
 "dump": Output(Tree)
 default: {
    (answer := \ok[map(s, &ucase, &lcase)]) |

               write("This is a \"yes\" or \"no\" question.")
    }
 }

      }

   return answer == "yes"

end

#  Ask() –– Navigates through the barrage of questions leading to a
#  guess.
#
procedure Ask(node)
   local guess, question

   case type(node) of {
      "string": {
         if not Confirm("It must be ", Article(node), " ", node, ", right") then {
            Learn := "yes"
            write("What were you thinking of?")
            guess := read() | exit(1)
            write("What question would distinguish ", Article(guess), " ",
               guess, " from ", Article(node), " ", node, "?")
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            question := read() | exit(1)
            if question[–1] == "?" then question[–1] := ""
            question[1] := map(question[1], &lcase, &ucase)
            if Confirm("For ", Article(guess), " ", guess, ",
               what would the answer be")
            then return Question(question, guess, node)
         else return Question(question, node, guess)
         }
      }

      "Question": {
 if Confirm(node.question) then node.yes := Ask(node.yes)
 else node.no := Ask(node.no)
 }

      }

end

#  Article() –– Come up with the appropriate indefinite article.
#
procedure Article(word)

   return if any('aeiouAEIOU', word) then "an" else "a"

end

#  Save() –– Store our acquired knowledge in a disk file name
#  based on the GameObject.
#
procedure Save()
   local f

   f := open(GameObject || "s", "w")

   Output(Tree, f)

   close(f)

   return

end

#  Output() –– Recursive procedure used to output the knowledge tree.
#
procedure Output(node, f, sense)
   static indent

   initial indent := 0

   /f := &output
   /sense := " "

   case type(node) of {
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      "string": write(f, repl(" ", indent), sense, "A: ", node)
      "Question": {

 write(f, repl(" ", indent), sense, "Q: ", node.question)
 indent +:= 1
 Output(node.yes, f, "y")
 Output(node.no, f, "n")
 indent –:= 1
 }

      }

   return

end

#  Get() –– Read in a knowledge base from a file.
#
procedure Get()
   local f

   f := open(GameObject || "s", "r") | fail

   Tree := Input(f)

   close(f)

   return

end

#  Input() –– Recursive procedure used to input the knowledge tree.
#
procedure Input(f)
   local nodetype, s

   read(f) ? (tab(upto(~' \t')) & =("y" | "n" | "") &
 nodetype := move(1) & move(2) & s := tab(0))

   return if nodetype == "Q" then Question(s, Input(f), Input(f)) else s

end

#  List() –– Lists the objects in the knowledge base.
#

$define Length 78

procedure List()
   local lst, line, item

   lst := Show(Tree, [ ])
   line := ""

   every item := !sort(lst) do {
      if ∗line + ∗item > Length then {
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 write(trim(line))
 line := ""
 }

      line ||:= item || ", "
      }

   write(line[1:–2])

   return

end

#
#  Show() –– Recursive procedure used to navigate the knowledge tree.
#
procedure Show(node, lst)

   if type(node) == "Question" then {
      lst := Show(node.yes, lst)
      lst := Show(node.no, lst)
      }
   else put(lst, node)

   return lst

end

RANDOMLY GENERATED SENTENCES

This program generates randomly selected strings (“sentences”) from a grammar
specified by the user. Grammars are basically context-free and resemble BNF in
form, although there are a number of extensions.

The program works interactively, allowing the user to build, test, modify, and
save grammars. Input to the program consists of various kinds of specifications,
which can be intermixed. The two main kinds of specifications are:

• Productions that define nonterminal symbols in a syntax similar to the rewrit-
ing rules of BNF, with alternatives being represented by the concatenation of
nonterminal and terminal symbols.

• Generation specifications that cause the generation of a specified number of
sentences from the language defined by a given nonterminal symbol.

An example of a grammar is:

<rule1>::=<qual> <noun> <tverb> <object>;
<rule2>::=<noun> <iverb>, <clause> ...
<rule3>::=<qual> <noun> <iverb>.
<poem>::=<rule1><nl><rule2><nl><rule3><nl><nl>
<noun>::=he|she|the shadowy figure|the boy|a child|a ghost|a black cat
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<tverb>::=outlines|stares at|captures|damns|destroys|raises|throws
<iverb>::=alights|hesitates|turns away|kneels|stares|hurries
<clause>::=and <iverb>|but <iverb>|and <iverb>|while <ger> <adj>
<adj>::=silently|darkly|with fear|expectantly|fearfully|quietly|hauntingly
<ger>::=waiting|pointing|breathing|reclining|disappearing
<object>::=<article> <onoun>
<article>::=a|the
<onoun>::=sky|void|abyss|star|darkness|lake|moon|cloud|sun|mountain
<qual>::=while|as|momentarily|frozen,

A generation specification consists of a nonterminal symbol followed by a
nonnegative integer. For example, <poem>4 specifies the generation of four <poem>s.

Typical output is:

as the boy throws a darkness;
a child turns away, but hesitates ...
momentarily the shadowy figure alights.

as the shadowy figure outlines the darkness;
a child returns, but hurries ...
momentarily she stares.

frozen, the boy captures a star;
a black cat kneels, and alights ...
as the boy hesitates.

momentarily a ghost destroys the sun;
the boy turns away, but stares ...
as a child alights.

The program has many other features as shown in the listing that follows.

# Author: Ralph E. Griswold

link options
link random

global defs, ifile, in, limit, prompt, tswitch

record nonterm(name)
record charset(chars)

$define Limit 1000

procedure main(args)
   local line, plist, s, opts

   # procedures to try on input lines
   #
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   plist := [define, generate, grammar, source, comment, prompter, error]

   defs := table() # table of definitions
   defs["lb"] := [["<"]] # built–in definitions
   defs["rb"] := [[">"]]
   defs["vb"] := [["|"]]
   defs["nl"] := [["\n"]]
   defs[""] := [[""]]
   defs["&lcase"] := [[charset(&lcase)]]
   defs["&ucase"] := [[charset(&ucase)]]
   defs["&digit"] := [[charset(&digits)]]

   opts := options(args, "tl+s+r")
   limit := \opts["l"] | Limit
   tswitch := \opts["t"]
   &random := \opts["s"]
   if /opts["s"] & /opts["r"] then randomize()

   ifile := [&input] # stack of input files
   prompt := ""

   while in := pop(ifile) do { # process all files
      repeat {
         if ∗prompt ~= 0 then writes(prompt)
         line := read(in) | break
         while line[–1] == "\\" do line := line[1:–1] || read(in) | break
         (!plist)(line)
         }
      close(in)
      }

end

#  Process alternatives.
#
procedure alts(defn)
   local alist

   alist := [ ]

   defn ? while put(alist, syms(tab(upto('|') | 0))) do move(1) | break

   return alist

end

#  Look for comment.
#
procedure comment(line)

   if line[1] == "#" then return else fail

end
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#  Look for definition.
#
procedure define(line)

   return line ? defs[(="<", tab(find(">::=")))] := (move(4), alts(tab(0)))

end

#  Define nonterminal.
#
procedure defnon(sym)
   local chars, name
   if sym ? {
      ="'" &
      chars := cset(tab(–1)) &
      ="'"
      }
   then return charset(chars) else return nonterm(sym)

end

#  Note erroneous input line.
#
procedure error(line)

   write("∗∗∗ erroneous line:  ", line)

   return

end

#  Generate sentences.
#
procedure gener(goal)
   local pending, symbol

   pending := [nonterm(goal)]

   while symbol := get(pending) do {
      if \tswitch then write(&errout, symimage(symbol), listimage(pending))
      case type(symbol) of {
         "string": writes(symbol)
         "charset": writes(?symbol.chars)
         "nonterm": {
            pending := ?\defs[symbol.name] ||| pending | {
               write(&errout, "∗∗∗ undefined nonterminal:  <",
                  symbol.name, ">")
               break

App. I Sample Programs 345

               }
            if ∗pending > \limit then {
               write(&errout, "∗∗∗ excessive symbols remaining")
               break
               }
            }
         }
      }

   write()

end

#  Look for generation specification.
#
procedure generate(line)
   local goal, count

   if line ? {
      ="<" &
      goal := tab(upto('>')) \ 1 &
      move(1) &
      count := (pos(0) & 1) | integer(tab(0))
      }
   then {
      every 1 to count do
         gener(goal)
      return
      }

   else fail

end

#  Get right hand side of production.
#
procedure getrhs(a)
   local rhs

   rhs := ""

   every rhs ||:= listimage(!a) || "|"

   return rhs[1:–1]

end

#  Look for request to write out grammar.
#
procedure grammar(line)
   local file, out, name

   if line ? {
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      name := tab(find("–>")) &
      move(2) &
      file := tab(0) &
      out := if ∗file = 0 then &output else {
         open(file, "w") | {
            write(&errout, "∗∗∗ cannot open ", file)
            fail
            }
         }
      }
   then {
      (∗name = 0) | (name[1] == "<" & name[–1] == ">") | fail
      pwrite(name, out)
      if ∗file ~= 0 then close(out)
      return
      }

   else fail

end

#  Produce image of list of grammar symbols.
#
procedure listimage(a)
   local s, x

   s := ""

   every x := !a do
      s ||:= symimage(x)

   return s

end

#  Look for new prompt symbol.
#
procedure prompter(line)

   if line[1] == "=" then {
      prompt := line[2:0]
      return
      }

end

#  Write out grammar.
#
procedure pwrite(name, ofile)
   local nt, a
   static builtin
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   initial builtin := ["lb", "rb", "vb", "nl", "", "&lcase", "&ucase", "&digit"]

   if ∗name = 0 then {
      a := sort(defs, 3)
      while nt := get(a) do {
         if nt == !builtin then {
            get(a)
            next
            }
         write(ofile, "<", nt, ">::=", getrhs(get(a)))
         }
      }
   else write(ofile, name, "::=", getrhs(\defs[name[2:–1]])) |
      write("∗∗∗ undefined nonterminal:  ", name)

end

#  Look for file with input.
#
procedure source(line)
   local file, new

   return line ? {
      if ="@" then {
         new := open(file := tab(0)) | {
            write(&errout, "∗∗∗ cannot open ", file)
            fail
            }
         push(ifile, in) &
         in := new
         return
         }
      }

end

#  Produce string image of grammar symbol.
#
procedure symimage(x)

   return case type(x) of {
      "string":   x
      "nonterm":  "<" || x.name || ">"
      "charset":  "<'" || x.chars || "'>"
      }

end

#  Process the symbols in an alternative.
#
procedure syms(alt)
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   local slist
   static nonbrack
   initial nonbrack := ~'<'

   slist := [ ]

   alt ? while put(slist, tab(many(nonbrack)) |
      defnon(2(="<", tab(upto('>')), move(1))))

   return slist

end

N QUEENS

This program displays all the solutions for n non-attacking queens on an n×n
chessboard. It is a generalization of the techniques described in Chapter 17.

