PF: The OpenBSD Packet Filter

OpenBSD

Language: en [teams]
de fr nl pl pt

[up to FAQ] [Next: Getting Started]

PF. The OpenBSD Packet Filter

Table of Contents

. Basic Configuration

o Getting Started
o Listsand Macros

o Tables
o Packet Filtering
o Network Address Trangation
o Traffic Redirection (Port Forwarding)
o Shortcuts For Creating Rulesets
. Advanced Configuration

o Runtime Options
o Scrub (Packet Normalization)

o Anchors
o Packet Queueing and Prioritization
o Address Pools and Load Balancing
o Packet Tagging (Policy Filtering)
. Additional Topics
o Logging
o Performance
o Issueswith FTP
o Authpf: User Shell for Authenticating Gateways
o Firewall Redundancy with CARP and pfsync

. Example Rulesets
o Firewall for Home or Small Office

Packet Filter (from here on referred to as PF) is OpenBSD's system for filtering TCP/IP traffic and doing Network Address
Trandation. PF is also capable of normalizing and conditioning TCP/IP traffic and providing bandwidth control and packet
prioritization. PF has been a part of the GENERIC OpenBSD kernel since OpenBSD 3.0. Previous OpenBSD releases used a
different firewall/NAT package which is no longer supported.

PF was originally developed by Daniel Hartmeier and is now maintained and developed by Daniel and the rest of the OpenBSD
team.

http://www.openbsd.org/fag/pf/index.html (1 of 2) [30/04/2007 10:38:57]

http://www.openbsd.org/index.html
http://www.openbsd.org/translation.html
http://www.openbsd.org/faq/pf/de/index.html
http://www.openbsd.org/faq/pf/fr/index.html
http://www.openbsd.org/faq/pf/nl/index.html
http://www.openbsd.org/faq/pf/pl/index.html
http://www.openbsd.org/faq/pf/pt/index.html
http://www.openbsd.org/faq/index.html

PF: The OpenBSD Packet Filter

This set of documents, also available in PDF format, is intended as a general introduction to the PF system as run on OpenBSD.
Even if it coversall of PF'smajor features, it is only intended to be used as a supplement to the man pages, and not as a
replacement for them.

For acomplete and in-depth view of what PF can do, please start by reading the pf(4) man page.

Aswith therest of the FAQ, this set of documentsis focused on users of OpenBSD 4.0. As PF is always growing and developing,

there are changes and enhancements between the 4.0-release version and the version in OpenBSD-current as well as differences
between 4.0 and earlier versions. The reader is advised to see the man pages for the version of OpenBSD they are currently
working with.

[up to FAQ] [Next: Getting Started]

} www @openbsd.org
$OpenBSD: index.html,v 1.32 2006/11/01 01:56:01 joel Exp $

http://www.openbsd.org/fag/pf/index.html (2 of 2) [30/04/2007 10:38:57]

ftp://ftp.openbsd.org/pub/OpenBSD/doc/pf-faq.pdf
http://www.openbsd.org/cgi-bin/man.cgi
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/40.html
http://www.openbsd.org/faq/index.html
http://www.openbsd.org/faq/index.html
mailto:www@openbsd.org

OpenBSD

[Contents] [Next: Lists and Macros]

PF:. Getting Started

Table of Contents

. Activation

. Configuration
. Control

Activation

To activate PF and have it read its configuration file at boot, add the line
pf =YES

to the file /etc/rc.conf.local.

Reboot your system to have it take effect.

Y ou can also activate and deactivate PF by using the pfctl(8) program:

pfctl -e
pfctl -d

to enable and disable, respectively. Note that this just enables or disables PF, it doesn't actually load a ruleset. The ruleset must be
loaded separately, either before or after PF is enabled.

Configuration

PF reads its configuration rulesfrom / et ¢/ pf . conf at boot time, as loaded by the rc scripts. Note that while/ et ¢/ pf . conf

isthe default and is loaded by the system rc scripts, it isjust atext file loaded and interpreted by pfctl(8) and inserted into pf(4).

For some applications, other rulesets may be loaded from other files after boot. Aswith any well designed Unix application, PF
offers great flexibility.

The pf . conf file has seven parts:

http://www.openbsd.org/fag/pf/config.html (1 of 2) [30/04/2007 10:38:59]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=rc.conf.local&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=rc&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+4.0

PF: Getting Started

. Macros: User-defined variables that can hold | P addresses, interface names, etc.

. Tables: A structure used to hold lists of IP addresses.

. Options: Various options to control how PF works.

. Scrub: Reprocessing packets to normalize and defragment them.

. Queueing: Provides bandwidth control and packet prioritization.

. Trangation: Controls Network Address Translation and packet redirection.

. Filter Rules: Allows the selective filtering or blocking of packets as they pass through any of the interfaces.

With the exception of macros and tables, each section should appear in this order in the configuration file, though not all sections

have to exist for any particular application.

Blank lines are ignored, and lines beginning with # are treated as comments.

Control

After boot, PF operation can be managed using the pfctl(8) program. Some example commands are:

pfctl
pfctl
pfctl
pfctl

pfctl
pfctl
pfctl
pfctl
pfctl

HHH H o HH

-f /etc/pf.conf
-nf /etc/pf.conf
-Nf /etc/pf.conf
-Rf /etc/pf.conf

-sn
-sr
-Sss
- si
-sa

Load the pf.conf file

Parse the file, but don't load it

Load only the NAT rules fromthe file
Load only the filter rules fromthe file

Show t he current NAT rul es
Show the current filter rules
Show the current state table
Show filter stats and counters
Show EVERYTHING it can show

For acomplete list of commands, please see the pfctl(8) man page.

[Contents] [Next: Lists and Macros]

} www @openbsd.org

$0penBSD: config.html,v 1.21 2006/11/01 01:56:01 joel Exp $

http://www.openbsd.org/fag/pf/config.html (2 of 2) [30/04/2007 10:38:59]

http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.0
mailto:www@openbsd.org

OpenBSD

[Previous: Getting Started] [Contents] [Next: Tables]

PF: Lists and Macros

Table of Contents

. Lists
. Macros

Lists

A list allows the specification of multiple similar criteriawithin arule. For example, multiple protocols, port numbers, addresses,
etc. So, instead of writing one filter rule for each 1P address that needs to be blocked, one rule can be written by specifying the IP
addressesin alist. Lists are defined by specifying itemswithin{ } brackets.

When pfctl(8) encounters alist during loading of the ruleset, it creates multiple rules, one for each item in the list. For example:

bl ock out on fxp0 from{ 192.168.0.1, 10.5.32.6 } to any
gets expanded to:

bl ock out on fxp0 from 192.168.0.1 to any
bl ock out on fxp0 from 10.5.32.6 to any

Multiple lists can be specified within arule and are not limited to just filter rules:

rdr on fxp0 proto tcp fromany to any port { 22 80 } ->\
192.168.0.6

bl ock out on fxp0 proto { tcp udp } from{ 192.168.0.1, \
10.5.32.6 } to any port { ssh telnet }

Note that the commas between list items are optional.
Lists can also contain nested lists:

trusted = "{ 192.168.1.2 192.168.5.36 }"
pass in inet proto tcp from{ 10.10.0.0/24 $trusted } to port 22

http://www.openbsd.org/fag/pf/macros.html (1 of 2) [30/04/2007 10:39:01]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.0

PF: Lists and Macros

Beware of constructs like the following, dubbed "negated lists', which are a common mistake:
pass in on fxp0 from{ 10.0.0.0/8, !'10.1.2.3 }
While the intended meaning is usually to match "any address within 10.0.0.0/8, except for 10.1.2.3", the rule expands to:

pass in on fxp0 from 10.0.0.0/8
pass in on fxp0 from!10.1.2.3

which matches any possible address. Instead, a table should be used.

Macros

Macros are user-defined variables that can hold | P addresses, port numbers, interface names, etc. Macros can reduce the
complexity of a PF ruleset and also make maintaining a ruleset much easier.

Macro names must start with aletter and may contain letters, digits, and underscores. Macro names cannot be reserved words such
aspass, out, or queue.

ext_if = "fxp0O"

block in on $ext_if fromany to any
This creates amacro named ext _i f . When amacro isreferred to after it's been created, its name is preceded with a$ character.
Macros can aso expand to lists, such as:

friends = "{ 192.168.1.1, 10.0.2.5, 192.168.43.53 }"
Macros can be defined recursively. Since macros are not expanded within quotes the following syntax must be used:

host1 = "192.168.1.1"
host2 = "192.168. 1. 2"
all _hosts = "{" $host1l $host2 "}"

Themacro $al | _host s now expandsto 192.168.1.1, 192.168.1.2.

[Previous: Getting Started] [Contents] [Next: Tables]

} www @openbsd.org
$OpenBSD: macros.html,v 1.19 2006/11/01 01:56:01 joel Exp $

http://www.openbsd.org/fag/pf/macros.html (2 of 2) [30/04/2007 10:39:01]

mailto:www@openbsd.org

OpenBSD

[Previous: Lists and Macros] [Contents] [Next: Packet Filtering]

PF: Tables

Table of Contents

. Introduction

. Configuration

. Manipulating with pf ct |
. Specifying Addresses

. Address Matching

Introduction

A tableis used to hold agroup of 1Pv4 and/or IPv6 addresses. Lookups against a table are very fast and consume less memory and
processor time than lists. For thisreason, atableisideal for holding alarge group of addresses as the lookup time on atable

holding 50,000 addresses is only dlightly more than for one holding 50 addresses. Tables can be used in the following ways:

. source and/or destination address in filter, scrub, NAT, and redirection rules.

. trandation addressin NAT rules.

. redirection addressin redirection rules.

. destination addressinr out e-t o, repl y-t o, and dup- t o filter rule options.

Tables are created either in pf . conf or by using pfctl(8).

Configuration

In pf. conf, tablesare created using the t abl e directive. The following attributes may be specified for each table:

. const - the contents of the table cannot be changed once the table is created. When this attribute is not specified,
pfctl(8) may be used to add or remove addresses from the table at any time, even when running with a securelevel (7) of

two or greater.
. persi st - causesthe kernel to keep the table in memory even when no rules refer to it. Without this attribute, the
kernel will automatically remove the table when the last rule referencing it is flushed.

Example:

tabl e <goodguys> { 192.0.2.0/24 }

http://www.openbsd.org/fag/pf/tables.html (1 of 3) [30/04/2007 10:39:03]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=securelevel&sektion=7&manpath=OpenBSD+4.0

PF: Tables

table <rfc1918> const { 192.168.0.0/16, 172.16.0.0/12, \
10.0.0.0/8 }
tabl e <spamer s> persi st

block in on fxp0 from{ <rfcl918>, <spanmers> } to any
pass in on fxp0 from <goodguys> to any

Addresses can also be specified using the negation (or "not") modifier such as:
tabl e <goodguys> { 192.0.2.0/24, 1'192.0.2.5}
The goodguys table will now match all addresses in the 192.0.2.0/24 network except for 192.0.2.5.
Note that table names are always enclosed in < > angled brackets.
Tables can aso be populated from text files containing alist of 1P addresses and networks:

tabl e <spamers> persist file "/etc/spamrers”

bl ock in on fxp0O from <spanmers> to any

Thefile/ et ¢/ spamrer s would contain alist of 1P addresses and/or CIDR network blocks, one per line. Any line beginning
with # is treated as a comment and ignored.

Manipulating with pf ct |

Tables can be manipulated on the fly by using pfctl(8). For instance, to add entries to the <spammers> table created above:

pfctl -t spamrers -T add 218.70.0.0/16

Thiswill also create the <spammers> tableif it doesn't already exist. To list the addressesin atable:
pfctl -t spamrers -T show

The - v argument can also be used with - Tshowto display statistics for each table entry. To remove addresses from atable;
pfctl -t spammers -T delete 218.70.0.0/16

For more information on manipulating tables with pf ct | , please read the pfctl(8) manpage.

Specifying Addresses

In addition to being specified by |P address, hosts may also be specified by their hostname. When the hosthame is resolved to an IP
address, al resulting IPv4 and |Pv6 addresses are placed into the table. | P addresses can also be entered into a table by specifying a
valid interface name or the sel f keyword. The table will then contain all 1P addresses assigned to that interface or to the machine
(including loopback addresses), respectively.