The solutions are written showing the positions of the queens on the chess-
board. The following solution for 8 queens is typical:

---------------------------------
|   |   |   |   |   | Q |   |   |
---------------------------------
| Q |   |   |   |   |   |   |   |
---------------------------------
|   |   |   |   | Q |   |   |   |
---------------------------------
|   | Q |   |   |   |   |   |   |
---------------------------------
|   |   |   |   |   |   |   | Q |
---------------------------------
|   |   | Q |   |   |   |   |   |
---------------------------------
|   |   |   |   |   |   | Q |   |
---------------------------------
|   |   |   | Q |   |   |   |   |
---------------------------------

#  Author: Steven B. Wampler

link options

global n, solution

$define Queens 8

procedure main(args)
   local i, opts

   opts := options(args, "n+")
   n := \opts["n"] | Queens
   if n <= 0 then stop("–n needs a positive numeric parameter")

   solution := list(n) # list of column solutions
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   write(n, "–Queens:")

   every q(1)   # start by placing queen in first column

end

# Place a queen in column c.
#
procedure q(c)
   local r
   static up, down, rows

   initial {
      up := list(2 ∗ n – 1, 0)
      down := list(2 ∗ n – 1, 0)
      rows := list(n, 0)
      }

   every 0 = rows[r := 1 to n] = up[n + r – c] = down[r + c – 1] &
      rows[r] <– up[n + r – c] <– down[r + c – 1] <– 1 do {
         solution[c] := r # record placement
         if c = n then show()
         else q(c + 1) # try to place next queen
         }

end

# Show the solution on a chess board.
#
procedure show()
   static count, line, border

   initial {
      count := 0
      line := repl("|   ", n) || "|"
      border := repl("– – – –", n) || "–"

      }

   write("solution: ", count +:= 1)
   write("  ", border)

   every line[4 ∗ (!solution – 1) + 3] <– "Q" do {
      write("  ", line)
      write("  ", border)
      }

   write()

end
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N QUEENS DISPLAYED GRAPHICALLY

This version of the n-queens program displays the solutions in a window. The
display is animated so that the queens “move” from solution to solution.

This program uses graphics features that are not described in Chapter 12, but
it should be clear what is being done.

An example from the display for 8 queens is shown below. Compare it to the
textual version shown in the preceding section.

#  Author: Ralph E. Griswold, based on a program by
#  Stephen B. Wampler

link options
link wopen

global solution
global black_queen, white_queen

$define Edge  4
$define Offset 40
$define Queens 8
$define Size 44
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global queens

procedure main(args)
   local i, opts, wsize, bqueen, wqueen

   opts := options(args, "n+")
   queens := \opts["n"] | Queens
   if queens <= 0 then stop("–n needs a positive numeric parameter")

   wsize := queens ∗ Size + 2 ∗ Offset

   WOpen("size=" || wsize || ", " || wsize, "label=" || queens ||
      "–queens") | stop("∗∗∗ cannot open window")
   black_queen := WOpen("canvas=hidden", "size=41, 41") |
      stop("∗∗∗ cannot open window for black queen")
   white_queen := WOpen("canvas=hidden", "size=41, 41") |
      stop("∗∗∗ cannot open window for white queen")

   DrawImage(black_queen, 0, 0,
      "41, c1, _
      66666666666666666666666666666666666666666_
      66666666666666666666666666666666666666666_
      66666666666666666666666666666666666666666_
      66666666666664003666666663004666666666666_
      66666666666650000466666640000566666666666_
      66666666666640000366666630000466666666666_
      66666666666660000566666650000666666666666_
      66666666666665224666666664225666666666666_
      66663346666666644666666664466666666433666_
      66620004666666631666666661366666664000266_
      66600002666666640666666660466666662000066_
      66600003666666650466666640566666663000066_
      66640026666666660166666610666666666200466_
      66666651666666660046666400666666661566666_
      66666662266666660026666200666666622666666_
      66666666036666660004663000666666306666666_
      66666666403666640000220000466663046666666_
      66666666620266620000000000266620266666666_
      66666666650002100000000000012000566666666_
      66666666663000000000000000000003666666666_
      66666666666000000000000000000006666666666_
      66666666666300000000000000000036666666666_
      66666666666500000000000000000056666666666_
      66666666666610000000000000000166666666666_
      66666666666630000000000000000366666666666_
      66666666666652222222222222222566666666666_
      66666666666664444444444444444666666666666_
      66666666666640000000000000000466666666666_
      66666666666651000000000000001566666666666_
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      66666666666664000000000000004666666666666_
      66666666666651000000000000001566666666666_
      66666666666640000000000000000466666666666_
      66666666666664444444444444444666666666666_
      66666666653222222222222222222223566666666_
      66666666600000000000000000000000066666666_
      66666666400000000000000000000000046666666_
      66666666300000000000000000000000036666666_
      66666666300000000000000000000000036666666_
      66666666300000000000000000000000036666666_
      66666666300000000000000000000000036666666_
      66666666666666666666666666666666666666666"
      )

   DrawImage(white_queen, 0, 0,
      "41, c1, _
      00000000000000000000000000000000000000000_
      00000000000000000000000000000000000000000_
      00000000000026630000000036620000000000000_
      00000000000166662000000266661000000000000_
      00000000000266663000000366662000000000000_
      00000000000066661000000166660000000000000_
      00000000000014420000000024410000000000000_
      00033200000000220000000022000000002330000_
      00466620000000350000000053000000026664000_
      00666640000000260000000062000000046666000_
      00666630000000162000000261000000036666000_
      00266400000000065000000560000000004662000_
      00000150000000066200002660000000051000000_
      00000044000000066400004660000000440000000_
      00000006300000066620036660000003600000000_
      00000002630000266664466662000036200000000_
      00000000464000466666666664000464000000000_
      00000000166645666666666666546661000000000_
      00000000036666666666666666666630000000000_
      00000000006666666666666666666600000000000_
      00000000003666666666666666666300000000000_
      00000000001666666666666666666100000000000_
      00000000000566666666666666665000000000000_
      00000000000366666666666666663000000000000_
      00000000000144444444444444441000000000000_
      00000000000022222222222222220000000000000_
      00000000000266666666666666662000000000000_
      00000000000156666666666666651000000000000_
      00000000000026666666666666620000000000000_
      00000000000156666666666666651000000000000_
      00000000000266666666666666662000000000000_
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      00000000000022222222222222220000000000000_
      00000000134444444444444444444431000000000_
      00000000666666666666666666666666000000000_
      00000002666666666666666666666666200000000_
      00000003666666666666666666666666300000000_
      00000003666666666666666666666666300000000_
      00000003666666666666666666666666300000000_
      00000003666666666666666666666666300000000_
      00000000000000000000000000000000000000000_
      00000000000000000000000000000000000000000"
      )

   DrawBoard()

   solution := list(queens) # list of column solutions

   every q(1) # start with queen in first column

   until WQuit() # wait for user to dismiss

end

# Place a queen in column c.
#
procedure q(c)
   local r
   static up, down, rows

   initial {
      up := list(2 ∗ queens – 1, 0)
      down := list(2 ∗ queens – 1, 0)
      rows := list(queens, 0)
      }

   every 0 = rows[r := 1 to queens] = up[queens + r – c] =
      down[r + c – 1] & rows[r] <– up[queens + r – c] <–
         down[r + c – 1] <– 1 do {
            solution[c] := r # record placement
            if c = queens then show()
            else q(c + 1) # try to place next queen
            }

end

# Show the solution on a chess board.
#
procedure show()
   local i, j, queen

   every i := 1 to ∗solution do {
      j := solution[i]
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      queen := if (i + j) % 2 = 0 then black_queen else white_queen
      CopyArea(queen, &window, , , , , Offset + (i – 1) ∗ Size + 1,
         Offset + (j – 1) ∗ Size + 1)
      }

   WDelay(500) # pause to avoid blurred motion

   while ∗Pending() > 0 do {
      case Event() of {
         "q":  exit()
         "p":  until Event() === "c"
         }
      }

   every i := 1 to ∗solution do {
      j := solution[i]
      if (i + j) % 2 = 1 then Fg("black") else Fg("white")
      FillRectangle(Offset + (i – 1) ∗ Size, Offset + (j – 1) ∗ Size,
         Size, Size)
      }

   return

end

procedure DrawBoard()
   local i, j

   every i := 0 to queens – 1 do
      every j := 0 to queens – 1 do
         if (i + j) % 2 = 1 then
            FillRectangle(Offset + i ∗ Size, Offset + j ∗ Size,
               Size, Size)

   DrawRectangle(Offset – 1, Offset – 1, queens ∗ Size + 1,
      queens ∗ Size + 1)

   DrawRectangle(Offset – Edge – 1, Offset – Edge – 1,
      queens ∗ Size + 2 ∗ Edge + 1, queens ∗ Size + 2 ∗ Edge + 1)

   return

end
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Icon Resources

Icon evolved through a series of versions. The current version is 9, which presently
is available for the Acorn Archimedes, the Amiga, Macintosh/MPW, Microsoft
Windows, MS-DOS, many UNIX platforms, VAX/VMS, and Windows NT. There
also are earlier versions for several other platforms. Icon’s graphics facilities
presently are supported for Microsoft Windows, UNIX, VAX/VMS, and Windows
NT. All implementations of Icon are in the public domain.

Documentation on Icon is extensive. In addition to this book, there is a book on
the implementation of Icon (Griswold and Griswold, 1986), and one on graphics
programming (Griswold, Jeffery, and Townsend, forthcoming). There are two
newsletters (Griswold, Griswold, and Townsend, 1978- and 1990-), many technical
reports, and user manuals for various platforms.