One limitation when specifying addressesisthat 0. 0. 0. 0/ 0 and 0/ O will not work in tables. The alternative is to hard code that
address or use a macro.

http://www.openbsd.org/fag/pf/tables.html (2 of 3) [30/04/2007 10:39:03]

http://public.pacbell.net/dedicated/cidr.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.0

PF: Tables

Address Matching

An address |ookup against a table will return the most narrowly matching entry. This allows for the creation of tables such as:

tabl e <goodguys> { 172.16.0.0/16, !172.16.1.0/24, 172.16.1.100 }

bl ock in on dcO all
pass in on dcO from <goodguys> to any

Any packet coming in through dc O will have its source address matched against the table <goodguys>:

. 172.16.50.5 - narrowest match is 172.16.0.0/16; packet matches the table and will be passed

. 172.16.1.25 - narrowest match is172.16.1.0/24; packet matches an entry in the table but that entry is negated (uses the
"I'" modifier); packet does not match the table and will be blocked

. 172.16.1.100 - exactly matches 172.16.1.100; packet matches the table and will be passed

. 10.1.4.55 - does not match the table and will be blocked

[Previous: Lists and Macros] [Contents] [Next: Packet Filtering]

} www @openbsd.org
$OpenBSD: tables.html,v 1.20 2006/11/01 01:56:01 joel Exp $

http://www.openbsd.org/fag/pf/tables.html (3 of 3) [30/04/2007 10:39:03]

mailto:www@openbsd.org

PF: Packet Filtering
OpenBSD

[Previous: Tables] [Contents] [Next: Network Address Trangation]

PF. Packet Filtering

Table of Contents

. Introduction

. Rule Syntax

. Default Deny

. Passing Traffic

. Thequi ck Keyword

. Keeping State

. Keeping State for UDP

. Stateful Tracking Options
. TCPFlags

. TCPSYN Proxy
. Blocking Spoofed Packets

. Unicast Reverse Path Forwarding

. Passive Operating System Fingerprinting
. [P Options

. Filtering Ruleset Example

Introduction

Packet filtering is the selective passing or blocking of data packets as they pass through a network interface. The criteriathat pf(4) uses when inspecting packets
are based on the Layer 3 (IPv4 and |Pv6) and Layer 4 (TCP, UDP, ICMP, and |CMPv6) headers. The most often used criteria are source and destination address,
source and destination port, and protocol.

Filter rules specify the criteriathat a packet must match and the resulting action, either block or pass, that is taken when amatch is found. Filter rules are
evaluated in sequential order, first to last. Unless the packet matches arule containing the qui ck keyword, the packet will be evaluated against all filter rules
before the final action is taken. The last rule to match isthe "winner" and will dictate what action to take on the packet. Thereisan implicit pass al | atthe
beginning of afiltering ruleset meaning that if a packet does not match any filter rule the resulting action will be pass.

Rule Syntax
The general, highly simplified syntax for filter rulesis:

action [direction] [log] [quick] [on interface] [af] [proto protocol] \
[fromsrc_addr [port src_port]] [to dst_addr [port dst_port]] \
[flags tcp_flags] [state]

action
The action to be taken for matching packets, either pass or bl ock. The pass action will pass the packet back to the kernel for further processing
whilethe bl ock action will react based on the setting of the bl ock- pol i cy option. The default reaction may be overridden by specifying either
bl ock droporbl ock return.

direction
The direction the packet is moving on an interface, either i n or out .

| og
Specifies that the packet should be logged via pflogd(8). If the rule specifiesthekeep st at e, modul at e st at e, or synproxy st at e option,
then only the packet which establishes the state is logged. To log all packetsregardless, usel og (al |) .

qui ck

http://www.openbsd.org/fag/pffilter.html (1 of 9) [30/04/2007 10:39:07]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=ip&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=ip6&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=tcp&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=udp&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=icmp&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=icmp6&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pflogd&sektion=8&manpath=OpenBSD+4.0

PF: Packet Filtering

If apacket matches arule specifying qui ck, then that ruleis considered the last matching rule and the specified act i on istaken.
interface
The name or group of the network interface that the packet is moving through. Interfaces can be added to arbitrary groups using the ifconfig(8)
command. Several groups are also automatically created by the kernel:
o Theegr ess group, which contains the interface(s) that holds the default route(s).
o Interface family group for cloned interfaces. For example: ppp or car p.
Thiswould cause the rule to match for any packet traversing any ppp or car p interface, respectively.

af
The address family of the packet, either i net for IPv4 ori net 6 for |Pv6. PF isusually able to determine this parameter based on the source and/or
destination address(es).
pr ot ocol
The Layer 4 protocol of the packet:
o tecp
o udp
o icnp
o 1cnp6
o A valid protocol namefrom/ et c/ pr ot ocol s

o A protocol number between 0 and 255
o A set of protocolsusing alist.
src_addr,dst _addr
The source/destination address in the | P header. Addresses can be specified as:

o A single IPv4 or IPv6 address.

o A CIDR network block.

o A fully qualified domain name that will be resolved via DNS when the ruleset is loaded. All resulting | P addresses will be substituted into the
rule.

o The name of anetwork interface or group. Any |P addresses assigned to the interface will be substituted into the rule.

o The name of anetwork interface followed by / net mask (i.e., / 24). Each IP address on the interface is combined with the netmask to form
a CIDR network block which is substituted into the rule.

o The name of a network interface or group in parentheses () . Thistells PF to update the rule if the | P address(es) on the named interface
change. Thisis useful on an interface that getsits IP address via DHCP or dial-up as the ruleset doesn't have to be reloaded each time the
address changes.

o The name of anetwork interface followed by any one of these modifiers:

« @ networ k - substitutes the CIDR network block (e.g., 192.168.0.0/24)

« : broadcast - substitutesthe network broadcast address (e.g., 192.168.0.255)

» : peer - substitutes the peer's |P address on a point-to-point link
In addition, the : 0 modifier can be appended to either an interface name or to any of the above modifiers to indicate that PF should
not include aliased | P addresses in the substitution. These modifiers can also be used when the interface is contained in parentheses.
Example: f xp0: net wor k: O

o Atable.

o Any of the above but negated using the! ("not") modifier.

o A set of addressesusing alist.

o Thekeyword any meaning al addresses

o Thekeywordal | whichisshortforfrom any to any.

src_port,dst_port
The source/destination port in the Layer 4 packet header. Ports can be specified as:

o A number between 1 and 65535

o Avalid service namefrom/ et c/ servi ces

o A set of portsusing alist

o A range:

« | = (not equal)
» < (lessthan)
« > (greater than)
» <= (lessthan or equal)
« >= (greater than or equal)
« ><(range)
« <> (inverserange)
The last two are binary operators (they take two arguments) and do not include the argumentsin the range.
« : (inclusiverange)
The inclusive range operator is also a binary operator and does include the arguments in the range.
tcp_flags
Specifies the flags that must be set in the TCP header when using pr ot o t cp. Flagsare specified asf | ags check/ mask. For example: f | ags
S/ SA - thisinstructs PF to only look at the Sand A (SYN and ACK) flags and to match if only the SYN flag is"on".
state
Specifies whether state information is kept on packets matching this rule.

o keep st at e - workswith TCP, UDP, and ICMP.

o nodul at e st at e - works only with TCP. PF will generate strong Initial Sequence Numbers (1SNs) for packets matching thisrule.

o synproxy st at e - proxiesincoming TCP connections to help protect servers from spoofed TCP SY N floods. This option includes the
functionality of keep st ate andnodul ate state.

Default Deny

http://www.openbsd.org/fag/pffilter.html (2 of 9) [30/04/2007 10:39:07]

http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=protocols&sektion=5&manpath=OpenBSD+4.0
http://public.pacbell.net/dedicated/cidr.html
http://www.openbsd.org/cgi-bin/man.cgi?query=services&sektion=5&manpath=OpenBSD+4.0

PF: Packet Filtering

The recommended practice when setting up afirewall isto take a"default deny" approach. That is, to deny everything and then selectively allow certain traffic
through the firewall. This approach is recommended because it errs on the side of caution and also makes writing aruleset easier.

To create adefault deny filter policy, the first two filter rules should be:

block in all
bl ock out all

Thiswill block all traffic on al interfacesin either direction from anywhere to anywhere.

Passing Traffic

Traffic must now be explicitly passed through the firewall or it will be dropped by the default deny policy. Thisiswhere packet criteria such as source/destination
port, source/destination address, and protocol come into play. Whenever traffic is permitted to pass through the firewall the rule(s) should be written to be as
restrictive as possible. Thisisto ensure that the intended traffic, and only the intended traffic, is permitted to pass.

Some examples:

Pass traffic in on dcO fromthe | ocal network, 192.168.0.0/24,
to the QpenBSD machine's | P address 192.168.0.1. Also, pass the
return traffic out on dcO.

pass in on dcO from 192.168.0.0/24 to 192.168.0.1

pass out on dcO from 192.168.0.1 to 192.168.0. 0/ 24

Pass TCP traffic in on fxp0 to the web server running on the

OpenBSD machi ne. The interface nanme, fxp0O, is used as the

destination address so that packets will only match this rule if
they're destined for the OpenBSD nachi ne.

pass in on fxp0 proto tcp fromany to fxp0O port www

The qui ck Keyword

Asindicated earlier, each packet is evaluated against the filter ruleset from top to bottom. By default, the packet is marked for passage, which can be changed by
any rule, and could be changed back and forth several times before the end of thefilter rules. The last matching rule " wins'. Thereis an exception to this: The
qui ck option on afiltering rule has the effect of canceling any further rule processing and causes the specified action to be taken. Let'slook at a couple
examples:

Wrong:

block in on fxp0 proto tcp fromany to any port ssh
pass in all

Inthis case, the bl ock line may be evaluated, but will never have any effect, asit is then followed by aline which will pass everything.
Better:

bl ock in quick on fxp0 proto tcp fromany to any port ssh
pass in all

These rules are evaluated allittle differently. If the bl ock lineis matched, due to the qui ck option, the packet will be blocked, and the rest of the ruleset will be
ignored.

Keeping State

One of Packet Filter'simportant abilitiesis "keeping state”" or "stateful inspection”. Stateful inspection refers to PF's ability to track the state, or progress, of a
network connection. By storing information about each connection in a state table, PF is able to quickly determine if a packet passing through the firewall belongs
to an aready established connection. If it does, it is passed through the firewall without going through ruleset evaluation.

K eeping state has many advantages including simpler rulesets and better packet filtering performance. PF is able to match packets moving in either direction to

http://www.openbsd.org/fag/pffilter.html (3 of 9) [30/04/2007 10:39:07]

PF: Packet Filtering

state table entries meaning that filter rules which pass returning traffic don't need to be written. And, since packets matching stateful connections don't go through
ruleset evaluation, the time PF spends processing those packets can be gresatly |essened.

When arule hasthekeep st at e option, the first packet matching the rule creates a"state" between the sender and receiver. Now, not only do packets going
from the sender to receiver match the state entry and bypass ruleset evaluation, but so do the reply packets from receiver to sender. For example:

pass out on fxpO proto tcp fromany to any keep state

This allows any outbound TCP traffic on the f xp0 interface and also permits the reply traffic to pass back through the firewall. While keeping stateisanice
feature, its use significantly improves the performance of your firewall as state lookups are dramatically faster than running a packet through thefilter rules.

Thenodul at e st at e option worksjust likekeep st at e except that it only appliesto TCP packets. With nodul at e st at e, the Initial Sequence
Number (1SN) of outgoing connectionsis randomized. Thisis useful for protecting connections initiated by certain operating systems that do a poor job of
choosing ISNs. Starting with OpenBSD 3.5, the nbdul at e st at e option can be used in rules that specify protocols other than TCP.

Keep state on outgoing TCP, UDP, and ICMP packets and modulate TCP I SNs:

pass out on fxp0O proto { tcp, udp, icnp } fromany \
to any nodul ate state

Another advantage of keeping state is that corresponding ICMP traffic will be passed through the firewall. For example, if keep st at e is specified for aTCP
connection and an | CMP source-quench message referring to this TCP connection arrives, it will be matched to the appropriate state entry and passed through the
firewall.

The scope of a state entry is controlled globally by the st at e- pol i cy runtime option and on a per rule basis by thei f - bound, gr oup- bound, and
f | oat i ng state option keywords. These per rule keywords have the same meaning as when used with the st at e- pol i cy option. Example:

pass out on fxpO proto { tcp, udp, icnp } fromany \
to any nodul ate state (if-bound)

Thisrule would dictate that in order for packets to match the state entry, they must be transiting the f xp0 interface.

Note that nat , bi nat , and r dr_rulesimplicitly create state for matching connections as long as the connection is passed by the filter ruleset.

Keeping State for UDP

One will sometimes hear it said that, "One can not create state with UDP as UDP is a stateless protocol!" While it is true that a UDP communication session does
not have any concept of state (an explicit start and stop of communications), this does not have any impact on PF's ahility to create state for a UDP session. In the
case of protocols without "start" and "end" packets, PF simply keeps track of how long it has been since a matching packet has gone through. If the timeout is
reached, the stateis cleared. The timeout values can be set in the options section of the pf . conf file.

Stateful Tracking Options

When afilter rule creates a state table entry through the use of any of thekeep st at e, modul at e st ate,or synproxy st at e keywords, certain options
can be specified that control the behavior of state creation. The following options are available:

max nunber
Limit the maximum number of state entries the rule can create to number. If the maximum is reached, packets that would normally create state are
dropped until the number of existing states decreases.

source-track
This option enables the tracking of number of states created per source |P address. This option has two formats:

o source-track rul e -Themaximum number of states created by thisruleislimited by the rule's max- sr c- nodes and max- sr c-
st at es options. Only state entries created by this particular rule count toward the rul€'s limits.

o source-track gl obal - The number of states created by all rules that use this option is limited. Each rule can specify different max-
src- nodes and nax- sr c- st at es options, however state entries created by any participating rule count towards each individual rule's
limits.

The total number of source |P addresses tracked globally can be controlled viathe sr c- nodes runtime option.

max- src- nodes numnber
When the sour ce-t r ack option isused, max- sr c- nodes will limit the number of source |P addresses that can simultaneously create state. This
option can only be used withsour ce-track rul e.

max- src-states nunber

http://www.openbsd.org/fag/pffilter.html (4 of 9) [30/04/2007 10:39:07]

PF: Packet Filtering

When thesour ce-t r ack option isused, max- sr c- st at es will limit the number of simultaneous state entries that can be created per source IP
address. The scope of thislimit (i.e., states created by thisrule only or states created by all rulesthat use sour ce- t r ack) is dependent on the
sour ce-track option specified.