Implementations of Icon, the Icon program library, documentation, and other
materials are available via the Internet. On the World Wide Web, the Icon home page
is located at

http://www.cs.arizona.edu/icon/

From there, there are links to general information about Icon, reference material, the
current status of Icon, the Icon program library, documentation, technical support,
and so on.

The address for anonymous FTP is

ftp.cs.arizona.edu

  
355



Access to Icon Material       App. J356

From there, cd /icon and get README.

The newsgroup comp.lang.icon handles news related to Icon. There also is a
mailing list connected to the newsgroup via a gateway. To subscribe, send mail to

icon-group-request@cs.arizona.edu

Information about Icon also is available from

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613
fax: (520) 621-4246

e-mail: icon-project@cs.arizona.edu
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Glossary

Documentation about Icon uses some terms in a technical way. This glossary
explains such terms. Icon terminology developed over time, and some terms have
been used differently in different documents. What follows reflects current usage.

This glossary assumes familiarity with computer terminology.

activation: evaluation of a co-expression.

allocation: the process of providing space in memory for values created during
program execution. See also garbage collection.

alternation: a control structure that generates the results of its first operand followed
by the results of its second operand. See also disjunction.

argument: an expression that provides a value for a function or procedure call;
sometimes used to mean operand.

argument list: a list of expressions that provide values for parameters in a procedure
call.

assignment: association of a value with a variable.

associativity: the order in which like operators are evaluated in the absence of
parentheses. Associativity can be left-to-right, in which case the first (left-most)
operator is evaluated first or right-to-left, in which case the last (right-most)
operator is evaluated first.
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attribute: in the context of graphics, a value that affects the window, drawing, and
text written to the window.

augmented assignment: assignment combined with a binary operation. The binary
operation is performed on the value of the left-operand variable and the value
of the right operand, and then the result is assigned to the left-operand variable.

backtracking: control backtracking or data backtracking; usually used as a syn-
onym for the former.

binary operator: an operator with two operands. See also infix operator.

bounded expression: an expression that is limited to at most one result because of
the syntactic context in which it appears. See also limitation.

built-in: a feature that is part of the Icon programming language, as opposed to a
feature written in Icon.

call: see invocation.

case expression: a control structure in which the expression to evaluate is selected
by a value.

co-expression: an expression coupled with an environment for its execution. If the
expression is a generator, its results can be obtained one at a time by activation.

character: the elementary unit from which strings and csets are composed. Charac-
ters are used to represent letters, digits, punctuation marks, and so forth.
Characters are represented internally by small nonnegative integers (typically
8 bits). Some characters have associated glyphs. Icon has no character data type.

coercion: implicit type conversion.

collating sequence: the sorting order for strings imposed by the internal represen-
tation of characters.

command-line argument: a string given after the program name when Icon is
invoked from a command line. Command-line arguments are passed to the
main procedure as a list of strings in its first argument.

comparison operation: a binary operation that compares two values according to a
specified criterion. A comparison operation succeeds and returns the value of
its right operand if the criterion is satisfied. Otherwise it fails. See also numerical
comparison, lexical comparison, and value comparison.

compilation: the process of converting Icon source code to code for a virtual
machine. The result of compiling a source code file is a pair of ucode files for the
virtual machine.

conditional code: source code that is included or not included in a program as the
result of preprocessing.

conditional compilation: the inclusion or exclusion of source code as the result of
conditional directives.
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conditional directive: a preprocessor directive that includes or excludes source
code depending on whether or not a preprocessor symbol is defined.

conjunction: a binary operation that evaluates its operands but performs no
computation on them; used to test if two expressions both succeed. Conjunction
has the effect of logical and. See also: mutual evaluation and disjunction.

control backtracking: returning control to previously evaluated but suspended
generators. Control backtracking is the underlying mechanism for accomplish-
ing goal-directed evaluation.

control character: a character that has special interpretation in an input/output
context. Examples are backspace and newline.

control structure: an expression whose evaluation may alter the otherwise sequen-
tial order of evaluation of expressions.

conversion: see type conversion.

cset: an unordered collection of characters.

cursor: the position in string scanning.

data backtracking: restoring previous values to variables during control backtrack-
ing. Data backtracking occurs only for a few specific operations.

data structure: a collection of values. Different kinds of data structures are orga-
nized and accessed in different ways. Icon structures are records, lists, sets, and
tables.

data type: a designation that identifies values that share common properties and
operations. Icon has 12 data types: co-expression, cset, file, integer, list, null,
procedure, real, set, string, table, and window. In addition, each record decla-
ration defines a data type. The term data type often is shortened to type.

declaration: a component of a program that specifies its properties and structure.
There are seven kinds of declarations: global, invocable, link, local, procedure,
record, and static.

default case clause: a component of a case expression that contains an expression
that is evaluated if no other expression is selected in a case expression. A default
case clause is indicated by the reserved word default.

default value: a value that is provided in place of an omitted or null-valued
argument of a function.

default table value: a value specified when a table is created to serve as the value
corresponding to keys that are not in the table.

define directive: a preprocessor directive that associates a preprocessor symbol
with some text so that the text is substituted for subsequent uses of the symbol
in the program.
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deque: a “double-ended queue” that allows both addition and removal at each end.
Icon lists are deques.

dereferencing: producing the value of a variable. Dereferencing is done automati-
cally when the value of a variable is needed in a computation. Dereferencing
also can be done explicitly using the dereferencing operator.

dialog: in the context of graphics, a temporary window that provides information
and in which the user can enter text, make a choice, and so on.

directive: a preprocessor command.

disjunction: logical or; used to describe the effect of alternation. See also conjunc-
tion.

dump: see termination dump.

element: a value in a record, list, or set; or a key/value pair in a table.

environment variable: a named attribute of the system environment under which
a program runs. Environment variables can be used to specify the size of Icon’s
memory regions, the locations of libraries, and so forth.

error: a condition or situation that is invalid. Errors may occur during compilation,
linking, or execution. An error in compilation prevents linking. An error in
linking prevents the production of an icode file. An error that occurs during
execution is called a run-time error. See also error conversion.

error conversion: changing run-time errors to expression failure rather than pro-
gram termination. This is accomplished by setting the keyword &error.

error directive: a preprocessor directive that forces an error in compilation.

escape sequence: a sequence of characters in a string or cset literal that encodes a
single character. Escape sequences usually are used for characters that cannot
be given literally.

evaluation: execution of an expression to produce its outcome.

event: in the context of graphics, a user action such as a mouse click or typed
character that a program can detect.

execution: the process of running an Icon program resulting from compilation and
linking.

expression: a component of a program that performs a computation. See also
statement.

failure: the lack of a result; expression evaluation that does not produce a result.
Failure is the opposite of success. Failure is not an error.

field: an element of a record.

file: stored data, usually on magnetic media such as disk; also an Icon data type that
references such a file.
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first-class data type: a data type whose values can be used without restriction:
passed as arguments to procedures, assigned to variables, and returned by
procedures. All data types in Icon are first class.

floating point: an approximate representation of real numbers in computer hard-
ware.

font: the size and general appearance of text written in a window.

function: a built-in procedure.

garbage collection: the process of reclaiming space in memory that has been
allocated but is no longer needed. Garbage collection occurs automatically
when insufficient space remains for allocation. Garbage collection can be forced
by calling collect().

generation: the production of more than one result in sequence.

generator: an expression that is capable of producing more than one result.

generic procedure: a procedure that accepts arguments of any type and/or returns
a value of any type.

GIF: a format used for storing image data in a file.

global declaration: a scope declaration that makes a variable accessible throughout
an entire program.

global variable: a variable whose value is accessible throughout the entire program
and from the beginning of execution to the end.

glyph: a graphic symbol such as a letter, digit, or punctuation mark.

goal-directed evaluation: the attempt to produce a successful outcome by resuming
suspended generators to get alternative values when an expression otherwise
would fail. Goal-directed evaluation is implicit in expression evaluation. See
also iteration and control backtracking.

graphics: drawing, text, and images in a window.

heterogeneous structure: a structure whose elements have different types.

homogeneous structure: a structure all of whose elements have the same type.

icode: the result of linking ucode files to produce executable code for the Icon virtual
machine. Icode files are in a binary format that depends to some extent on the
architecture of a specific computer.

identifier: a string of characters that names a variable.

image: see string image.

implicit conversion: type conversion that occurs automatically as needed; also
called coercion.

include directive: a preprocessor directive that copies a file into a program.
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include file: a file that is copied into a program as a consequence of an include
directive.

infix operator: an operator that appears between operands. See also binary opera-
tor.

initial clause: an optional component of a procedure that contains expressions to be
evaluated only on the first invocation of the procedure.

integer: a whole number, such as 137, 0, and –15; a data type.

invocable declaration: a declaration that specifies procedures that are to be in-
cluded when a program is linked, even if there is no explicit reference to them
in the program. Such procedures may be called using string invocation.

invocation: the evaluation of a procedure or function. Invocation and call are
sometimes used synonymously.

iteration: production of all the results of a generator. Iteration can be accomplished
by a control structure or by conjunction with an expression that always fails. See
also goal-directed evaluation.

key: a value used to identify an entry in a table.

keyword: An ampersand (&) followed by a string of letters that has a special
meaning. Some keywords are variables. Contrast with reserved word.

lexical comparison: comparison of strings “alphabetically” according to the nu-
merical values used to represent characters. Also called string comparison. See
also collating sequence.

lexical scoping: A method of scoping that depends on the text of a program rather
than on the program state during execution. Icon uses lexical scoping.

library module: a file consisting of one or more procedures or other declarations that
have been compiled into ucode so that they may be incorporated in a program
by linking.

limitation: restricting the number of times a generator is resumed. Limitation can be
specified by a control structure or occur because of the syntactic context in which
the generator appears. See also bounded expression.

line directive: a preprocessor directive that sets the source-program line number
and file name for diagnostic purposes.

line terminator: a character or pair of characters that is used by convention to mark
the end of a line of text in a file. In UNIX, the line terminator is a linefeed
character; on the Macintosh, it is the return character; in DOS, it is a linefeed
character followed by a return character. Other platforms generally use one of
these conventions. See also: newline character.

link declaration: a declaration that causes a library module to be included in a
program during linking.