An examplerule:

pass in on $ext_if proto tcp to $web_server \
port wwv flags S/ SA keep state \
(max 200, source-track rule, max-src-nodes 100, max-src-states 3)

The rule above defines the following behavior:

. Limit the absolute maximum number of states that this rule can create to 200

. Enable source tracking; limit state creation based on states created by thisrule only
. Limit the maximum number of nodes that can simultaneously create state to 100

. Limit the maximum number of simultaneous states per source IPto 3

A separate set of restrictions can be placed on stateful TCP connections that have completed the 3-way handshake.

max- src-conn numrber

Limit the maximum number of simultaneous TCP connections which have completed the 3-way handshake that a single host can make.
max- src-conn-rate nunber / interval

Limit the rate of new connections to a certain amount per time interval.

Both of these options automatically invokethesour ce-t rack rul e option and areincompatible with sour ce-t rack gl obal .

Since these limits are only being placed on TCP connections that have completed the 3-way handshake, more aggressive actions can be taken on offending IP
addresses.

overl oad <tabl e>
Put an offending host's | P address into the named table.

flush [global]
Kill any other states that match this rule and that were created by this source IP. When gl obal is specified, kill all states matching this source IP,
regardless of which rule created the state.

An example:

t abl e <abusi ve_host s> persi st
bl ock in quick from <abusive_host s>

pass in on $ext_if proto tcp to $web_server \
port www flags S/ SA keep state \
(max-src-conn 100, nex-src-conn-rate 15/5, overload <abusive_hosts> fl ush)

This does the following:

. Limits the maximum number of connections per source to 100

. Ratelimits the number of connectionsto 15 in a5 second span

. Putsthe IP address of any host that breaks these limitsinto the <abusi ve_host s> table
. For any offending | P addresses, flush any states created by thisrule.

TCP Flags

Matching TCP packets based on flags is most often used to filter TCP packets that are attempting to open a new connection. The TCP flags and their meanings
are listed here:

: FIN - Finish; end of session

: SYN - Synchronize; indicates request to start session
1 RST - Reset; drop a connection

: PUSH - Push; packet is sent immediately

1 ACK - Acknowledgement

1 URG - Urgent

: ECE - Explicit Congestion Notification Echo

mCcC>» UTXoWnT

http://www.openbsd.org/fag/pffilter.html (5 of 9) [30/04/2007 10:39:07]

PF: Packet Filtering

. W : CWR - Congestion Window Reduced
To have PF inspect the TCP flags during evaluation of arule, thef | ags keyword is used with the following syntax:
fl ags check/ mask
Themask part tells PF to only inspect the specified flags and the check part specifies which flag(s) must be "on" in the header for amatch to occur.
pass in on fxp0 proto tcp fromany to any port ssh flags S/ SA

The above rule passes TCP traffic with the SYN flag set while only looking at the SYN and ACK flags. A packet with the SYN and ECE flags would match the
above rule while a packet with SYN and ACK or just ACK would not.

Note: in previous versions of OpenBSD, the following syntax was supported:
flags S
Thisisno longer true. A mask must now always be specified.
Flags are often used in conjunction with keep st at e rulesto help control the creation of state entries:
pass out on fxpO proto tcp all flags S/ SA keep state
This would permit the creation of state on any outgoing TCP packet with the SY N flag set out of the SYN and ACK flags.

One should be careful with using flags -- understand what you are doing and why, and be careful with the advice people give asalot of it is bad. Some people
have suggested creating state "only if the SYN flag is set and no others'. Such arule would end with:

flags S/ FSRPAUEW bad idea!!

Thetheory is, create state only on the start of the TCP session, and the session should start with a SYN flag, and no others. The problem is some sites are starting
to use the ECN flag and any site using ECN that tries to connect to you would be rejected by such arule. A much better guidelineis:

flags S/ SAFR

While thisis practical and safe, it is also unnecessary to check the FIN and RST flagsif traffic is also being scrubbed. The scrubbing process will cause PF to

drop any incoming packets with illegal TCP flag combinations (such as SYN and RST) and to normalize potentially ambiguous combinations (such as SYN and
FIN). It's highly recommended to always scr ub incoming traffic:

scrub in on fxp0

pass in on fxp0 proto tcp fromany to any port ssh flags S/ SA\
keep state

TCP SYN Proxy

Normally when aclient initiates a TCP connection to a server, PF will pass the handshake packets between the two endpoints as they arrive. PF has the ability,

however, to proxy the handshake. With the handshake proxied, PF itself will complete the handshake with the client, initiate a handshake with the server, and
then pass packets between the two. The benefit of this processis that no packets are sent to the server before the client completes the handshake. This eliminates
the threat of spoofed TCP SY N floods affecting the server because a spoofed client connection will be unable to complete the handshake.

The TCP SYN proxy isenabled using thesynpr oxy st at e keywordsin filter rules. Example:

pass in on $ext_if proto tcp fromany to $web_server port ww \
flags S/ SA synproxy state

Here, connections to the web server will be TCP proxied by PF.

http://www.openbsd.org/fag/pffilter.html (6 of 9) [30/04/2007 10:39:07]

http://www.inetdaemon.com/tutorials/internet/tcp/connections.html

PF: Packet Filtering

Because of theway synpr oxy st at e works, it also includes the same functionality askeep st at e and nodul ate st ate.

The SYN proxy will not work if PF isrunning on a bridge(4).

Blocking Spoofed Packets

Address "spoofing" is when an malicious user fakes the source |P address in packets they transmit in order to either hide their real address or to impersonate
another node on the network. Once the user has spoofed their address they can launch a network attack without revealing the true source of the attack or attempt
to gain access to network services that are restricted to certain | P addresses.

PF offers some protection against address spoofing through the ant i spoof keyword:
anti spoof [log] [quick] for interface [af]

| og

Specifies that matching packets should be logged via pflogd(8).
qui ck

If a packet matches this rule then it will be considered the "winning" rule and ruleset evaluation will stop.
interface

The network interface to activate spoofing protection on. This can also be alist of interfaces.

af
The address family to activate spoofing protection for, either i net for IPv4 ori net 6 for IPv6.

Example:
anti spoof for fxpO inet

When aruleset isloaded, any occurrences of theant i spoof keyword are expanded into two filter rules. Assuming that interface f xpO has |P address 10.0.0.1
and a subnet mask of 255.255.255.0 (i.e., a/24), the above ant i spoof rule would expand to:

block in on ! fxp0 inet from 10.0.0.0/24 to any
block in inet from10.0.0.1 to any

These rules accomplish two things:

. Blocksall traffic coming from the 10.0.0.0/24 network that does not pass in through f xp0. Since the 10.0.0.0/24 network ison the f xpO interface,
packets with a source addressin that network block should never be seen coming in on any other interface.

. Blocksall incoming traffic from 10.0.0.1, the |P address on f xp0. The host machine should never send packets to itself through an external interface,
so any incoming packets with a source address belonging to the machine can be considered malicious.

NOTE: Thefilter rulesthat theant i spoof rule expandsto will also block packets sent over the loopback interface to local addresses. It's best practice to skip
filtering on loopback interfaces anyways, but this becomes a necessity when using antispoof rules:

set skip on 100

anti spoof for fxpO inet

Usage of ant i spoof should be restricted to interfaces that have been assigned an | P address. Using ant i spoof on an interface without an |P address will
result in filter rules such as:

bl ock drop in on ! fxpO inet all
bl ock drop in inet all

With these rules there is arisk of blocking all inbound traffic on all interfaces.

Unicast Reverse Path Forwarding

Starting in OpenBSD 4.0, PF offers a Unicast Reverse Path Forwarding (URPF) feature. When a packet is run through the uRPF check, the source | P address of
the packet is looked up in the routing table. If the outbound interface found in the routing table entry is the same as the interface that the packet just camein on,

http://www.openbsd.org/fag/pffilter.html (7 of 9) [30/04/2007 10:39:07]

http://www.openbsd.org/cgi-bin/man.cgi?query=bridge&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pflogd&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/40.html

PF: Packet Filtering

then the uRPF check passes. If the interfaces don't match, then it's possible the packet has had its source address spoofed.
The uRPF check can be performed on packets by using the ur pf - f ai | ed keyword infilter rules:

bl ock in quick fromurpf-failed | abel uRPF
Note that the uRPF check only makes sense in an environment where routing is symmetric.

URPF provides the same functionality as antispoof rules.

Hosts acting as | Psec endpoints should not enable uRPF on the encO interface. uRPF will alwaysfail on enc0 and will block all packets. If you do not need to
filter the encapsulated | Psec traffic, thenset ski p on encO isrecommended. Otherwise, avoid uRPF checks on that interface.

bl ock in quick on ! encO fromurpf-failed | abel uRPF
Passive Operating System Fingerprinting

Passive OS Fingerprinting (OSFP) is a method for passively detecting the operating system of a remote host based on certain characteristics within that host's
TCP SYN packets. Thisinformation can then be used as criteriawithin filter rules.

PF determines the remote operating system by comparing characteristics of a TCP SY N packet against the fingerprintsfile, which by defaultis/ et c/ pf . os.
Once PF is enabled, the current fingerprint list can be viewed with this command:

pfctl -s osfp

Within afilter rule, afingerprint may be specified by OS class, version, or subtype/patch level. Each of theseitemsis listed in the output of the pf ct | command
shown above. To specify afingerprint in afilter rule, the os keyword is used:

pass in on $ext_if fromany os OpenBSD keep state
bl ock in on $ext_if fromany os "Wndows 2000"
block in on $ext_if fromany os "Linux 2.4 ts"
block in on $ext_if fromany os unknown

The specia operating system class unknown allows for matching packets when the OS fingerprint is not known.
TAKE NOTE of the following:

. Operating system fingerprints are occasionally wrong due to spoofed and/or crafted packets that are made to look like they originated from a specific
operating system.

. Certain revisions or patchlevels of an operating system may change the stack's behavior and cause it to either not match what's in the fingerprints file or
to match another entry altogether.

. OSFP only works on the TCP SY N packet; it will not work on other protocols or on aready established connections.

IP Options

By default, PF blocks packets with | P options set. This can make the job more difficult for "OS fingerprinting” utilities like nmap. If you have an application that
requires the passing of these packets, such as multicast or IGMP, you can usethe al | ow opt s directive:

pass in quick on fxp0 all allowopts
Filtering Ruleset Example

Below is an example of afiltering ruleset. The machine running PF is acting as a firewall between asmall, internal network and the Internet. Only the filter rules
are shown; gueueing, nat , r dr , etc., have been left out of this example.

http://www.openbsd.org/fag/pffilter.html (8 of 9) [30/04/2007 10:39:07]

http://www.openbsd.org/cgi-bin/man.cgi?query=enc&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.os&sektion=5&manpath=OpenBSD+4.0

PF: Packet Filtering

ext_if = "fxp0"

int_if = "dc0"

| an_net = "192.168. 0.0/ 24"

table containing all | P addresses assigned to the firewall

table <firewal | > const { self }

don't filter on the | oopback interface
set skip on |00

scrub incom ng packets
scrub in all

setup a default deny policy
bl ock al |

activate spoofing protection for the internal interface.
anti spoof quick for $int_if inet

only allow ssh connections fromthe |ocal network if it's fromthe
trusted conputer, 192.168.0.15. use "block return" so that a TCP RST is
sent to close bl ocked connections right away. use "quick" so that this
rule is not overridden by the "pass" rul es bel ow.
bl ock return in quick on $int_if proto tcp from! 192.168.0.15 \

to $int_if port ssh flags S/ SA

pass all traffic to and fromthe | ocal network
pass in on $int_if from$lan_net to any
pass out on $int_if fromany to $l an_net

pass tcp, udp, and icnp out on the external (Internet) interface.
keep state on udp and icnp and nodul ate state on tcp.

pass out on $ext_if proto tcp all nodul ate state flags S/ SA

pass out on $ext_if proto { udp, icnp } all keep state

al l ow ssh connections in on the external interface as long as they're
NOT destined for the firewall (i.e., they're destined for a machi ne on
the local network). log the initial packet so that we can later tell

who is trying to connect. use the tcp syn proxy to proxy the connection.

pass in log on $ext _if proto tcp fromany to ! <firewall>\
port ssh flags S/ SA synproxy state

[Previous: Tables] [Contents] [Next: Network Address Translation]

g www @openbsd.org
$0penBSD: filter.html,v 1.40 2006/11/19 21:00:06 joel Exp $

http://www.openbsd.org/fag/pffilter.html (9 of 9) [30/04/2007 10:39:07]

mailto:www@openbsd.org

PF: Network Address Translation (NAT)
OpenBSD

[Previous: Packet Filtering] [Contents] [Next: Traffic Redirection (Port Forwarding)]

PF: Network Address Translation (NAT)

Table of Contents

. Introduction

. How NAT Works

. NAT and Packet Filtering

. 1P Forwarding

. Configuring NAT

. Bidirectional Mapping (1:1 mapping)
. Trandation Rule Exceptions

. Checking NAT Status

Introduction

Network Address Trandlation (NAT) isaway to map an entire network (or networks) to asingle IP address. NAT is necessary
when the number of IP addresses assigned to you by your Internet Service Provider isless than the total number of computers that
you wish to provide Internet access for. NAT is described in RFEC 1631, "The IP Network Address Translator (NAT)."

NAT allows you to take advantage of the reserved address blocks described in REC 1918, "Address Allocation for Private
Internets." Typically, your internal network will be setup to use one or more of these network blocks. They are:

10.0.0.0/8 (10.0.0.0 - 10.255. 255. 255)
172.16.0.0/ 12 (172.16.0.0 - 172.31. 255. 255)
192.168. 0.0/ 16 (192.168.0.0 - 192. 168. 255. 255)

An OpenBSD system doing NAT will have at |east two network adapters, one to the Internet, the other to your internal network.
NAT will be translating requests from the internal network so they appear to al be coming from your OpenBSD NAT system.

How NAT Works

When aclient on the internal network contacts a machine on the Internet, it sends out 1P packets destined for that machine. These
packets contain all the addressing information necessary to get them to their destination. NAT is concerned with these pieces of
information:

. Source |P address (for example, 192.168.1.35)
. Source TCP or UDP port (for example, 2132)

http://www.openbsd.org/fag/pf/nat.html (1 of 6) [30/04/2007 10:39:09]

http://www.openbsd.org/index.html
http://www.geektools.com/rfc/rfc1631.txt
http://www.geektools.com/rfc/rfc1918.txt

PF: Network Address Translation (NAT)

When the packets pass through the NAT gateway they will be modified so that they appear to be coming from the NAT gateway
itself. The NAT gateway will record the changes it makes in its state table so that it can &) reverse the changes on return packets
and b) ensure that return packets are passed through the firewall and are not blocked. For example, the following changes might be
made:

. Source |P: replaced with the external address of the gateway (for example, 24.5.0.5)
. Source port: replaced with arandomly chosen, unused port on the gateway (for example, 53136)

Neither the internal machine nor the Internet host is aware of these trandation steps. To the internal machine, the NAT systemis
simply an Internet gateway. To the Internet host, the packets appear to come directly from the NAT system; it is completely
unaware that the internal workstation even exists.

When the Internet host replies to the internal machine's packets, they will be addressed to the NAT gateway's external 1P (24.5.0.5)
at the trandation port (53136). The NAT gateway will then search the state table to determine if the reply packets match an already
established connection. A unique match will be found based on the IP/port combination which tells PF the packets belong to a
connection initiated by the internal machine 192.168.1.35. PF will then make the opposite changes it made to the outgoing packets
and forward the reply packets on to the internal machine.

Trandation of ICMP packets happens in asimilar fashion but without the source port maodification.

NAT and Packet Filtering

NOTE: Translated packets must still pass through the filter engine and will be blocked or passed based on the filter rules that have
been defined. The only exception to this rule iswhen the pass keyword is used within the nat rule. Thiswill cause the NATed
packets to pass right through the filtering engine.

Also be aware that since translation occurs before filtering, the filter engine will see the trandated packet with the translated |P
address and port as outlined in How NAT Works.

IP Forwarding

Since NAT isamost always used on routers and network gateways, it will probably be necessary to enable | P forwarding so that
packets can travel between network interfaces on the OpenBSD machine. |P forwarding is enabled using the sysctl(3) mechanism:

sysctl net.inet.ip.forwarding=1
sysctl net.inet6.ip6.forwarding=1 (if using |Pv6)

To make this change permanent, the following lines should be added to / et ¢/ sysct | . conf :

net.inet.ip.forwardi ng=1
net.inet6.ip6.forwardi ng=1

These lines are present but commented out (prefixed with a#) in the default install. Remove the # and save thefile. IP forwarding
will be enabled when the machine is rebooted.

Configuring NAT

http://www.openbsd.org/fag/pf/nat.html (2 of 6) [30/04/2007 10:39:09]

http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=3&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl.conf&sektion=5&manpath=OpenBSD+4.0

PF: Network Address Translation (NAT)

The general format for NAT rulesin pf . conf looks something like this:

nat [pass [log]] on interface [af] fromsrc_addr [port src_port] to \
dst _addr [port dst_port] -> ext_addr [pool type] [static-port]

nat

The keyword that beginsa NAT rule.
pass

Causes trand ated packets to completely bypass the filter rules.
| og

When pass is specified, packets can be logged via pflogd(8). Normally only the first packet that matches will be

logged. To log al matching packets, usel og (al l).
interface
The name or group of the network interface to translate packets on.
af
The address family, either i net for IPv4 or i net 6 for IPv6. PF isusualy able to determine this parameter based on the
source/destination address(es).
src_addr
The source (internal) address of packets that will be trandated. The source address can be specified as:
o A singlePv4 or |Pv6 address.
o A CIDR network block.

o A fully qualified domain name that will be resolved via DNS when the ruleset is loaded. All resulting IP
addresses will be substituted into the rule.
o The name or group of a network interface. Any |P addresses assigned to the interface will be substituted into
therule at load time.
o The name of a network interface followed by / net mask (e.g./ 24). Each IP address on the interface is
combined with the netmask to form a CIDR network block which is substituted into the rule.
o The name or group of a network interface followed by any one of these modifiers:
« : networ k - substitutes the CIDR network block (e.g., 192.168.0.0/24)
« : broadcast - substitutes the network broadcast address (e.g., 192.168.0.255)
« : peer - substitutesthe peer's | P address on a point-to-point link
In addition, the : 0 modifier can be appended to either an interface name/group or to any of the
above modifiers to indicate that PF should not include aiased |P addresses in the substitution. These
modifiers can also be used when the interface is contained in parentheses. Example:
f xp0: network: 0
o A table.
o Any of the above but negated using the! ("not") modifier.
o A set of addresses using alist.

o The keyword any meaning all addresses
src_port
The source port in the Layer 4 packet header. Ports can be specified as:
o A number between 1 and 65535
o A valid servicenamefrom/ et c/ servi ces
o A set of portsusing alist
o A range:
« ! =(not equal)
» < (lessthan)
« > (greater than)
» <= (lessthan or equal)
« >= (greater than or equal)
« ><(range)
« <> (inverserange)
Thelast two are binary operators (they take two arguments) and do not include the
arguments in the range.
« : (inclusiverange)
Theinclusive range operator is aso abinary operator and does include the argumentsin
the range.
Theport optionisnot usualy used in nat rules because the goal isusualy to NAT all traffic regardless of the port(s)

http://www.openbsd.org/fag/pf/nat.html (3 of 6) [30/04/2007 10:39:09]

http://www.openbsd.org/cgi-bin/man.cgi?query=pflogd&sektion=8&manpath=OpenBSD+4.0
http://public.pacbell.net/dedicated/cidr.html
http://www.openbsd.org/cgi-bin/man.cgi?query=services&sektion=5&manpath=OpenBSD+4.0

PF: Network Address Translation (NAT)

being used.

dst _addr

The destination address of packets to be translated. The destination address is specified in the same way as the source

address.
dst _port

The destination port in the Layer 4 packet header. This port is specified in the same way as the source port.

ext _addr

The external (trandation) address on the NAT gateway that packets will be translated to. The external address can be
specified as:

u]

u]

0

0

0

pool _type

A single IPv4 or IPv6 address.
A CIDR network block.

A fully qualified domain name that will be resolved via DNS when the ruleset is loaded.
The name of the external network interface. Any I P addresses assigned to the interface will be substituted into
therule at load time.
The name of the external network interface in parentheses () . Thistells PF to update the ruleif the IP
address(es) on the named interface changes. Thisis highly useful when the external interface getsits IP
address via DHCP or dial-up as the ruleset doesn't have to be reloaded each time the address changes.
The name of a network interface followed by either one of these modifiers:
« : networ k - substitutes the CIDR network block (e.g., 192.168.0.0/24)
« : peer - substitutesthe peer's | P address on a point-to-point link
In addition, the : 0 modifier can be appended to either an interface name or to any of the above
modifiers to indicate that PF should not include aliased | P addresses in the substitution. These
modifiers can aso be used when the interface is contained in parentheses. Example:
fxp0: network: 0
A set of addresses using alist.

Specifies the type of address pool to use for translation.

static-port

Tells PF not to translate the source port in TCP and UDP packets.

Thiswould lead to amost basic form of thisline similar to this:

nat on tlI0 from 192.168.1.0/24 to any -> 24.5.0.5

Thisrule saysto perform NAT onthet | O interface for any packets coming from 192.168.1.0/24 and to replace the source IP
address with 24.5.0.5.

While the aboveruleis correct, it is not recommended form. Maintenance could be difficult as any change of the external or
internal network numbers would require the line be changed. Compare instead with this easier to maintain line (t | O is external,

dcO internal):

nat on t10 fromdcO: network to any -> tl0

The advantage should be fairly clear: you can change the | P addresses of either interface without changing this rule.

When specifying an interface name for the trandation address as above, the IP addressis determined at pf.conf load time, not on
the fly. If you are using DHCP to configure your external interface, this can be a problem. If your assigned | P address changes,
NAT will continue translating outgoing packets using the old IP address. Thiswill cause outgoing connections to stop functioning.
To get around this, you can tell PF to automatically update the translation address by putting parentheses around the interface

name:

nat on t10 fromdcO: network to any -> (tl0)

This method works for translation to both Pv4 and 1Pv6 addresses.

http://www.openbsd.org/fag/pf/nat.html (4 of 6) [30/04/2007 10:39:09]

http://public.pacbell.net/dedicated/cidr.html

PF: Network Address Translation (NAT)

Bidirectional Mapping (1:1 mapping)

A bidirectional mapping can be established by using the bi nat rule. A bi nat rule establishes a one to one mapping between an
internal 1P address and an external address. This can be useful, for example, to provide aweb server on the internal network with
its own external 1P address. Connections from the Internet to the external address will be translated to the internal address and
connections from the web server (such as DNS requests) will be translated to the external address. TCP and UDP ports are never
modified with bi nat rulesasthey arewith nat rules.

Example:

"192.168. 1. 100"
"24.5.0.6"

web_serv_int
web_serv_ext

binat on t10 from $web_serv_int to any -> $web_serv_ext

Translation Rule Exceptions

Exceptions can be made to trangd ation rules by using the no keyword. For example, if the NAT example above was modified to
look like this:

no nat on t10 from 192. 168. 1. 208 to any
nat on t10 from 192.168.1.0/24 to any -> 24.2.74.79

Then the entire 192.168.1.0/24 network would have its packets transated to the external address 24.2.74.79 except for
192.168.1.208.

Note that the first matching rule wins; if it'sano rule, then the packet is not translated. The no keyword can also be used with
bi nat andrdr rules.

Checking NAT Status

To view the active NAT translations pfctl(8) isused withthe- s st at e option. Thisoption will list all the current NAT sessions:

pfctl -s state
fxp0 TCP 192.168.1.35:2132 -> 24.5.0.5:53136 -> 65.42.33.245:22 TIMEWAIT: TIMEWAIT
fxp0 UDP 192.168. 1. 35: 2491 -> 24.5.0.5: 60527 -> 24.2.68.33:53 MULTI PLE: SI NGLE

Explanations (first line only):

fxp0

Indicates the interface that the state is bound to. Theword sel f will appear if the stateisf | oat i ng.
TCP

The protocol being used by the connection.
192.168.1.35:2132

The IP address (192.168.1.35) of the machine on the internal network. The source port (2132) is shown after the address.
Thisisaso the address that is replaced in the | P header.

http://www.openbsd.org/fag/pf/nat.html (5 of 6) [30/04/2007 10:39:09]

http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.0

PF: Network Address Translation (NAT)

24.5.0.5:53136
The IP address (24.5.0.5) and port (53136) on the gateway that packets are being trandated to.

65.42.33.245:22
The IP address (65.42.33.245) and the port (22) that the internal machine is connecting to.

TIME_WAIT:TIME_WAIT
This indicates what state PF believes the TCP connection to beiin.

[Previous: Packet Filtering] [Contents] [Next: Traffic Redirection (Port Forwarding)]

& www @openbsd.org
$OpenBSD: nat.html,v 1.25 2006/11/01 01:56:01 joel Exp $

http://www.openbsd.org/fag/pf/nat.html (6 of 6) [30/04/2007 10:39:09]

mailto:www@openbsd.org

PF: Traffic Redirection (Port Forwarding)

[Previous: Network Address Trandation] [Contents] [Next: Shortcuts For Creating Rul esets]

PF. Redirection (Port Forwarding)

Table of Contents

. Introduction
. Redirection and Packet Filtering
. Security Implications
. Redirection and Reflection
o Split-Horizon DNS
o Moving the Server Into a Separate Local Network

o TCP Proxying
o RDR and NAT Combination

Introduction

When you have NAT running in your office you have the entire Internet available to al your machines. What if you have a
machine behind the NAT gateway that needs to be accessed from outside? Thisis where redirection comesin. Redirection allows
incoming traffic to be sent to a machine behind the NAT gateway.

Let'slook at an example:
rdr on t10 proto tcp fromany to any port 80 -> 192.168.1.20

Thislineredirects TCP port 80 (web server) traffic to a machine inside the network at 192.168.1.20. So, even though 192.168.1.20
is behind your gateway and inside your network, the outside world can accessit.