Glossary 363

linker: the program that converts ucode to icode. Linking may combine ucode files
from several compilations to produce a single icode file.

linking: the process of converting one or more pairs of ucode files into an icode file
suitable for execution.

list: a data structure that consists of a sequence of values called elements. Lists can
be accessed by position (subscripted) and as stacks and queues. Positional
accesses produce variables.

literal: a sequence of characters in a source program that directly represents a value,
such as the integer 1 and the string "hello".

local variable: a variable that is accessible only to the procedure in which it is
declared and during a single invocation of the procedure. Local variables are
created when a procedure is invoked and are destroyed when a procedure
returns or fails, but not when a procedure suspends. See also: global variable
and static variable.

matching function: a function that returns a portion of the subject in string scanning.
The term sometimes is extended to include matching procedures.

member: a value in a set; also called element.

memory: the space in which a program and the objects it creates are stored. Memory
is implemented in RAM. Also called storage.

memory region: a portion of memory used for storing Icon values. There are
separate memory regions for strings and for other objects. Also called storage
region.

mixed-mode arithmetic: arithmetic performed on a combination of integers and
real numbers. The result is a real number.

module: see library module.

mutual evaluation: an expression consisting of an argument list but with no
function or procedure. A mutual evaluation expression succeeds only if all the
expressions in the argument list succeed. The result of a specific argument can
be selected by an integer preceding the argument list.

newline character: the single character used to represent a line terminator in Icon
regardless of the actual representation used in the underlying system.

null value: the single value of the null type. Icon identifiers have the null value
initially.

object: in the most general sense, any value. More specifically, a value that is
represented by a pointer to memory. These are strings, csets, real numbers, large
integers, co-expressions, files, procedures, windows, and data structures. Some-
times the term object is used for just data structures.

operand: an expression that provides a value for an operation. See also argument.
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operation: an expression that is part of the built-in computational repertoire of Icon
and cast in the form of an operator and operands. Sometimes used in a broader
sense to include function and procedure calls to distinguish expressions that
perform computation from control structures.

operator: a symbol consisting of one or more characters that designates an opera-
tion.

outcome: a result or failure as a consequence of evaluating an expression.

palette: a specification of a list of colors that can be used for drawing an image in a
window.

parameter: an identifier in a procedure declaration that specifies a variable to which
a value is passed when the procedure is called. Parameters are local variables.

passing arguments: the assignment of argument values in a procedure call to the
parameters of the procedure.

path: a specification for the location of a file. Paths are used for locating library
modules and include files.

pointer semantics: the representation of structures by references to their locations
in memory, allowing multiple variables to refer to the same structure.

polymorphous operation: an operation that applies to more than one data type. The
size operation, ∗X, is an example.

precedence: the order in which unlike binary operators in an unparenthesized
expression are evaluated. The operator with the highest precedence is evaluated
first.

predefined symbol: a preprocessor name for which there is a built-in definition. See
also define directive.

prefix operator: an operator that stands before its operand. All prefix operators in
Icon are unary operators.

preprocessing: a step prior to compilation in which directives can be used to define
constants, include files, and include or exclude code conditionally.

preprocessor symbol: a name associated with some replacement text in the prepro-
cessor. Preprocessor symbols may be predefined or defined by define direc-
tives.

procedure: a computational unit whose definition is cast in the form of an identifier,
which names the procedure, followed by a list of parameters to be used in the
computation. The term procedure includes both built-in procedures (also called
functions) and declared procedures, but sometimes it is used in the more
restricted sense of the latter.

procedure return: irrevocably leaving the invocation of a procedure. When a
procedure returns, it may produce a result or it may fail.
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programmer-defined control structure: a control structure that is implemented by
a procedure whose arguments are co-expressions and whose call has braces
instead of parentheses around the argument list. Also called programmer-
defined control operation.

program state: a global condition that affects an aspect of program execution. For
example, tracing is a global state.

queue: a sequence of values in which values are added at one end and removed from
the other. Icon lists can be used as queues. Queue access is called first-in, first-
out (FIFO). See also: stacks and deques.

radix literal: an integer literal that is expressed as a value given to a specified base
(radix).

range specification: a specification for consecutive characters in a string or values
in a list.

real: a data type that approximates real numbers. Reals are represented in floating
point format.

record: a data structure consisting of a fixed number of values that are referenced by
field names. The fields of a record are variables.

record constructor: a function that creates an instance of a record. A record
constructor is provided automatically for every record declaration.

record declaration: a declaration that defines a record.

reference: a value that identifies a structure. There may be several references to the
same structure.

reserved word: a string of letters that has syntactic meaning and cannot be used as
an identifier. Contrast with keyword.

result: a value or a variable produced by evaluating an expression. See also outcome.

result sequence: the sequence of results that a generator is capable of producing. This
is an abstract concept used for characterizing generators, not a program con-
struct.

return: see procedure return.

run-time: the time during program execution.

run-time error: an error that occurs during program execution. Run-time errors
cause program termination unless error conversion is enabled.

resumption: continuing the evaluation of a suspended generator. See also suspen-
sion.

run-time system: a collection of routines used during program execution.

scanning: see string scanning.

scope: the extent in time and location in which a variable is accessible. There are
three kinds of scope: global, local, and static.
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section: a list formed from consecutive values in another list. A section is a list
separate from the list from which it is derived.

serial number: a number that uniquely identifies a structure or window. Each type
of structure has its own sequence of serial numbers that starts with 1 for the first
structure of that type and increases by one for each newly created structure of
that type. Each record type has its own sequence of serial numbers.

set: a data structure consisting of distinct values upon which set operations can be
performed. A value in a set is called a member and sometimes by the more
general term element.

stack: a sequence of values in which values are added and removed at only one end.
Icon lists can be used as stacks. Stack access is called last-in, first-out (LIFO). See
also: queues and deques.

standard input: the file from which information is read by default. &input is the
standard input file.

standard error output: the file to which error messages and tracing information is
written by default. &errout is the standard error output file.

standard output: the file to which information is written by default. &output is the
standard output file.

statement: a component of a program that determines how computations are done
but performs no computation of its own. Icon has no statements. See also
expression.

static declaration: a scope declaration that makes a variable accessible to all
invocations of the procedure in which the declaration appears but nowhere else.

static variable: a variable with static scope.

storage: see memory.

string image: a string that describes a value.

string: a sequence of characters. Strings in Icon are values in their own right, not
arrays of characters.

string invocation: the invocation of a function, procedure, or operator by its string
name.

string name: a string that identifies a function, procedure, or operator. The string
name for a function or procedure is just the name by which it is used. The string
name for an operator resembles the symbols that designate the operator.

string scanning: high-level string analysis using the concepts of a subject string and
movement of a cursor position in it.

structure: see data structure.

subject: the string on which string scanning operates.
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subscript: a value used as an index to select an element of a structure or a substring
of a string. Tables can be subscripted by a value of any type; all other subscripts
are integers.

substring: a string within a string.

success: evaluation of an expression that produces a result; the opposite of failure.

suspension: interruption of the evaluation of a generator when a result is produced.
See also resumption.

syntax error: a grammatical error in a program. Syntax errors are detected during
compilation.

table: a data structure composed of key/value pairs, in which keys are distinct.
Tables can be subscripted by keys to assign or access corresponding values.
Table subscripting produces variables.

table lookup: referencing a table by a key to produce the corresponding value. If the
table does not contain the key, the default table value is produced.

termination: the end of execution.

termination dump: a listing of information upon program termination.

thrashing: a situation in which garbage collection occurs frequently because the
amount of available memory is small.

traceback: a listing of procedure calls leading to the evaluation of the current
expression. A traceback is provided when a program terminates with a run-time
error, or in any event if termination dumping is enabled.

tracing: diagnostic information about procedure calls and co-expression activation
that is written to standard error output. Tracing is a program state enabled when
the value of &trace is nonzero.

transmission: passing a value to a co-expression when it is activated.

translated mode: a mode of input/output in which line terminators in files are
automatically translated into newlines on reading and newlines are automati-
cally translated to line terminators on writing. See also untranslated mode.

type: see data type.

type conversion: converting a value from one data type to another. Type conversion
occurs automatically when a value is not of the expected data type; this is called
implicit type conversion or coercion. Type conversion can be performed explic-
itly by using type-conversion functions. If implicit type conversion cannot be
done, a run-time error occurs. If explicit type conversion cannot be done, the
type-conversion function fails.

ucode: the result of compiling Icon source code into code for Icon’s virtual machine.
Ucode files are readable text.

unary operator: an operator with one operand. See also prefix operator.
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undefine directive: a preprocessor directive that removes a preprocessor definition.
See also define directive.

untranslated mode: a mode of input/output in which line terminators in files are
not automatically translated on reading and writing. See also translated mode.

value comparison: the comparison of values of any type.

variable: a reference to a value and to which assignment can be made. There are
several kinds of variables, including identifiers, elements of records, lists and
tables, subscripted string-valued variables, and some keywords. See also
dereferencing.

virtual machine: a computer that exists in concept only and is used as a basis for an
implementation that is not specific to any real computer.

visual interface: a mechanism whereby a program and a user can communicate
through a window.

window: a rectangular area of the screen in which drawing can be done and in which
user events can be accepted; also an Icon data type.
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&subject, 44, 197, 310
&time, 11, 170, 311
&trace, 192-195, 311, 318
&ucase, 60, 311
&version, 170, 311
&x, 156
&y, 156
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$ (EBCDIC syntax), 324
$ (preprocessor directive), 11, 269
$define, 11, 14-15, 270-271
$else, 272
$endif, 272
$error, 272
$ifdef, 272
$ifndef, 272
$include, 11-12, 269, 318
$line, 270
$undef, 271
! (element generation), 59, 72, 74-75, 81, 82,
     135-136, 297
! (list or record invocation), 102, 305
% (remainder), 64, 299
%:= (augmented %), 302
& (conjunction), 22, 33, 92, 301
& (keyword), 11, 252
&:= (augmented &), 302
∗ (multiplication), 64, 299
∗ (size), 49, 72, 74, 81, 82, 112, 296
∗:= (augmented ∗), 29, 302
∗∗ (intersection), 60, 80, 300
∗∗:= (augmented ∗∗), 302
+ (addition), 64, 298
+ (positive), 64, 125, 295
++ (union), 60, 80, 299
++:= (augmented ++), 302
+:= (augmented +), 29, 302
– (negative), 64, 296
– (subtraction), 64, 298
–:= (augmented –), 302
– – (cset or set difference), 60, 80, 300
– –:= (augmented – –), 302
. (dereferencing), 105, 298
. (field reference), 72, 300
/ (division), 64-65, 299
/ (null test), 128, 297
/:= (augmented /), 302
:= (assignment), 3, 28-29, 302
:=: (exchange values), 29-30, 302
< (numeric less than), 65, 301
<– (reversible assignment), 90, 302
<–> (reversible exchange), 90, 303
<:= (augmented <), 29, 302
<< (lexically less than), 50, 301
<<:= (augmented <<), 51, 302
<<= (lexically less than or equal), 50, 301
<<=:= (augmented <<=), 302
<= (numeric less than or equal), 65, 301
<=:= (augmented <=), 302
= (match string), 41, 296

= (numeric equal), 65, 129, 301
=:= (augmented =), 302
== (lexically equal), 50, 129, 301
==:= (augmented ==), 302
=== (value equal), 129, 301
===:= (augmented ===), 302
> (numeric greater than), 65, 301
>:= (augmented >), 29, 302
>= (numeric greater than or equal), 65, 301
>=:= (augmented >=), 302
>> (lexically greater than), 50, 301
>>:= (augmented >>), 51, 302
>>= (lexically greater than or equal), 50, 301
>>=:= (augmented >>=), 302
? (random selection), 59, 66, 72, 76, 81, 82, 297
? (scanning), xvii, 37-38, 43-44, 314
?:= (augmented ?), 44, 302
@ (co-expression activation), 110-111, 118-119,
     296
@ (transmission), 120-121, 300-301
@:= (augmented @), 302
\ (limitation), 93-94, 95, 314
\ (non-null test), 128, 298
^ (exponentiation), 64, 299
^ (refreshing), 111-112, 131, 296
^:= (augmented ^), 302
| (alternation), 21, 33, 313
| (repeated alternation), 94-95, 313
|| (string concatenation), 51-52, 300
||:= (augmented ||), 52, 302
||| (list concatenation), 76, 300
|||:= (augmented |||), 76, 302
~ (complement), 60, 296
~<< (lexically greater than), 50, 301
~= (numeric not equal), 65, 301
~=:= (augmented ~=), 302
~== (lexically not equal), 50, 301
~==:= (augmented ~==), 302
~=== (value not equal), 129, 301
~===:= (augmented ~===), 302
[ ] (subscripting), 57, 58, 72, 74-76, 81-82, 85,
     303-304
[ : ] (subscripting or list sectioning), 56-58, 77,
     304
[ +: ] (subscripting or list sectioning), 56-58, 304
[ –: ] (subscripting or list sectioning), 57-58, 305
[,, …] (list creation), 73-74, 303
(,, …) (argument list), 2, 101, 305
(,, …) (mutual evaluation), 92-93, 305
{,, …} (argument list, co-expression), 116, 306
{ } (compound expression), 7, 91
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abs(), 64, 275
Absolute value, 64
Acorn Archimedes, xviii, 355
acos(), 65, 275
Activating co-expressions, 110-111, 118-119, 296
Addition, 64, 298
Allocated block region, 167, 317
Allocated static region, 167
Allocated string region, 167, 318
Alphabetical order, 50
Alternation control structure, 21, 22, 27, 33,
     39-40, 313
Alternation, repeated, 94-95, 313
Alternatives, 21, 40-41
Ambiguous failure, 18, 57, 135
Amiga, xviii, 139, 355
any(), 42, 275
args(), 164, 276
Argument evaluation, 30-31, 105
Argument transmission, 102
Arguments, 1, 7, 9, 11, 12-13, 30-31, 92, 98-99,
     102, 103, 105, 175, 179

evaluation, 30-31, 105
extra, 30
null-valued, 31
omitted, 31, 61
variable number of, 98-99

Arithmetic, 64-65
double-precision, 63
floating-point, 63, 326
integer, 64-65
large-integer, 63, 67-68, 325
overflow, 325
mixed-mode, 63, 64-65
real, 63, 64-65, 327

Arrays, 72, 75-76
ASCII character set, 3, 48, 49, 50, 60, 138, 254,
     261-262, 268, 324
ASCII control characters, 254-255, 268
asin(), 65, 276
Assignment, 3, 6, 10, 18, 20, 28-30, 35, 44, 51, 52,
     58, 59, 62, 68, 72, 74-75, 77, 81-82, 83, 90, 103,
     104, 127, 302

augmented, 29, 44, 51, 52, 62, 81-82, 302
reversible, 90, 302

Associativity, 10, 28, 30, 32, 62, 69, 85, 257-259
atan(), 65, 276
Atari ST, xviii, 139
Augmented assignment, 29, 44, 51, 52, 62,
     81-82, 302
Augmented string scanning, 44, 302

Automatic type conversion, xvi, 8, 61, 63, 80,
     125-126

Backslashes, 49, 254-255
Backtracking, 87-92

control, 19, 87-89
data, 89-90, 94

bal(), 42-43, 276-277
Balanced strings, 42-43
Binary files, 138-139
Binary input, 138-140
Binary output, 138-139
Binary operators, 64, 163
Bit operations, 63, 66-67
Bitwise and, 66, 282
Bitwise complement, 67, 282
Bitwise exclusive or, 66-67, 283
Bitwise or, 66, 283
Bitwise shift, 67, 283
Blanks, 175, 255
BLKSIZE environment variable, 317
Block region, 167, 317
Block structure, 97
Blocks, 167
Boolean values, xvi
Bounded expressions, 90-92, 93-94, 95
Braces, 7, 28, 32, 33, 116
Brackets, 46, 73
break control structure, 23-25, 311
Built-in co-expressions, 119-120
Built-in csets, 40, 60
by clause, 20

C programming language, xi-xiii, xv, xviii, 19,
     166, 168, 323
C++ programming language, xi-xiii
Case clauses, 26-28
case control structure, 25-28, 91, 129, 311
center(), 53-54, 277
Changing directories, 169, 277, 327
char(), 49, 277
Character codes, 47-48, 49, 261-268, 324
Character comparison, 48, 50
Character generation, 59
Character graphics, 47-48, 261-267
Character mapping, 55, 237-242
Character sets, 48, 50, 324, 261-267, 324
Characters, 40, 47-48, 50, 261-267

linefeed, 139, 254
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mapping, 55, 237-242
printable, 47-48, 138
randomly selected, 59

chdir(), 169, 277, 327
CMS, xviii
Clipping, drawing, 148
close(), 135, 277
Closing files, 135, 277
co–expression type, 109, 123
Co-expressions, 109-122, 131, 162, 168, 191-192,
     194-195, 325

activation, 110-111, 118-119, 296
built-in, 119-120
creation, 109-110
environments, 112-113
refreshing, 111-112, 131
tracing, 194-195
transfer of control among, 118-121, 296,
     300-301
transmission, 120-121, 296, 300-301
size of, 112, 296
using as coroutines, 121

COEXPSIZE environment variable, 317
collect(), 168, 278
Color, 145, 151, 153
Color names, 151
Command lines, 174, 179-182
Command-line arguments, 175, 179
Command-line environments, 13, 173, 174, 329
Command-line options, 179-182, 184, 315, 318,
     327, 329-331
Commands, executing, 169, 325
Comments, 4, 255, 272
Comparing values, 128-130, 301
Comparison operations, 19, 28, 35, 68-69
Compilation, 173-174, 176, 185, 187-188, 269,
     315, 319
Compilation errors, 187-188, 320-321
Compilation, conditional, 11, 272
Compiler, 13, 173-174, 176, 185, 187-188, 269,
     315, 317, 319
Compound expressions, 7, 10, 91
Complement, cset, 60, 296
Concatenation,

string, 51-52, 62, 300
list, 76, 300

Conditional compilation, 11, 272
Conditional expressions, 4-6
Conjunction, 22, 33, 92, 301
Conjunction, logical, 22
Constants, preprocessor, 11, 14-15, 270, 271

predefined, 271

Continuation,
of expressions, 256
of quoted literals, 49, 257, 272

Control backtracking, 19, 87-89
Control characters, 47, 254-255, 261, 268, 324
Control expressions, 23, 25-27, 91
Control operations, programmer-defined,
     115-118
Control structures, xvi-xvii, 6-7, 11, 17, 33, 115,
     311-314

alternation, 21, 22, 27, 33, 39-40
break, 23-25, 311
case, 25-28, 91, 129, 311
create, 109-110, 112, 116, 312
every-do, 20, 32, 91, 102, 103, 312
fail, 8-9, 31, 102, 312
if-then-else, xvi, 6-7, 25-26, 34-35, 91, 312
limitation, 93-94, 95, 314
next, 24, 312
not, 23, 26, 34, 91, 312
programmer-defined, 115-118
repeat, 24-25, 91, 312
repeated alternation, 94-95, 313
return, 8, 31, 91, 102, 104, 107, 312-313
scanning, xvii, 37-38, 43-44, 61, 92, 94, 314
suspend-do, 31-32, 91, 102-103, 313
until-do, 23, 91, 313
while-do, 6, 23, 91, 313

Conversion, type,
automatic, xvi, 8, 61, 63, 80, 125-126
explicit, 126-127
implicit, 125-126
numeric, 127