Thefrom any to any part of theabover dr line can be quite useful. If you know what addresses or subnets are supposed to
have access to the web server at port 80, you can restrict them here:

rdr on t10 proto tcp from 27.146.49.0/24 to any port 80 -> \
192.168. 1. 20

Thiswill redirect only the specified subnet. Note thisimplies you can redirect different incoming hosts to different machines
behind the gateway. This can be quite useful. For example, you could have users at remote sites access their own desktop
computers using the same port and IP address on the gateway as long as you know the I P address they will be connecting from:

rdr on t10 proto tcp from 27.146.49. 14 to any port 80 ->\

http://www.openbsd.org/fag/pf/rdr.html (1 of 5) [30/04/2007 10:39:11]

http://www.openbsd.org/index.html

PF: Traffic Redirection (Port Forwarding)

192.168. 1. 20

rdr on t10 proto tcp from 16.114.4.89 to any port 80 -> \
192. 168. 1. 22

rdr on t10 proto tcp from24.2.74.178 to any port 80 -> \
192. 168. 1. 23

A range of ports can also be redirected within the same rule:

rdr on t10 proto tcp fromany to any port 5000: 5500 -> \
192.168.1. 20

rdr on t10 proto tcp fromany to any port 5000: 5500 -> \
192. 168. 1. 20 port 6000

rdr on t10 proto tcp fromany to any port 5000: 5500 -> \
192.168. 1. 20 port 7000:*

These examples show ports 5000 to 5500 inclusive being redirected to 192.168.1.20. In rule #1, port 5000 is redirected to 5000,
5001 to 5001, etc. In rule #2, the entire port range is redirected to port 6000. And in rule #3, port 5000 is redirected to 7000, 5001
to 7001, etc.

Redirection and Packet Filtering

NOTE: Trandated packets must still pass through the filter engine and will be blocked or passed based on the filter rules that have
been defined.

The only exception to thisruleiswhen the pass keyword is used withinther dr rule. In this case, the redirected packets will pass
statefully right through the filtering engine: the filter rules won't be evaluated against these packets. Thisis a handy shortcut to
avoid adding pass filter rulesfor each redirection rule. Think of it asanormal r dr rule (with no pass keyword) associated to a
pass filter rulewiththekeep st at e keyword. However, if you want to enable more specific filtering options such as

synpr oxy, nodul at e st at e, etc. you'll still have to use adedicate pass rule as these options don't fit into redirection rules.

Also be aware that since translation occurs before filtering, the filter engine will see the trandated packet as it looks after it's had
its destination IP address and/or destination port changed to match the redirection address/port specified inther dr rule. Consider
this scenario:

. 192.0.2.1 - host on the Internet
. 24.65.1.13 - external address of OpenBSD router
. 192.168.1.5 - interna | P address of web server

Redirection rule:

rdr on t10 proto tcp from192.0.2.1 to 24.65.1.13 port 80 \
-> 192.168. 1.5 port 8000

Packet before ther dr ruleis processed:

. Source address: 192.0.2.1

. Source port: 4028 (arbitrarily chosen by the operating system)
. Destination address: 24.65.1.13

. Destination port: 80

Packet after ther dr ruleis processed:

http://www.openbsd.org/fag/pf/rdr.html (2 of 5) [30/04/2007 10:39:11]

PF: Traffic Redirection (Port Forwarding)

. Source address: 192.0.2.1

. Source port: 4028

. Destination address: 192.168.1.5
. Destination port: 8000

Thefilter engine will see the IP packet asit looks after trandation has taken place.

Security Implications

Redirection does have security implications. Punching a hole in the firewall to allow traffic into the internal, protected network
potentially opens up the internal machine to compromise. If traffic is forwarded to an internal web server for example, and a
vulnerability is discovered in the web server daemon or in a CGI script run on the web server, then that machine can be
compromised from an intruder on the Internet. From there, the intruder has a doorway to the internal network, one that is permitted
to pass right through the firewall.

These risks can be minimized by keeping the externally accessed system tightly confined on a separate network. This network is
often referred to as a Demilitarized Zone (DM Z) or a Private Service Network (PSN). Thisway, if the web server is compromised,
the effects can be limited to the DM Z/PSN network by careful filtering of the traffic permitted to and from the DMZ/PSN.

Redirection and Reflection

Often, redirection rules are used to forward incoming connections from the Internet to alocal server with a private address in the
internal network or LAN, asin:

server = 192.168.1.40

rdr on $ext _if proto tcp fromany to $ext if port 80 -> $server \
port 80

But when the redirection rule is tested from aclient on the LAN, it doesn't work. The reason is that redirection rules apply only to
packets that pass through the specified interface ($ext _i f, the externa interface, in the example). Connecting to the external
address of the firewall from a host on the LAN, however, does not mean the packets will actually pass through its external
interface. The TCP/IP stack on the firewall compares the destination address of incoming packets with its own addresses and
aliases and detects connections to itself as soon as they have passed the internal interface. Such packets do not physically pass
through the external interface, and the stack does not simulate such a passage in any way. Thus, PF never sees these packets on the
external interface, and the redirection rule, specifying the external interface, does not apply.

Adding a second redirection rule for the internal interface does not have the desired effect either. When the local client connects to
the external address of the firewall, the initial packet of the TCP handshake reaches the firewall through the internal interface. The
redirection rule does apply and the destination address gets replaced with that of the internal server. The packet gets forwarded
back through the internal interface and reaches the internal server. But the source address has not been trandated, and still contains
the local client's address, so the server sendsits replies directly to the client. The firewall never sees the reply and has no chance to
properly reverse the translation. The client receives areply from a source it never expected and drops it. The TCP handshake then
fails and no connection can be established.

Still, it's often desirable for clients on the LAN to connect to the same internal server as external clients and to do so transparently.
There are several solutions for this problem:

Split-Horizon DNS

It's possible to configure DNS servers to answer queries from local hosts differently than external queries so that local clients will

http://www.openbsd.org/fag/pf/rdr.html (3 of 5) [30/04/2007 10:39:11]

PF: Traffic Redirection (Port Forwarding)

receive the internal server's address during name resolution. They will then connect directly to the local server, and the firewall
isn't involved at all. Thisreduces local traffic since packets don't have to be sent through the firewall.

Moving the Server Into a Separate Local Network

Adding an additional network interface to the firewall and moving the local server from the client's network into a dedicated
network (DMZ) allows redirecting of connections from local clientsin the same way as the redirection of external connections.
Use of separate networks has several advantages, including improving security by isolating the server from the remaining local
hosts. Should the server (which in our case is reachable from the Internet) ever become compromised, it can't access other local
hosts directly as all connections have to pass through the firewall.

TCP Proxying

A generic TCP proxy can be setup on the firewall, either listening on the port to be forwarded or getting connections on the
internal interface redirected to the port it's listening on. When alocal client connects to the firewall, the proxy accepts the
connection, establishes a second connection to the internal server, and forwards data between those two connections.

Simple proxies can be created using inetd(8) and nc(1). Thefollowing/ et ¢/ i net d. conf entry creates alistening socket
bound to the loopback address (127.0.0.1) and port 5000. Connections are forwarded to port 80 on server 192.168.1.10.

127.0.0. 1: 5000 streamtcp nowait nobody /usr/bin/nc nc -w\
20 192.168.1.10 80

The following redirection rule forwards port 80 on the internal interface to the proxy:

rdr on $int _if proto tcp from$int net to $ext if port 80 -> \
127.0.0.1 port 5000

RDR and NAT Combination

With an additional NAT rule on the internal interface, the lacking source address translation described above can be achieved.

rdr on $int_if proto tcp from$int_net to $ext_if port 80 -> \
$server

no nat on $int_if proto tcp from$int_if to $int_net

nat on $int_if proto tcp from$int_net to $server port 80 -> \
$int_if

Thiswill causethe initial packet from the client to be trandated again when it's forwarded back through the internal interface,
replacing the client's source address with the firewall's internal address. The internal server will reply back to the firewall, which
can reverse both NAT and RDR tranglations when forwarding to the local client. This construct is rather complex asit creates two
separate states for each reflected connection. Care must be taken to prevent the NAT rule from applying to other traffic, for
instance connections originating from external hosts (through other redirections) or the firewall itself. Note that ther dr rule above
will cause the TCP/IP stack to see packets arriving on the internal interface with a destination address inside the internal network.

In general, the previously mentioned solutions should be used instead.

[Previous. Network Address Trandation] [Contents] [Next: Shortcuts For Creating Rulesets]

http://www.openbsd.org/fag/pf/rdr.html (4 of 5) [30/04/2007 10:39:11]

http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=nc&sektion=1&manpath=OpenBSD+4.0

PF: Traffic Redirection (Port Forwarding)

} www @openbsd.org
$OpenBSD: rdr.html,v 1.26 2006/11/01 01:56:01 joel Exp $

http://www.openbsd.org/fag/pf/rdr.html (5 of 5) [30/04/2007 10:39:11]

mailto:www@openbsd.org

PF: Shortcuts For Creating Rulesets

[Previous: Traffic Redirection (Port Forwarding)] [Contents] [Next: Runtime Options]

PF: Shortcuts For Creating Rulesets

Table of Contents

. Introduction

. Using Macros

. Using Lists

. PF Grammar
o Elimination of Keywords
o Ret ur n Simplification
o Keyword Ordering

Introduction

PF offers many waysin which aruleset can be simplified. Some good examples are by using macros and lists. In addition, the

ruleset language, or grammar, also offers some shortcuts for making aruleset simpler. As a general rule of thumb, the simpler a
ruleset is, the easier it isto understand and to maintain.

Using Macros

Macros are useful because they provide an aternative to hard-coding addresses, port numbers, interfaces names, etc., into a ruleset.
Did aserver's |P address change? No problem, just update the macro; no need to mess around with the filter rules that you've spent
time and energy perfecting for your needs.

A common convention in PF rulesetsis to define a macro for each network interface. If a network card ever needs to be replaced
with one that uses a different driver, for example swapping out a 3Com for an Intel, the macro can be updated and the filter rules
will function as before. Another benefit is when installing the same ruleset on multiple machines. Certain machines may have
different network cards in them, and using macros to define the network interfaces allows the rulesets to be installed with minimal
editing. Using macros to define information in aruleset that is subject to change, such as port numbers, 1P addresses, and interface
names, is recommended practice.

define nacros for each network interface

IntlF = "dcO"
Extl F = "fxp0"
Dnel F = "fxpl"

Another common convention is using macros to define I P addresses and network blocks. This can greatly reduce the maintenance
of aruleset when IP addresses change.

http://www.openbsd.org/fag/pf/shortcuts.html (1 of 5) [30/04/2007 10:39:14]

http://www.openbsd.org/index.html

PF: Shortcuts For Creating Rulesets

define our networks

IntNet = "192.168.0.0/24"
Ext Add = "24.65.13. 4"
DnzNet = "10.0. 0.0/ 24"

If theinternal network ever expanded or was renumbered into a different IP block, the macro can be updated:

IntNet = "{ 192.168.0.0/24, 192.168.1.0/24 }"

Once the ruleset isreloaded, everything will work as before.

Using Lists

Let'slook at agood set of rules to have in your ruleset to handle RFC 1918 addresses that just shouldn't be floating around the
Internet, and when they are, are usually trying to cause trouble:

block in quick on tlO
block in quick on tlO
block in quick on tlO
block in quick on tlO
bl ock out quick on tlO
bl ock out quick on tlO
bl ock out quick on tlO
bl ock out quick on tlO

Now look at the following simplification:

block in quick on tlO
172.16.0.0/12, 10.0.
bl ock out quick on tlO0
192.168. 0.0/ 16, 172.

net from127.0.0.0/8 to any
net from 192.168.0.0/16 to any
net from172.16.0.0/12 to any
net from 10.0.0.0/8 to any

net fromany to 127.0.0.0/8
net fromany to 192.168.0.0/16
net fromany to 172.16.0.0/12
net fromany to 10.0.0.0/8

inet from{ 127.0.0.0/8, 192.168.0.0/16, \
0.0/8 } to any

inet fromany to { 127.0.0.0/8, \
16.0.0/12, 10.0.0.0/8 }

The ruleset has been reduced from eight lines down to two. Things get even better when macros are used in conjunction with alist:

NoRoutel Ps = "{ 127.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12, \

10.0.0.0/8 }"
ExtIF = "tl0"

bl ock in quick on $ExtIF from $NoRoutel Ps to any
bl ock out quick on $ExtIF fromany to $NoRout el Ps

Note that macros and lists ssimplify the pf . conf file, but the lines are actually expanded by pfctl(8) into multiple rules. So, the
above example actually expands to the following rules:

block in quick on tlO
block in quick on tlO
block in quick on tlO
block in quick on tlO
bl ock out quick on tlO0
bl ock out quick on tlO0
bl ock out quick on tlO0
bl ock out quick on tlO0

net from127.0.0.0/8 to any
net from 192.168.0.0/16 to any
net from 172.16.0.0/12 to any
net from10.0.0.0/8 to any

net fromany to 10.0.0.0/8

net fromany to 172.16.0.0/12
net fromany to 192.168.0.0/16
net fromany to 127.0.0.0/8

http://www.openbsd.org/fag/pf/shortcuts.html (2 of 5) [30/04/2007 10:39:14]

http://www.geektools.com/rfc/rfc1918.txt
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.0

PF: Shortcuts For Creating Rulesets

Asyou can see, the PF expansion is purely a convenience for the writer and maintainer of the pf . conf file, not an actual
simplification of the rules processed by pf(4).