Coordinate system, window, 144
copy(), 130-131, 278
Copying values, 130-131
Coroutines, 121
cos(), 65, 278
create control structure, 109-110, 112, 116, 312
Cross-product evaluation, 88, 89, 188-189
Cset literals, 40, 60, 190, 254
cset type, 40, 60, 123-125
cset(), 126, 278
Csets, 40-41, 47, 60, 80, 123-126, 128, 131, 161,
     190, 242, 246

built-in, 40, 60
empty, 62
operations on, 60, 80
size of, 60, 296
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Dags, 231-233
Dangling else, 34
Data, tabular, 54
Data backtracking, 89-90, 94
Data types, 123-131, 191
Date, 169-170
Debugging, 192-195
Decimal literals, 63, 253-254
Declarations, xvi, 71, 97-101, 165, 188, 247-248

global, 99-100
invocable, 165
link, 13, 177-178
local, 97-98, 99-100
procedure, 1, 71, 97-99, 101, 176, 317
record, 71, 188
static, 101-102, 107-108

default case clause, 26-27
Default values,

arguments, 127
table, 31, 81-82

Defaults, 3, 31, 61, 65, 81-82, 100, 127
define directive, 11, 14-15, 270-271
Degrees, 65
delay(), 170, 278
delete(), 80, 83, 279
Depth-first search, 88
Deques, 78
Dereferencing, 103-105
detab(), 54, 279
Diagnostic facilities, 187-199
Dialogs, 157
Difference,

cset, 60, 80
set, 80

Digit literals, 253-254
Directives, preprocessor, 11-12, 14-15, 269-272

define, 11, 14-15, 270-271
else, 272
endif, 272
error, 272
ifdef, 272
ifndef, 272
include, 12, 269, 318
line, 270
undef, 271

Directories, changing, 169, 277, 327
Disjunction, logical, 22
display(), 195-196, 279
Division, 64-65, 299
do clause, 20, 33
Double-precision arithmetic, 63
DrawCircle(), 147-148

Drawing, 143, 145-149
circles, 147-149
images, 153-154
lines, 145-146
rectangles, 146

DrawImage(), 153-154
DrawLine(), 145-146
DrawRectangle(), 146
dtor(), 65, 279
Dumps, post-mortem, 196-197
Dynamic loading, 166, 284, 326
Dynamic local identifiers, 99, 102, 110, 112

EBCDIC character set, 48, 50, 262-267, 324
ECS character set, 262-267
Elements, 74-75, 81, 103
else directive, 272
Empty cset, 62
Empty list, 74, 76, 99
Empty set, 79
Empty string, 3, 31, 49, 50, 51
Empty table, 82
end, 1, 97
endif directive, 272
Ends-of-file, 4, 135
Ends of lines, 135-139
entab(), 54, 280
Environment variables, 169, 175-176, 317-318,
     325

BLKSIZE, 317
COEXPSIZE, 317
IPATH, 175-176, 178, 185, 317, 325
LPATH, 318, 325
MSTKSIZE, 318

   NOERRBUF, 318
STRSIZE, 318
TRACE, 169, 318

Equivalent values, 129
Error checking, xvi, 189-190
error directive, 272
Error conversion, 189-190
Error messages, 188-189, 319-322
Error numbers, 188, 189, 321-322
Error output, 133, 137, 170, 174
Error termination, xvi, 64, 188-190
Error traceback, 188
errorclear(), 189, 280
Errors, xvi, 5, 64, 187-190, 319-322

during linking, 188, 321
during program execution, 187, 188-190,
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     321-322
preprocessor, 319-320
run-time, 187, 188-190, 321-322
syntactic, 187-188, 320-321

Escape sequences, 47, 49, 190, 254-255, 324
Evaluation,

goal-directed, xvii, 18-19, 21, 22, 203-210
interactive, 14, 32, 45, 95, 160
mutual, 92-93, 305
of arguments, 30-31, 105
order of, 17-19, 87-90, 92-93
parallel, 114-115, 116
sequential, 17-19, 91

Evaluation stack, 168, 318
Event(), 155-156
Event loops, 156
Events,

in windows, 155-156
keyboard, 155-156
mouse, 155-156

every-do control structure, 20, 32, 91, 102-103,
     312
Exchange operations, 29-30, 90, 302-303
Executing commands, 169, 173-174, 187,
     188-190, 325
Execution, 173-174, 187, 188-190
Exit codes, 170, 327
exit(), 170, 280
exp(), 65, 280
Explicit type conversion, 126-127
Exponent notation, 63, 253-254
Exponentiation, 64, 299
Expression evaluation, 4-7, 19-35, 87-95
Extra arguments, 30

fail, 8-9, 31, 102, 312
Failure, xvi, 4-9, 14, 17-19, 22, 23, 25-26, 30-31,
     57, 88, 90, 93, 95, 102, 189-190

ambiguous, 57, 135
Field names, 71-72, 100, 252, 300
Field number, 72
Field references, 72, 85, 198, 300
file type, 123, 133
File names, 134, 141, 327
Files,

binary, 138-139
closing, 135, 277
image, 154
input, 133-135
opening, 134-135, 286-287

output, 133, 137
renaming, 141, 289
removing, 141, 289
text, 135, 138-139

FillCircle(), 148
find(), xvi-xvii, 5, 18-19, 39-40, 61, 280-281
First-class values, 97
Floating-point arithmetic, 63, 326
flush(), 135, 281
Fonts, xviii, 150
FTP, 355
function(), 281, 326
Functions, 1-2, 9, 12, 30-31, 97, 103, 163-164,
     191, 275-295

keyboard, 140-141, 325
matching, xvii, 38, 89, 216
record constructors, 72, 191
string-analysis, 39-40, 41-43, 61
string-valued, 52-56
abs(), 64, 275
acos(), 65, 275
any(), 42, 275
args(), 164, 276
asin(), 65, 276
atan(), 65, 276
bal(), 42-43, 276-277
center(), 53-54, 277
char(), 49, 277
chdir(), 169, 277, 327
close(), 135, 277
collect(), 168, 27
copy(), 130-131, 278
cos(), 65, 278
cset(), 126, 278
delay(), 170, 278
delete(), 80, 83, 279
detab(), 54, 279
display(), 195, 196, 279
dtor(), 65, 279
entab(), 54, 280
errorclear(), 189, 280
exit(), 170, 280
exp(), 65, 280
find(), xvi-xvii, 5, 18-19, 39-40, 61, 280-281
flush(), 135, 284
function(), 281, 326
get(), 78, 281
getch(), 141, 281, 325
getche(), 141, 281, 325
getenv(), 169, 282, 325
iand(), 66, 282
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icom(), 67, 282
image(), 190, 192, 193, 198, 282
insert(), 80, 83, 282
integer(), 126, 198, 282
ior(), 66, 283
ishift(), 67, 283
ixor(), 66-67, 283
kbhit(), 141, 283, 325
key(), 82, 283
left(), 53, 283
list(), 73-74, 284
loadfunc(), 166, 284, 326
log(), 65, 284
many(), 40-41, 285-285
map(), 55, 237-242, 285
match(), 5, 41-42, 285
member(), 79, 83, 285
move(), 37-38, 89, 216, 285-286
name(), 197-198, 199, 286
numeric(), 126-127, 286
open(), 134-135, 139, 286-287
ord(), 49, 287
pop(), 78, 287
pos(), 39, 287
proc(), 163-164, 287-288
pull(), 78, 288
push(), 78-79, 288
put(), 77-79, 288
read(), 5, 135-136, 139, 140, 288
reads(), 136, 139, 289
real(), 126, 289-290
remove(), 141, 289
rename(), 141, 289
repl(), 54, 289-290
reverse(), 54, 290
right(), 52-53, 290
rtod(), 65, 290
runerr(), 190, 290
seek(), 141, 290-291
seq(), 21, 31, 291
serial(), 191, 291
set(), 79, 291
sin(), 65, 291
sort(), 161-163, 291-292
sortf(), 163, 292
sqrt(), 65, 292
stop(), 170, 292
string(), 126-127, 293
system(), 169, 293, 325
tab(), 38-39, 41, 89-90, 216, 293
table(), 81, 293

tan(), 65, 293
trim(), 55-56, 293-294
type(), 123-124, 294
upto(), 40, 42, 61, 294
variable(), 197-198, 199, 294
where(), 141, 294
write(), 1, 31, 136-138, 139, 140, 295
writes(), 137, 138, 139, 295

Garbage collection, 166-168
Generators, xvi, 17, 18-21, 87-90, 93-95, 102-103

limiting, 93-94, 95, 314
recursive, 210

get(), 78, 281
getch(), 141, 281, 325
getche(), 141, 281, 325
getenv(), 169, 282, 325
GIF format, 154
global declaration, 99-100
Global identifiers, 100, 103, 104, 198
Global scope, 71, 99, 101
Glyphs, 47-48, 261-267
Goal-directed evaluation, xvii, 18-19, 21, 22,
     203-210
Graphics, xviii, 143-160, 178, 326, 350-354, 355
Graphics facilities,

DrawCircle(), 147-149
DrawImage(), 153-154
DrawLine(), 145-146
DrawRectangle(), 146
Event(), 155-156
FillCircle(), 148
Notice(), 157
OpenDialog(), 157
WAttrib(), 145, 150
WOpen(), 144-145, 154
WWrite(), 149-151

Graphs, 233, 236, 245-246
Grouping, 9-10, 14-15, 28, 30, 32-35, 46, 62, 68-69
     85, 95, 257-259

Hexadecimal codes, 254-255

iand(), 66, 282
IBM mainframes, 262, 327
Icode files, 174, 188, 321
icom(), 67, 282
Icon identification, 170, 308
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Icon Project, 356
icont, 174, 175, 315, 318, 327
Identical values, 129
Identifiers, 3, 9, 12, 30, 71, 97-101, 103, 197-198,
     199, 252, 256, 271

global, 100, 103
local, 3, 97-98, 104, 198, 199
scope of, 99-101
static, 100-101, 104, 106-108
undeclared, 3, 100

if-then-else control structure, xvi, 6, 25-26,
     34-35, 91, 312
ifdef directive, 272
ifndef directive, 272
image(), 190-192, 193, 198, 282
Image files, 154
Images, 153-155
Implementation differences, 323-327
Implicit type conversion, 125-126
include directive, 11-12, 269, 318
Indentation, 33
Infinite sequences of results, 94-95
Infix operators, 9, 64, 68, 164, 298-303
initial clause, 97-98, 107-108
Initial substrings, 5, 50
Input, 133-136, 138-141, 327

binary, 138-139
random-access, 141
redirection, 174-175
text, 138-140

Input files, 133-135
Input/output redirection, 174-175
Input, random-access, 141
Input, standard, 133, 174-175
insert(), 80, 83, 282
integer type, 63, 124-125
integer(), 126, 198, 282
Integer arithmetic, 64-65
Integer comparison, 65
Integer division, 64
Integer literals, 63, 68, 253
Integer sequences, 20-21
Integers, 12, 63-66, 123-126, 128-129, 131, 161,
     190, 198