Macros can be used to define more than just addresses and ports; they can be used anywhere in a PF rulesfile:

pre = "pass in quick on ep0 inet proto tcp from"
post = "to any port { 80, 6667 } keep state"

David's classroom
$pre 21.14.24.80 $post

N ck's hone
$pre 24.2.74.79 $post
$pre 24.2.74.178 $post

Expands to:

pass in quick on ep0 inet proto tcp from21.14.24.80 to any \
port = 80 keep state

pass in quick on ep0 inet proto tcp from21.14.24.80 to any \
port = 6667 keep state

pass in quick on epO inet proto tcp from?24.2.74.79 to any \
port = 80 keep state

pass in quick on epO inet proto tcp from24.2.74.79 to any \
port = 6667 keep state

pass in quick on ep0 inet proto tcp from?24.2.74.178 to any \
port = 80 keep state

pass in quick on ep0 inet proto tcp from?24.2.74.178 to any \
port = 6667 keep state

PF Grammar

Packet Filter's grammar is quite flexible which, in turn, allows for great flexibility in aruleset. PFis ableto infer certain keywords
which means that they don't have to be explicitly stated in arule, and keyword ordering is relaxed such that it isn't necessary to
memorize strict syntax.

Elimination of Keywords
To define a"default deny" policy, two rules are used:

block in all
bl ock out all

This can now be reduced to:
bl ock al |
When no direction is specified, PF will assume the rule applies to packets moving in both directions.

Similarly, the"from any to any"and"al | " clauses can beleft out of arule, for example:

http://www.openbsd.org/fag/pf/shortcuts.html (3 of 5) [30/04/2007 10:39:14]

http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+4.0

PF: Shortcuts For Creating Rulesets

block in on rl0 all
pass in quick log on rl0 proto tcp fromany to any port 22 keep state

can be simplified as:

block in on rl0
pass in quick log on rl0 proto tcp to port 22 keep state

Thefirst rule blocks all incoming packets from anywhere to anywhere on rl0, and the second rule passesin TCP traffic on rl0 to
port 22.

Ret ur n Simplification

A ruleset used to block packets and reply with a TCP RST or ICMP Unreachable response could look like this:

bl ock in all

bl ock return-rst in proto tcp all
bl ock return-icnp in proto udp all
bl ock out all

bl ock return-rst out proto tcp all
bl ock return-icnp out proto udp all

This can be simplified as:
bl ock return

When PF seesther et ur n keyword, it's smart enough to send the proper response, or no response at all, depending on the
protocol of the packet being blocked.

Keyword Ordering
The order in which keywords are specified is flexible in most cases. For example, arule written as:

pass in log quick on rl0 proto tcp to port 22\
flags S/ SA keep state queue ssh | abel ssh

Can also be written as:

pass in quick log on rl0 proto tcp to port 22\
gueue ssh keep state | abel ssh flags S/ SA

Other, similar variations will also work.

[Previous. Traffic Redirection (Port Forwarding)] [Contents] [Next: Runtime Options]

& www @openbsd.org

http://www.openbsd.org/fag/pf/shortcuts.html (4 of 5) [30/04/2007 10:39:14]

mailto:www@openbsd.org

PF: Shortcuts For Creating Rulesets

$OpenBSD: shortcuts.html,v 1.18 2006/11/01 01:56:01 joel Exp $

http://www.openbsd.org/fag/pf/shortcuts.html (5 of 5) [30/04/2007 10:39:14]

PF: Runtime Options

OpenBSD

[Previous. Shortcuts For Creating Rulesets] [Contents] [Next: Scrub (Packet Normalization)]

PF: Runtime Options

Options are used to control PF's operation. Options are specified in pf . conf usingtheset directive.

NOTE: In OpenBSD 3.7 and later, the behavior of runtime options has changed. Previously, once an option was set it was never reset to its default value, even if
the ruleset was reloaded. Starting in OpenBSD 3.7, whenever aruleset isloaded, the runtime options are reset to default values before the ruleset is parsed. Thus,
if an option is set and is then removed from the ruleset and the ruleset rel oaded, the option will be reset to its default value.

set bl ock-policy option
Sets the default behavior for filter rules that specify the bl ock action.
o drop - packet issilently dropped.
o return-aTCPRST packet is returned for blocked TCP packets and an ICM P Unreachable packet is returned for all others.
Note that individual filter rules can override the default response. The default isdr op.

set debug option
Set pf's debugging level.
o none - no debugging messages are shown.
o urgent - debug messages generated for serious errors.
o m sc - debug messages generated for various errors (e.g., to see status from the packet normalizer/scrubber and for state creation failures).
o | oud - debug messages generated for common conditions (e.g., to see status from the passive OS fingerprinter).
The defaultisur gent .

set fingerprints file
Setsthefile to load operating system fingerprints from. For use with passive OS fingerprinting. The defaultis/ et ¢/ pf . os.

set linmt option value
Set various limits on pf's operation.
o frags - maximum number of entriesin the memory pool used for packet reassembly (scrub rules). Default is 5000.
o src-nodes - maximum number of entriesin the memory pool used for tracking source | P addresses (generated by the st i cky- addr ess
and sour ce-t r ack options). Default is 20000.
o st at es - maximum number of entriesin the memory pool used for state table entries (filter rules that specify keep st at e). Default is
10000.

set loginterface interface
Sets the interface for which PF should gather statistics such as bytes in/out and packets passed/blocked. Statistics can only be gathered for one interface
at atime. Note that the mat ch, bad- of f set , etc., counters and the state table counters are recorded regardless of whether | ogi nt er f ace isset or
not. To turn this option off, set it to none. The default isnone.

set optim zation option
Optimize PF for one of the following network environments:
o normal - suitablefor ailmost al networks.
o hi gh-1 at ency - high latency networks such as satellite connections.
o aggr essi ve - aggressively expires connections from the state table. This can greatly reduce the memory requirements on a busy firewall at
therisk of dropping idle connections early.
o conservati ve - extremely conservative settings. This avoids dropping idle connections at the expense of greater memory utilization and
slightly increased processor utilization.
The defaultisnor mal .

set skip on interface
Skip all PF processingoni nt er f ace. This can be useful on loopback interfaces where filtering, normalization, queueing, etc, are not required. This
option can be used multiple times. By default this option is not set.

set state-policy option
Sets PF's behavior when it comes to keeping state. This behavior can be overridden on a per rule basis. See Keeping State.
o i f-bound - states are bound to the interface they're created on. If traffic matches a state table entry but is not crossing the interface recorded

http://www.openbsd.org/fag/pf/options.html (1 of 2) [30/04/2007 10:39:16]

http://www.openbsd.org/index.html

PF: Runtime Options

in that state entry, the match is rejected. The packet must then match afilter rule or will be dropped/rejected altogether.
o group-bound - same behavior asi f - bound except packets are allowed to cross interfaces in the same group, i.e., al ppp interfaces, etc.
o floati ng - states can match packets on any interface. Aslong as the packet matches a state entry and is passing in the same direction as it
was on the interface when the state was created, it does not matter what interface it's crossing, it will pass.
Thedefaultisf | oati ng.

set tineout option val ue

Set various timeouts (in seconds).
o interval - seconds between purges of expired states and packet fragments. The default is 10.
o frag - seconds before an unassembled fragment is expired. The default is 30.
o src. track - secondsto keep a source tracking entry in memory after the last state expires. The default is O (zero).

Example:

set
set
set
set
set
set
set
set
set

timeout interval 10

timeout frag 30

limt { frags 5000, states 2500 }
optim zation high-1|atency

bl ock-policy return

| oginterface dcO

fingerprints "/etc/pf.os.test"
skip on |00

state-policy if-bound

[Previous. Shortcuts For Creating Rulesets] [Contents] [Next: Scrub (Packet Normalization)]

& www@openbsd.org
$OpenBSD: options.html,v 1.15 2006/11/06 03:25:15 nick Exp $

http://www.openbsd.org/fag/pf/options.html (2 of 2) [30/04/2007 10:39:16]

mailto:www@openbsd.org

PF: Scrub (Packet Normalization)
OpenBSD

[Previous: Runtime Options] [Contents] [Next: Anchors]

PF. Scrub (Packet Normalization)

Table of Contents

. Introduction
. Options

Introduction

"Scrubbing” is the normalization of packets so there are no ambiguities in interpretation by the ultimate destination of the packet.
The scrub directive also reassembles fragmented packets, protecting some operating systems from some forms of attack, and drops
TCP packets that have invalid flag combinations. A ssimple form of the scrub directive:

scrub in all
Thiswill scrub all incoming packets on all interfaces.

One reason not to scrub on an interface isif oneis passing NFS through PF. Some non-OpenBSD platforms send (and expect)
strange packets -- fragmented packets with the "do not fragment" bit set, which are (properly) rejected by scr ub. Thiscan be
resolved by use of the no- df option. Another reason is some multi-player games have connection problems passing through PF
with scr ub enabled. Other than these somewhat unusual cases, scrubbing all packetsis highly recommended practice.

Thescr ub directive syntax is very similar to the filtering syntax which makes it easy to selectively scrub certain packets and not
others. The no keyword can be used in front of scr ub to specify packets that will not be scrubbed. Just aswith nat rules, the
first matching rule wins.

More on the principle and concepts of scrubbing can be found in the Network Intrusion Detection: Evasion, Traffic Normalization,

and End-to-End Protocol Semantics paper.

Options
Scr ub hasthe following options:

no- df
Clears the don't fragment bit from the | P packet header. Some operating systems are known to generate fragmented
packets with the don't fragment bit set. Thisis particularly true with NFS. Scr ub will drop such packets unless the no-

http://www.openbsd.org/fag/pf/scrub.html (1 of 2) [30/04/2007 10:39:19]

http://www.openbsd.org/index.html
http://www.icir.org/vern/papers/norm-usenix-sec-01-html/index.html
http://www.icir.org/vern/papers/norm-usenix-sec-01-html/index.html

PF: Scrub (Packet Normalization)

df option is specified. Because some operating systems generate don't fragment packets with a zero IP identification
header field, using no- df in conjunction withr andom i d is recommended.

randomid
Replaces the IP identification field of packets with random values to compensate for operating systems that use
predictable values. This option only applies to packets that are not fragmented after the optional packet reassembly.

mn-ttl num
Enforces aminimum Time To Live (TTL) in IP packet headers.

max- mes num
Enforces a maximum Maximum Segment Size (MSS) in TCP packet headers.

fragment reassenble
Buffersincoming packet fragments and reassembl es them into a complete packet before passing them to the filter
engine. The advantage is that filter rules only have to deal with complete packets and can ignore fragments. The
drawback is the increased memory needed to buffer packet fragments. Thisis the default behavior when no f r agnent
option is specified. Thisisalso theonly f r agnment option that works with NAT.

fragment crop
Causes duplicate fragments to be dropped and any overlaps to be cropped. Unlikef r agnent reassenbl e,
fragments are not buffered but are passed on as soon as they arrive.

fragment drop-ovl
Similar tof ragnment cr op except that al duplicate or overlapping fragments will be dropped as well as any further
corresponding fragments.

reassenbl e tcp
Statefully normalizes TCP connections. When using scr ub reassenbl e t cp, adirection (infout) may not be

specified. The following normalizations are performed:
o Neither side of the connection is allowed to reduce their IP TTL. Thisis done to protect against an attacker
sending a packet such that it reaches the firewall, affects the held state information for the connection, and
expires before reaching the destination host. The TTL of all packetsisraised to the highest value seen for the

connection.
o Modulate RFC1323 timestamps in TCP packet headers with arandom number. This can prevent an observer

from deducing the uptime of the host or from guessing how many hosts are behind aNAT gateway.

Examples:

scrub in on fxp0 all fragment reassenble min-ttl 15 max-nss 1400
scrub in on fxp0 all no-df
scrub on fxp0 all reassenble tcp

[Previous: Runtime Options] [Contents] [Next: Anchors]

& www @openbsd.org
$OpenBSD: scrub.html,v 1.14 2006/10/31 07:18:59 steven Exp $

http://www.openbsd.org/fag/pf/scrub.html (2 of 2) [30/04/2007 10:39:19]

http://www.geektools.com/rfc/rfc1323.txt
mailto:www@openbsd.org

OpenBSD

[Previous: Scrub (Packet Normalization)] [Contents] [Next: Packet Queueing and Prioritization]

PF: Anchors

Table of Contents

. Introduction
. Anchors

. Anchor Options
. Manipulating Anchors

Introduction

In addition to the main ruleset, PF can also evaluate sub rulesets. Since sub rulesets can be manipulated on the fly by using
pfctl(8), they provide a convenient way of dynamically altering an active ruleset. Whereas atable is used to hold adynamic list of

addresses, a sub ruleset is used to hold a dynamic set of filter, nat , r dr , and bi nat rules.
Sub rulesets are attached to the main ruleset by using anchors. There are four types of anchor rules:

. anchor nane - evaluates al filter rulesin the anchor nane

. bi nat-anchor nane - evaluatesal bi nat rulesin the anchor nane
. nat-anchor nane - evaluatesall nat rulesinthe anchor nane

. rdr-anchor name - evaluatesal r dr_rulesinthe anchor nane

Anchors can be nested which allows for sub rulesets to be chained together. Anchor rules will be evaluated relative to the anchor in
which they are loaded. For example, anchor rulesin the main ruleset will create anchor attachment points with the main ruleset as
their parent, and anchor rules loaded from fileswith thel oad anchor directive will create anchor points with that anchor as
their parent.