large, 63, 67-68, 131, 325
Interactive evaluation, 14, 32, 45, 95, 160
Interface tools, 158
Interfaces, visual, 158, 173
Intersection,

cset, 60, 80
set, 80

invocable declaration, 165
ior(), 66, 283
IPATH environment variable, 175-176, 178, 185,
     317, 325
ishift(), 67, 283
Iteration, xvi, 20, 21

nested, 201-203
ixor(), 66-67, 283

kbhit(), 141, 283, 325
key(), 82, 283
Keyboard events, 155-156
Keyboard functions, 140-141, 325
Keys, table, 81-83
Keywords, 11, 30, 31, 40, 44, 60, 66, 101, 103-104,
     119-120, 133, 167, 169-170, 189, 192, 198, 252,
     306-311

error conversion, 189
mouse, 156
scanning, 44
storage utilization, 167
&ascii, 60, 306
&clock, 170, 306
&collections, 167, 306
&cset, 60, 306
&current, 119, 120, 307
&date, 169, 307
&dateline, 169-170, 307
&digits, 60, 307
&dump, 196-197, 307
&e, 66, 307
&error, 189-190, 307
&errornumber, 189, 307
&errortext, 189, 308
&errorvalue, 189, 308
&errout, 133, 195, 308
&fail, 30, 102, 308
&features, 308, 326
&file, 192, 308
&host, 170, 308
&input, 133, 308
&lcase, 60, 309
&ldrag, 156
&letters, 40, 60, 309
&level, 193, 309
&line, 192, 309
&lpress, 156
&lrelease, 156
&main, 119, 120, 309
&mdrag, 156
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&mpress, 156
&mrelease,156
&null, 31, 127, 309
&output, 133, 309
&phi, 66, 309
&pi, 66, 309
&pos, 44, 310
&progname(), 192, 310
&random, 66, 310
&rdrag, 156
&regions, 167, 310
&rpress, 156
&rrelease, 156
&source, 119, 310
&storage, 167, 310
&subject, 44, 197, 310
&time, 11, 170, 311
&trace, 192-195, 311, 318
&ucase, 60, 311
&version, 170, 311
&x, 156
&y, 156

Language features, 325-326
Large integers, 63, 67-68, 131, 325
Large-integer arithmetic, 325
Latin-1 character set, 261-267
left(), 53, 283
Letters, 40, 48, 60
Lexical comparison, 50-51, 62, 301, 324
Lexical order, 50
Lexical scoping, 97
Libraries, 13-14, 45, 67, 178-184, 355
Library modules, 13-14, 45, 62, 67, 84-85, 122,
     142, 160, 171, 175, 177-179, 184-185
Library path searching, 175-176, 185, 317
Library resources, 13-14, 45, 62, 67, 84, 85, 122,
     142, 160, 171
Limitation control structure, 93-94, 95, 314
Limiting generation, 93-94
Line breaks, 256-257
line directive, 270
Line terminators, 135-139, 151
Linefeed characters, 139, 254
link declaration, 13, 176, 177-178, 317
Linking, 13-14, 175-176, 177-178, 185, 187-188,
     319, 321
Linking error, 188, 321
list type, 123
list(), 73-74, 284

Lists, xvii, 71, 72-79, 98-99, 102, 161-162, 175,
     179, 191, 197, 228

concatenation, 76, 300
creation, 73-74
empty, 74, 76, 99
invocation by, 102, 305
properties of, 83-84
queue access, 77-79
referencing, 74-76
sections, 77
size of, 74, 296
sorting, 161-162
stack access, 77-79
subscripting, 74, 76

Literals, 1, 3, 9, 40, 48-49, 63, 58, 190-191,
     253-255, 256-257, 272

cset, 40, 60, 190, 254
decimal, 63, 253-254
digit, 253-254
exponent, 63, 253-254
integer, 63, 68, 253
large integer, 68
multi-line string, 49, 256-257, 272
numeric, 63, 253
quoted, 4, 40, 47, 48-49, 60, 254, 272
radix, 63, 253
real, 63, 253
string, 1, 30, 48-49, 190-191, 253-255, 256-257

loadfunc(), 166, 284, 326
Loading, dynamic, 166, 284, 326
local declaration, 97-98, 99-100
Local declarations, 97-98, 99-100
Local identifiers, 3, 97-98, 104, 198, 199
Local scope, 3, 97-98
log(), 65, 284
Logical conjunction, 22
Logical disjunction, 22
Loop expressions, 6, 23-25
Loop exits, 23-25
LPATH environment variable, 318, 325

Machine dependencies, 323-327
Macintosh, xviii, 139, 262, 267, 355
Mailing list, 356
Main procedure, 1-2, 119-120, 175, 179, 185
many(), 40-41, 284-285
map(), 55, 237-242, 285
Mapping characters, 55, 237-242
match(), 5, 41-42, 285
Matching expressions, xvii, 38, 89, 216-220
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Matching functions, xvii, 38, 89, 216-220
Matching procedures, 218-220
Mathematical computations, 65
member(), 79, 83, 285
memory, 136, 166-168, 317-318
MicroSoft Windows, xviii, 174, 262-267, 355
Mixed-mode arithmetic, 63, 64-65
Modules, library, 13-14, 45, 62, 67, 84-85, 122,
     142, 160, 171, 175, 177-179, 184-185
Mouse, 155-156

drag, 156
events, 155-156
press, 156
release, 156

move(), 37-38, 89, 216, 285-286
MS-DOS, xviii, 13, 139, 174, 262, 355
MSTKSIZE environment variable, 318
MT-Icon, 122
Multidimensional arrays, 75-76
Multi-line string literals, 49, 256-257, 272
Multi-thread Icon, 122
Multiple subscripting, 76, 85, 304
Multiplication, 64
Mutual evaluation, 92, 93, 305
MVS, xviii

n-queens problem, 203-210, 348-354
name(), 197-198, 199, 286
Names, 164-166, 197-198, 199, 286

function and operator, 164-165
procedure, 100, 165-166
variable, 197-198, 199

Nested expressions, 17
Nested iteration, 201-203
Nested scanning, 43-44
Newlines, 254
Newsgroup, 356
next control structure, 24, 312
NOERRBUF environment variable, 318
Nonpositive position specifications, 38, 57-58,
     61, 93
not control structure, 23, 26, 34, 91, 312
Notice(), 157
null type, 31, 123, 127-128, 161
Null value, 31, 127-128, 161
Null-valued arguments, 31
Numeric type conversion, 127
Numeric literals, 63, 253
numeric(), 126-127, 286
Numerical comparison, 65, 301

Numerical computation, 63-66

Octal codes, 254-255
Omitted arguments, 31, 61
Open options, 134
open(), 134-135, 139, 286-287
OpenDialog(), 157
Opening files, 134-135, 286-287

translated, 134, 139
untranslated, 134, 139

Opening windows, 144-145
Operator names, 164-165
Operator values, 163-164
Operators,

assignment, 306
binary, 64, 163
comparison, 19, 28, 35, 68-69
cset, 60, 80
infix, 9, 64, 68, 164, 298-303
prefix, 64, 68, 164, 295-298
to-by, 20-21, 164, 303
unary, 64, 163

Optimizing compiler, 176
options(), 180, 329
ord(), 49, 287
Order of evaluation, 17-19, 87-90, 92-93
OS/2, xviii
Out-of-range references, 56, 74, 303-305
Outcome, 4, 11, 17, 25, 26, 27, 30
Output, 133-134, 136-138, 139, 327

binary, 138-139
error, 133, 137, 174
files, 133, 137
random-access, 141
redirection, 174-175
standard, 133-134, 136-137, 174-175
standard error, 133, 174, 318
text, 138-139

Overflow,
arithmetic, 325
stack, 168

Palettes, 153
Paragraphing, 33
Parallel evaluation, 114-115, 116
Parameters, procedure, 2, 97-98, 99, 101-102
Parentheses, 10, 32-35
Pascal, xv, xviii, 19
Paths, 175-176, 177-178, 317-318, 325
Pattern matching, 216-220
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Pipes, 140, 325
Pixels, 144, 153
Platform-specific differences, 323-327
Pointers, 83-84, 102, 168, 182
pop(), 78, 287
pos(), 39, 287
Position specifications, 38-39, 56-59, 61, 93

nonpositive, 38-39, 57-58, 61, 93
Post-mortem dumps, 196-197
Precedence, 9-10, 26, 32-35, 46, 62, 68, 85, 257-259
Precision of real numbers, 63, 327
Predefined constants, 11, 14-15, 270, 271
Prefix operators, 64, 68, 164, 295-298
Preprocessing, 11-12, 14-15, 269-272
Preprocessor directives, 11-12, 14-15, 269-272

define, 11, 14-15, 270-271
else, 272
endif, 272
error, 272
ifdef, 272
ifndef, 272
include, 11-12, 21, 269, 318
line, 270
undef, 271

Preprocessor errors, 319-320
Preprocessor substitution, 271-272
Printable characters, 47-48, 138
proc(), 163-164, 287-288
procedure type, 123
Procedure bodies, 97-99
Procedure calls, 8, 97, 100, 101-102, 105-107, 118,
     168, 192, 198-199
Procedure names, 165-166
procedure declaration, 1, 71, 97-99, 101-108
Procedures, 1-2, 7-9, 11, 30-31, 97-108, 162,
     163, 164, 166, 191

as generators, 31-32, 102-103, 210
as values, 103
invocation, 2, 8, 97, 100, 101-102, 105-107, 118,
     168, 198-199
level, 193, 309
main, 1, 119-120, 175, 179, 185
matching, 218-220
names, 100, 165-166
parameters, 2, 97-98, 99, 101-102
recursive, 105-107, 198-199
returns, 1-2, 8-9, 31-32, 102-103, 192
tracing, 192-194
variable number of arguments, 98-99

Program information, 192
Program library, 13-14, 178-184, 355

Program termination, 170, 189-190
Programmer-defined control structures, 115-118
Programs, 1-4, 97
Properties of structures, 83-84
Pseudo-random sequence, 66
pull(), 78, 288
push(), 78-79, 288
put(), 77-79, 288

qei, 14, 32, 45, 95
Queue and stack access, 77-79
Queues, 72, 77-79
Quotation marks, 1, 40, 48, 60, 254
Quoted literals, 4, 40, 47, 48-49, 60, 254, 272

continuation of, 49, 257, 272
cset, 40, 60, 190, 254
string, 1, 30, 48-49, 190-191, 253-255, 256-257

Radians, 65
Radix literals, 63, 253
Random-access input and output, 141
Random characters, 59
Random elements, 72, 76, 81, 82
Random number seed, 66, 310
Random numbers, 66
Range restrictions, 61
Range specifications, 56-58, 61, 77
read(), 5-6, 135-136, 139, 140, 288
Reading,

data, 6, 133-136, 139
images, 154

reads(), 136, 139, 289
real(), 126, 289
Real arithmetic, 63, 64-65, 327
Real literals, 63, 253
Real numbers, 12, 63, 64, 66, 124-125, 128, 161,
     190, 253-254, 327

floating-point representation, 63
precision of, 63, 327

real type, 123
record declaration, 71, 188
Record constructors, 72, 191
Record types, 123, 162, 191, 198
Records, xvii, 71-72, 102, 123, 162, 191, 198,
     228-231

creation, 71-72
field names, 71-72, 100, 252, 300
field references, 72, 85, 198, 300
fields, 71-72, 103
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invocation by, 102, 305
size of, 72, 296
sorting, 161-162
subscripting, 72

Recursion, 105-107, 198-199
Recursive generators, 210
Referencing,

fields, 72, 85, 198, 300
lists, 74-76
tables, 81-82, 129-130

Refreshing co-expressions, 111-112, 131
Region sizes, 167, 317-318
Remaindering, 64
remove(), 141, 289
Removing files, 141, 289
rename(), 141, 289
Renaming files, 141, 289
repeat control structure, 24-25, 91, 312
Repeated alternation, 94-95, 313
repl(), 54, 289-290
Replicating strings, 54, 289
Reserved words, 1, 6, 8, 252
Results, 30
Resumption, 19, 88, 89, 90, 94, 102-103, 192
return control structure, 8, 31, 91, 102, 104, 107,
     312-313
Returns, procedure,1-2, 8-9, 102-103, 192
reverse(), 54, 290
Reversible assignment, 90, 302
Reversible exchange, 90, 303
Reversing strings, 54, 290
right(), 52-53, 290
rtod(), 65, 290
Run-time errors, 187, 188-190, 321-322
runerr(), 190, 290
Running programs, 13, 173-174

Scanning control structure, 37-38, 43-44, 314
Scanning, string, xvii, 37-38, 61, 92, 94, 211, 226,
        314

augmented, 44, 302
environments, 43-44
keywords, 44
matching functions, xvii, 38, 39, 216
nested, 43-44
position, xvii, 37-39, 43-44
string-analysis functions, 39-40, 41-44, 61
subject, 37, 43-47, 197, 310

Scope, 3, 97-101, 198
Scope declarations, 3, 98-101

global, 99-100
local, 97-98, 99-100
static, 101-102, 107-108

seek(), 141, 290-291
Selection expressions, 25-28
Semicolon insertion, 256
Semicolons, 10, 91-92, 256
seq(), 21, 31, 291
Sequential evaluation, 17-19, 91
Serial numbers, 191-192, 197, 291
serial(), 191, 291
Set difference, 80
Set intersection, 80
set type, 123
Set union, 80
set(), 79, 291
Sets, xvii, 71, 79-81, 83, 84, 162, 191

empty, 79
membership, 79
size of, 81, 296
sorting, 161-162

sin(), 65, 291
Size,

co-expressions, 112, 296
csets, 60, 296
lists, 74, 296
records, 72, 296
sets, 81, 296
strings, 3, 49, 136, 138, 296
tables, 82, 296

sort(), 161-163, 291-292
sortf(), 163, 292
Sorting, 161-163, 324

by field, 163
lists, 161-162
records, 161-162
sets, 161-162
tables, 162-163

sqrt(), 65, 292
Stack access, 77-79
Stack overflow, 168
Stacks, 72, 77-79, 318

evaluation, 168, 318
system, 168

Standard error output, 133, 174, 318
Standard input, 133, 174-175
Standard output, 133-134, 136-137, 174-175
Statements, 11
Static allocation, 167
static declaration, 101-102, 107-108
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Static identifiers, 100-101, 107-108
Static region, 167
stop(), 170, 292
Storage limits, 167-168, 317-318
Storage management, xv, 3, 166-168
Storage regions,

block, 167, 317
static, 167
string, 167, 318

string(), 126-127, 293
String allocation, 167, 318
String analysis, 39-40, 41-43, 61
String-analysis functions, 39-40, 41-43, 61
String comparison, 50-51, 301
String concatenation, 51-52, 62, 300, 302
String, empty, 3, 31, 49, 50, 51
String images, 190-192
String invocation, 164-166
String length, 3, 49, 136, 138
String literals, 1, 30, 48-49, 190-191, 253-255,
     256-257
String literals, multi-line, 49, 256-257, 272
String names, 163-165
String positions, 38-39, 56-58
String region, 167, 318
String replication, 54, 289-290
String scanning, xvii, 37-38, 61, 92, 94, 211, 226,
        314

augmented, 44, 302
environments, 43-44
keywords, 44
matching functions, xvii, 38, 39, 216
nested, 43-44
position, xvii, 37-39, 43-44
string-analysis functions, 39-40, 41-44, 61
subject, 37, 43-47, 197, 310

string type, 123
String-valued functions, 52-56
Strings, xv, 1, 3, 12, 37-40, 41-44, 47-59, 61-62,
     123-127, 128-129, 131, 161, 198

empty, 3, 31, 49, 50, 51
positioning, 52-54, 277, 283, 290
replicating, 54, 289-290
reversing, 54, 290
size, 3, 49, 136, 138, 296
subscripting, 56-58, 304-305
trimming, 55-56, 293-294

STRSIZE environment variable, 318
Structure images, 182-183, 331-334
Structures, xvii, xviii, 71-85, 227, 236

copying, 130-131, 278

properties of, 83-84
Subject, 37-38, 44, 61, 89-90
Subscripting, 56-58, 72, 74-76, 79, 81-82, 85,
     103,197-198

lists, 74, 76
multiple, 76, 85, 304
records, 72
strings, 56-58, 304-305
tables, 81-82

Substrings, 5, 18, 38-39, 41-43, 56-58, 59, 61
initial, xvii, 5, 50
locating, 39-40, 41-44, 61

Subtraction, 64, 298
Success, xvi, 4-6, 17, 19, 22, 23, 25-28
suspend-do control structure, 31-32, 91, 102-103,
     313
Suspension, 19, 20, 31-32, 88-90, 92, 94, 102-103,
     192
Syntactic errors, 187-188, 320-321
Syntax, xv, 7, 9-11, 14-15, 32-35, 46, 62, 68-69, 71,
     85, 91, 95, 107, 122, 187-188, 247-259
system(), 169, 293, 325
System stack, 168

Tabs, 54, 255
tab(), 38-39, 41, 89-90, 216, 293
table(), 81, 293
table type, 123
Tables, xvii, 71, 81-83, 123, 127, 129-130, 162-163,
     197

creation, 81, 293
empty, 82
keys, 81-83
referencing, 81-82, 129-130
size, 82, 296
sorting, 162-163
subscripting, 81-82
two-way, 235-236

Tabular data, 54, 279-280
tan(), 65, 293
Text files, 135, 138-139
Time, 170, 311
to-by operator, 20-21, 164, 303
TRACE environment variable, 169, 318
Traceback, error, 188
Trace messages, 193-195
Tracing, 192-195, 315, 318

co-expressions, 194-195
procedures, 192-194

Transfer of control among co-expressions,
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     118-121, 296, 300-301
Translated mode, 134, 139
Transmission, co-expression, 120-121, 296,
     300-301
Transpositions, 237-241
Trees, 227-231
Trigonometric functions, 65
trim(), 55-56, 293-294
Trimming strings, 55-56, 293-294
Two-way tables, 235-236
Type checking, xvi, 3, 126
Type conversion,

automatic, xvi, 8, 61, 63, 80, 125-126
explicit, 126-127
implicit, 125-126
numeric, 125-126

Type determination, 123-127, 294
type(), 123-124, 294
Types, xvi, 12, 123-131

co–expression, 109, 123
cset, 40, 60, 123-125
file, 123, 133
integer, 63, 124-125
list, 123
null, 31, 123, 127-128, 161
procedure, 123
real, 123
record, 123, 162, 191, 198
set, 123
string, 123
table, 123
window, 123

Ucode files, 185, 188, 315, 321
Unary operators, 64, 163
Undeclared identifiers, 3, 100
undef directive, 271
Underscores, 3, 49, 252, 256-257, 272
Union,

cset, 60
set, 80

Unique values, 128-130, 169
UNIX, xviii, 13, 138-139, 140, 174, 261, 325, 355
until-do control structure, 23, 91, 313
Untranslated mode, 134, 139
upto(), 40, 42, 61, 294
User manuals, 176, 323, 355

Value comparison, 128-130, 301
Values, equivalent, 129
Variable names, 197-198, 199
Variable number of arguments, 98-99
variable(), 197-198, 199, 294
Variable values, 195-196
Variables, 3, 30, 72, 74, 81, 97, 103-105, 197-198,
     306

field references, 103
identifiers, 103
keywords, 103, 197
list elements, 103
string names, 197-198
table elements 103

Variables, environment, 169, 175-176, 317-318,
     325
VAX/VMS, xviii, 327, 355
Versions, 170, 311
VIB, 158, 160, 178
Virtual machine, 173, 176
Visual environments, 13, 173
Visual interfaces, 158, 173

WAttrib(), 145, 150
where(), 141, 294
while-do control structure, 6, 23, 91, 313
White space, 255, 269
Window attributes, 143-145
Window coordinate system, 144
window type, 123
Windows, 143-145, 149, 154-155, 157, 158, 159
Windows NT, xviii, 355
WOpen(), 144-145, 154
World Wide Web, 185, 355
write(), 1, 31, 136, 140, 295
writes(), 137-138, 139, 295
Writing, 1, 6, 7-8, 133, 136-139

to files, 133-135, 136-139
to pipes, 140
to windows, 149-151

WWrite(), 149-151

xdump(), 183, 331-334
ximage(), 182-183, 331-334
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