Anchors

An anchor is acollection of filter and/or translation rules, tables, and other anchors that has been assigned a name. When PF comes
acrossan anchor ruleinthe main ruleset, it will evaluate the rules contained within the anchor point asit evaluates rulesin the
main ruleset. Processing will then continue in the main ruleset unless the packet matches afilter rule that usesthe qui ck option or
atranglation rule within the anchor in which case the match will be considered final and will abort the evaluation of rulesin both
the anchor and the main rulesets.

For example:

http://www.openbsd.org/fag/pf/anchors.html (1 of 3) [30/04/2007 10:39:22]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.0

PF: Anchors

ext_if = "fxp0O"

bl ock on $ext_if al
pass out on $ext _if all keep state
anchor goodguys

This ruleset sets adefault deny policy on f xp0 for both incoming and outgoing traffic. Traffic isthen statefully passed out and an
anchor ruleis created named goodguys. Anchors can be populated with rules by two methods:

. usingal oad rule

. using pfctl(8)

Thel oad rule causes pf ct | to populate the specified anchor by reading rules from atext file. Thel oad rule must be placed
after theanchor rule. Example:

anchor goodguys
| oad anchor goodguys from "/etc/anchor-goodguys-ssh”

To add rules to an anchor using pf ct | , the following type of command can be used:

echo "pass in proto tcp from192.0.2.3 to any port 22" \
| pfctl -a goodguys -f -

Rules can also be saved and loaded from atext file:

cat >> /etc/anchor-goodguys-ww
pass in proto tcp from192.0.2.3 to any port 80
pass in proto tcp from192.0.2.4 to any port { 80 443 }

pfctl -a goodguys -f /etc/anchor-goodguys-ww

Filter and trand ation rules can be loaded into an anchor using the same syntax and options as rules loaded into the main ruleset.
One caveat, however, isthat any macros that are used must also be defined within the anchor itself; macros that are defined in the

parent ruleset are not visible from the anchor.
Since anchors can be nested, it's possible to specify that all child anchors within a specified anchor be evaluated:
anchor "spam *"

This syntax causes each rule within each anchor attached to the spamanchor to be evaluated. The child anchors will be evaluated
in alphabetical order but are not descended into recursively. Anchors are always evaluated relative to the anchor in which they're
defined.

Each anchor, as well asthe main ruleset, exist separately from the other rulesets. Operations done on one ruleset, such as flushing
the rules, do not affect any of the others. In addition, removing an anchor point from the main ruleset does not destroy the anchor
or any child anchors that are attached to that anchor. An anchor is not destroyed until it's flushed of all rules using pfctl(8) and

there are no child anchors within the anchor.

Anchor Options

http://www.openbsd.org/fag/pf/anchors.html (2 of 3) [30/04/2007 10:39:22]

http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.0

PF: Anchors

Optionadly, anchor rules can specify interface, protocol, source and destination address, tag, etc., using the same syntax as filter
rules. When such information is given, anchor rules are only processed if the packet matchesthe anchor rule's definition. For
example:

ext_if = "fxp0O"
bl ock on $ext if all

pass out on $ext _if all keep state
anchor ssh in on $ext_if proto tcp fromany to any port 22

Therulesin the anchor ssh are only evaluated for TCP packets destined for port 22 that comein on f xp0. Rules are then added
totheanchor like so:

echo "pass in from192.0.2.10 to any" | pfctl -a ssh -f -

So, even though the filter rule doesn't specify an interface, protocol, or port, the host 192.0.2.10 will only be permitted to connect
using SSH because of theanchor rul€'s definition.

Manipulating Anchors

Manipulation of anchorsis performed viapf ct | . It can be used to add and remove rules from an anchor without reloading the
main ruleset.

Tolist al the rulesin the anchor named ssh:
pfctl -a ssh -s rules
To flush al filter rules from the same anchor:
pfctl -a ssh -F rules

For afull list of commands, please see pfctl(8).

[Previous: Scrub (Packet Normalization)] [Contents] [Next: Packet Queueing and Prioritization]

& www @openbsd.org
$OpenBSD: anchors.html,v 1.20 2006/11/01 01:56:01 joel Exp $

http://www.openbsd.org/fag/pf/anchors.html (3 of 3) [30/04/2007 10:39:22]

http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.0
mailto:www@openbsd.org

PF: Packet Queueing and Prioritization
OpenBSD

[Previous: Anchors] [Contents] [Next: Address Pools and Load Balancing]

PF:. Packet Queueing and Prioritization

Table of Contents

. Queueing
. Schedulers
o Class Based Queueing
o Priority Queueing
o Random Early Detection
o Explicit Congestion Notification
. Configuring Queueing
. Assigning Traffic to a Queue
. Example#1: Small, Home Network
. Example #2: Company Network

Queueing

To queue something isto storeit, in order, while it awaits processing. In a computer network, when data packets are sent out from a host, they enter a queue
where they await processing by the operating system. The operating system then decides which queue and which packet(s) from that queue should be processed.
The order in which the operating system selects the packets to process can affect network performance. For example, imagine a user running two network
applications: SSH and FTP. Ideally, the SSH packets should be processed before the FTP packets because of the time-sensitive nature of SSH; when akey is
typed in the SSH client, an immediate response is expected, but an FTP transfer being delayed by a few extra seconds hardly bears any notice. But what happens
if the router handling these connections processes a large chunk of packets from the FTP connection before processing the SSH connection? Packets from the
SSH connection will remain in the queue (or possibly be dropped by the router if the queue isn't big enough to hold al of the packets) and the SSH session may
appear to lag or slow down. By modifying the queueing strategy being used, network bandwidth can be shared fairly between different applications, users, and
computers.

Note that queueing is only useful for packets in the outbound direction. Once a packet arrives on an interface in the inbound direction it's already too late to queue
it -- it's aready consumed network bandwidth to get to the interface that just received it. The only solution is to enable queueing on the adjacent router or, if the
host that received the packet is acting as arouter, to enable queueing on the internal interface where packets exit the router.

Schedulers

The scheduler is what decides which queues to process and in what order. By default, OpenBSD uses a First In First Out (FIFO) scheduler. A FIFO queue works
like the line-up at a supermarket's checkout -- the first item into the queue is the first processed. As new packets arrive they are added to the end of the queue. If
the queue becomes full, and here the analogy with the supermarket stops, newly arriving packets are dropped. Thisis known as tail-drop.

OpenBSD supports two additional schedulers:

. Class Based Queueing
. Priority Queueing

Class Based Queueing

Class Based Queueing (CBQ) is aqueueing algorithm that divides a network connection's bandwidth among multiple queues or classes. Each queue then has
traffic assigned to it based on source or destination address, port number, protocol, etc. A queue may optionally be configured to borrow bandwidth from its
parent queue if the parent is being under-utilized. Queues are aso given a priority such that those containing interactive traffic, such as SSH, can have their
packets processed ahead of queues containing bulk traffic, such as FTP.

http://www.openbsd.org/fag/pf/queueing.html (1 of 9) [30/04/2007 10:39:25]

http://www.openbsd.org/index.html

PF: Packet Queueing and Prioritization

CBQ queues are arranged in an hierarchical manner. At the top of the hierarchy is the root queue which defines the total amount of bandwidth available. Child
queues are created under the root queue, each of which can be assigned some portion of the root queue's bandwidth. For example, queues might be defined as
follows:

Root Queue (2Mbps)
Queue A (1Mbps)
Queue B (500K bps)
Queue C (500K bps)

In this case, the total available bandwidth is set to 2 megabits per second (Mbps). This bandwidth is then split among three child queues.

The hierarchy can further be expanded by defining queues within queues. To split bandwidth equally among different users and also classify their traffic so that
certain protocols don't starve others for bandwidth, a queueing structure like this might be defined:

Root Queue (2Mbps)
UserA (1Mbps)
ssh (50K bps)
bulk (950K bps)
UserB (1Mbps)
audio (250K bps)
bulk (750K bps)
http (100K bps)
other (650K bps)

Note that at each level the sum of the bandwidth assigned to each of the queues is not more than the bandwidth assigned to the parent queue.

A queue can be configured to borrow bandwidth from its parent if the parent has excess bandwidth available due to it not being used by the other child queues.
Consider a queueing setup like this:

Root Queue (2Mbps)
UserA (1IMbps)
ssh (100K bps)
ftp (900K bps, borrow)
UserB (1Mbps)

If trafficin thef t p queue exceeds 900K bps and traffic in the User A queueisless than IMbps (because the ssh queue is using less than its assigned 100K bps),
thef t p queue will borrow the excess bandwidth from User A. In thisway thef t p queueis able to use more than its assigned bandwidth when it faces overload.
When the ssh queue increases its |oad, the borrowed bandwidth will be returned.

CBQ assigns each queue a priority level. Queues with a higher priority are preferred during congestion over queues with alower priority as long as both queues
share the same parent (in other words, aslong as both queues are on the same branch in the hierarchy). Queues with the same priority are processed in around-
robin fashion. For example:

Root Queue (2Mbps)
UserA (1Mbps, priority 1)
ssh (100K bps, priority 5)
ftp (900K bps, priority 3)
UserB (1IMbps, priority 1)

CBQ will processthe User A and User B queuesin around-robin fashion -- neither queue will be preferred over the other. During the time when the User A
queue is being processed, CBQ will also process its child queues. In this case, the ssh queue has a higher priority and will be given preferential treatment over
thef t p queueif the network is congested. Note how thessh and f t p queues do not have their priorities compared to the User A and User B queues because
they are not all on the same branch in the hierarchy.

For amore detailed look at the theory behind CBQ, please see References on CBQ.

Priority Queueing

Priority Queueing (PRIQ) assigns multiple queues to a network interface with each queue being given aunique priority level. A queue with a higher priority is
always processed ahead of a queue with alower priority.

The queueing structure in PRIQ isflat -- you cannot define queues within queues. The root queue is defined, which sets the total amount of bandwidth that is
available, and then sub queues are defined under the root. Consider the following example:

http://www.openbsd.org/fag/pf/queueing.html (2 of 9) [30/04/2007 10:39:25]

http://www.icir.org/floyd/cbq.html

PF: Packet Queueing and Prioritization

Root Queue (2Mbps)
Queue A (priority 1)
Queue B (priority 2)
Queue C (priority 3)

The root queue is defined as having 2Mbps of bandwidth available to it and three subgqueues are defined. The queue with the highest priority (the highest priority
number) is served first. Once all the packets in that queue are processed, or if the queueis found to be empty, PRIQ moves onto the queue with the next highest
priority. Within a given queue, packets are processed in aFirst In First Out (FIFO) manner.

It isimportant to note that when using PRIQ you must plan your queues very carefully. Because PRIQ always processes a higher priority queue before alower
priority one, it's possible for ahigh priority queue to cause packetsin alower priority queue to be delayed or dropped if the high priority queueisreceiving a
constant stream of packets.

Random Early Detection

Random Early Detection (RED) is a congestion avoidance algorithm. Its job isto avoid network congestion by making sure that the queue doesn't become full. It
does this by continually calculating the average length (size) of the queue and comparing it to two thresholds, a minimum threshold and a maximum threshold. If
the average queue size is below the minimum threshold then no packets will be dropped. If the average is above the maximum threshold then all newly arriving
packets will be dropped. If the average is between the threshold values then packets are dropped based on a probability calculated from the average queue size. In
other words, as the average queue size approaches the maximum threshold, more and more packets are dropped. When dropping packets, RED randomly chooses
which connections to drop packets from. Connections using larger amounts of bandwidth have a higher probability of having their packets dropped.

RED is useful because it avoids a situation known as global synchronization and it is able to accommodate bursts of traffic. Global synchronization refersto a
loss of total throughput due to packets being dropped from several connections at the same time. For example, if congestion occurs at arouter carrying traffic for
10 FTP connections and packets from all (or most) of these connections are dropped (as is the case with FIFO queueing), overall throughput will drop sharply.
Thisisn't an ideal situation because it causes all of the FTP connections to reduce their throughput and also means that the network is no longer being used to its
maximum potential. RED avoids this by randomly choosing which connections to drop packets from instead of choosing all of them. Connections using large
amounts of bandwidth have a higher chance of their packets being dropped. In this way, high bandwidth connections will be throttled back, congestion will be
avoided, and sharp losses of overall throughput will not occur. In addition, RED is able to handle bursts of traffic because it starts to drop packets before the
queue becomes full. When a burst of traffic comes through there will be enough space in the queue to hold the new packets.

RED should only be used when the transport protocol is capable of responding to congestion indicators from the network. In most cases this means RED should
be used to queue TCP traffic and not UDP or ICMP traffic.

For amore detailed look at the theory behind RED, please see References on RED.

Explicit Congestion Notification

Explicit Congestion Notification (ECN) works in conjunction with RED to notify two hosts communicating over the network of any congestion along the
communication path. It does this by enabling RED to set aflag in the packet header instead of dropping the packet. Assuming the sending host has support for
ECN, it can then read this flag and throttle back its network traffic accordingly.

For more information on ECN, please refer to RFC 3168.

Configuring Queueing

Since OpenBSD 3.0 the Alternate Queueing (ALTQ) queueing implementation has been a part of the base system. Starting with OpenBSD 3.3 ALTQ has been

integrated into PF. OpenBSD's ALTQ implementation supports the Class Based Queueing (CBQ) and Priority Queueing (PRIQ) schedulers. It also supports
Random Early Detection (RED) and Explicit Congestion Notification (ECN).

Because ALTQ has been merged with PF, PF must be enabled for queueing to work. Instructions on how to enable PF can be found in Getting Started.

Queueing is configured in pf . conf . There are two types of directives that are used to configure queueing:

. al tq on - enables queueing on an interface, defines which scheduler to use, and creates the root queue
. queue - defines the properties of a child queue

The syntax for theal t g on directiveis:

altg on interface schedul er bandwidth bw glimt glim\

http://www.openbsd.org/fag/pf/queueing.html (3 of 9) [30/04/2007 10:39:25]

http://www.icir.org/floyd/red.html
http://www.rfc-editor.org/rfc/rfc3168.txt
http://www.csl.sony.co.jp/person/kjc/kjc/software.html#ALTQ
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5&manpath=OpenBSD+4.0

PF: Packet Queueing and Prioritization

tbrsize size queue { queue_list }

. i nterface - thenetwork interface to activate queueing on.

. schedul er -the queueing scheduler to use. Possible values are cbq and pr i g. Only one scheduler may be active on an interface at atime.

. bw- the total amount of bandwidth available to the scheduler. This may be specified as an absolute value using the suffixes b, Kb, Mo, and Gb to
represent bits, kilobits, megabits, and gigabits per second, respectively or as a percentage of thei nt er f ace bandwidth.

. gl i m- the maximum number of packets to hold in the queue. This parameter is optional. The default is 50.

. Si ze - thesize of the token bucket regulator in bytes. If not specified, the size is set based on thei nt er f ace bandwidth.

. queue_l i st -alist of child queuesto create under the root queue.

For example:

altg on fxp0 cbg bandwi dth 2Mb queue { std, ssh, ftp }
This enables CBQ on the f xp0 interface. The total bandwidth availableis set to 2Mbps. Three child queues are defined: st d, ssh, and f t p.
The syntax for the queue directiveis:

queue nane [on interface] bandwidth bw [priority pri] [qglimt glin] \
schedul er (sched_options) { queue_list }

. nane - the name of the queue. This must match the name of one of the queues defined intheal t @ on directivesqueue_lI i st . For cbq it can dso
match the name of aqueuein aprevious queue directive'squeue_I i st . Queue names must be no longer than 15 characters.

. i nterface - thenetwork interface that the queueis valid on. This value is optional, and when not specified, will make the queue valid on all
interfaces.

. bw- the total amount of bandwidth available to the queue. This may be specified as an absolute value using the suffixes b, Kb, Mo, and Gb to represent
bits, kilobits, megabits, and gigabits per second, respectively or as a percentage of the parent queue's bandwidth. This parameter is only applicable when
using the cbq scheduler. If not specified, the default is 100% of the parent queue's bandwith.

. pri -thepriority of the queue. For cbq the priority rangeisOto 7 and for pr i g therangeis O to 15. Priority O isthe lowest priority. When not
specified, adefault of 1 is used.

. gl i m-the maximum number of packets to hold in the queue. When not specified, adefault of 50 is used.

. schedul er - the scheduler being used, either cbq or pri g. Must be the same as the root queue.

. sched_opti ons - further options may be passed to the scheduler to control its behavior:

o def aul t - defines a default queue where all packets not matching any other queue will be queued. Exactly one default queueis required.
o red - enables Random Early Detection (RED) on this queue.
o ri o -enables RED with IN/OUT. In this mode, RED will maintain multiple average queue lengths and multiple threshold values, one for
each IP Quality of Service level.
o ecn - enables Explicit Congestion Notification (ECN) on this queue. Ecn impliesr ed.
o bor r ow- the queue can borrow bandwidth from its parent. This can only be specified when using the cbg scheduler.
. queue_l i st -alist of child queuesto create under this queue. A queue_I i st may only be defined when using the cbq scheduler.

Continuing with the example above:

queue std bandwi dth 50% cbq(defaul t)

gueue ssh bandw dth 25%{ ssh_login, ssh_bulk }
queue ssh_login bandwi dth 25% priority 4 chqg(ecn)
gueue ssh_bul k bandwi dth 75% cbhq(ecn)

queue ftp bandw dth 500Kb priority 3 cbq(borrow red)

Here the parameters of the previously defined child queues are set. The st d queue is assigned a bandwidth of 50% of the root queue's bandwidth (or IMbps) and
is set as the default queue. The ssh queueis assigned 25% of the root queue's bandwidth (500kb) and also contains two child queues, ssh_I ogi n and
ssh_bul k. Thessh_I ogi n queueisgiven ahigher priority than ssh_bul k and both have ECN enabled. Thef t p queueis assigned a bandwidth of

500K bps and given apriority of 3. It can also borrow bandwidth when extrais available and has RED enabled.

NOTE: Each child queue definition has its bandwidth specified. Without specifying the bandwidth, PF will give the queue 100% of the parent queue's
bandwidth. In this situation, that would cause an error when the rules are loaded since if there's a queue with 100% of the bandwidth, no other queue can be
defined at that level since thereis no free bandwidth to alocate to it.

Assigning Traffic to a Queue

To assign traffic to aqueue, the queue keyword is used in conjunction with PF's filter rules. For example, consider a set of filtering rules containing aline such
as:

pass out on fxp0 fromany to any port 22

http://www.openbsd.org/fag/pf/queueing.html (4 of 9) [30/04/2007 10:39:25]

PF: Packet Queueing and Prioritization

Packets matching that rule can be assigned to a specific queue by using the queue keyword:

pass out on fxp0 fromany to any port 22 queue ssh
When using the queue keyword with bl ock directives, any resulting TCP RST or ICMP Unreachable packets are assigned to the specified queue.
Note that queue designation can happen on an interface other than the one defined inthe al t @ on directive:

altg on fxp0 cbg bandw dth 2My queue { std, ftp }
gueue std bandw dth 500Kb chq(default)
queue ftp bandwi dth 1.5M

pass in on dcO fromany to any port 21 queue ftp

Queueing is enabled on f xp0 but the designation takes place on dcO. If packets matching the pass rule exit from interface f xp0, they will be queued in the
f t p queue. Thistype of queueing can be very useful on routers.

Normally only one queue name is given with the queue keyword, but if a second name is specified that queue will be used for packets with a Type of Service
(ToS) of low-delay and for TCP ACK packets with no data payload. A good example of thisis found when using SSH. SSH login sessions will set the ToS to |ow-
delay while SCP and SFTP sessions will not. PF can use this information to queue packets belonging to alogin connection in a different queue than non-login
connections. This can be useful to prioritize login connection packets over file transfer packets.

pass out on fxp0 fromany to any port 22 queue(ssh_bul k, ssh_l ogin)

This assigns packets belonging to SSH login connectionsto the ssh_| ogi n queue and packets belonging to SCP and SFTP connectionsto thessh_bul k
queue. SSH login connections will then have their packets processed ahead of SCP and SFTP connections because the ssh_| ogi n queue has a higher priority.

Assigning TCP ACK packets to a higher priority queue is useful on asymmetric connections, that is, connections that have different upload and download
bandwidths such as ADSL lines. With an ADSL line, if the upload channel is being maxed out and a download is started, the download will suffer because the
TCP ACK packetsit needs to send will run into congestion when they try to pass through the upload channel. Testing has shown that to achieve the best results,
the bandwidth on the upload queue should be set to a value less than what the connection is capable of. For instance, if an ADSL line has amax upload of

640K bps, setting the root queue's bandwi dt h to avalue such as 600K b should result in better performance. Trial and error will yield the best bandwi dt h
Setting.

When using the queue keyword with rulesthat keep st at e such as:

pass in on fxp0 proto tcp fromany to any port 22 flags S/SA\
keep state queue ssh

PF will record the queue in the state table entry so that packets traveling back out f xp0 that match the stateful connection will end up in the ssh queue. Note
that even though the queue keyword is being used on arule filtering incoming traffic, the goal is to specify a queue for the corresponding outgoing traffic; the
above rule does not queue incoming packets.

Example #1: Small, Home Network

[Alice] [Charlie]

B e e dcO [OpenBSD] fxp0 -------- (Internet)

In this example, OpenBSD is being used on an Internet gateway for a small home network with three workstations. The gateway is performing packet filtering
and NAT duties. The Internet connection isviaan ADSL line running at 2Mbps down and 640K bps up.

The queueing policy for this network:

. Reserve 80K bps of download bandwidth for Bob so he can play his online games without being lagged by Alice or Charlie's downloads. Allow Bob to
use more than 80K bps when it's available.

. Interactive SSH and instant message traffic will have a higher priority than regular traffic.

. DNS queries and replies will have the second highest priority.

http://www.openbsd.org/fag/pf/queueing.html (5 of 9) [30/04/2007 10:39:25]

http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt

PF: Packet Queueing and Prioritization

. Outgoing TCP ACK packets will have a higher priority than all other outgoing traffic.

Below isthe ruleset that meets this network policy. Note that only the pf . conf directives that apply directly to the above policy are present; nat , r dr , options,
etc., are not shown.

enabl e queueing on the external interface to control traffic going to
the Internet. use the priq scheduler to control only priorities. set
the bandwidth to 610Kbps to get the best performance out of the TCP
ACK queue.

altg on fxp0 priqg bandwi dth 610Kb queue { std_out, ssh_imout, dns_out, \
tcp_ack_out }

define the paraneters for the child queues.

std_out - the standard queue. any filter rule bel ow that does not
explicitly specify a queue will have its traffic added
to this queue.

ssh_i m out - interactive SSH and various instant nmessage traffic.

dns_out - DNS queri es.

tcp_ack_out - TCP ACK packets with no data payl oad.

gueue std_out prig(default)

queue ssh_imout priority 4 priqg(red)

gueue dns_out priority 5

queue tcp_ack_out priority 6

enabl e queueing on the internal interface to control traffic comng in
fromthe Internet. use the cbqg scheduler to control bandw dth. nax

bandwi dth is 2Mops.

altq on dcO chg bandwi dth 2Mo queue { std_in, ssh_imin, dns_in, bob_in }

define the paraneters for the child queues.

std_in - the standard queue. any filter rule bel ow that does not
explicitly specify a queue will have its traffic added
to this queue.

ssh_imin - interactive SSH and various instant nmessage traffic.

dns_in - DNS replies.

bob_in - bandwi dth reserved for Bob's workstation. allow himto
bor r ow.

queue std_in bandwi dt h 1. 6Mo cbhq(defaul t)
queue ssh_im.in bandwi dth 200Kb priority 4
queue dns_in bandwi dt h 120Kb priority 5
queue bob_in bandwi dt h 80Kb chq(borrow)

... inthe filtering section of pf.conf
alice = "192.168.0. 2"

bob = "192.168.0. 3"

charlie = "192.168. 0. 4"

| ocal _net = "192. 168. 0. 0/ 24"
ssh_ports ="{ 22 2022 }"

i mports = "{ 1863 5190 5222 }"

filter rules for fxp0O inbound
bl ock in on fxp0 all

filter rules for fxpO outbound

bl ock out on fxpO all

pass out on fxp0O inet proto tcp from (fxp0) to any flags S/ SA \
keep state queue(std_out, tcp_ack_out)

pass out on fxpO inet proto { udp icnp } from (fxp0) to any keep state

pass out on fxpO inet proto { tcp udp } from (fxp0) to any port domain \
keep state queue dns_out

pass out on fxpO inet proto tcp from (fxp0) to any port $ssh ports \
flags S/ SA keep state queue(std_out, ssh_imout)

pass out on fxpO inet proto tcp from (fxp0) to any port $imports \
flags S/ SA keep state queue(ssh_imout, tcp_ack_out)

filter rules for dcO inbound
bl ock in on dcO all

http://www.openbsd.org/fag/pf/queueing.html (6 of 9) [30/04/2007 10:39:25]

PF: Packet Queueing and Prioritization

pass in on dcO from $l ocal net

filter rules for dcO outbound

bl ock out on dcO al

pass out on dcO fromany to $l ocal _net

pass out on dcO proto { tcp udp } fromany port donmain to $local _net \
queue dns_in

pass out on dcO proto tcp fromany port $ssh ports to $l ocal net \
queue(std_in, ssh_im.in)

pass out on dcO proto tcp fromany port $imports to $l ocal _net \
queue ssh_imin

pass out on dcO fromany to $bob queue bob_in

Example #2: Company Network

(IT Dept) [Boss's PC]

T1
Lk S R dcO [OpenBSD] fxp0 -------- (Internet)
| fxpl
[cowrl] [WAV] /

In this example, the OpenBSD host is acting as a firewall for a company network. The company runs a WWW server in the DMZ portion of their network where
customers upload their websites via FTP. The I T department has their own subnet connected to the main network, and the boss has a PC on his desk that's used
for email and surfing the web. The connection to the Internet isviaa T1 line running at 1.5Mbps in both directions. All other network segments are using Fast
Ethernet (100Mbps).

The network administrator has decided on the following policy:

. Limit al traffic between the WWW server and the Internet to 500K bps in each direction.
o Allot 250Kbpsto HTTP traffic.
o Allot 250K bpsto "other" traffic (i.e., non-HTTP traffic)
o Allow either queue to borrow up to the full 500K bps.
o Give HTTP traffic between the WWW server and the Internet a higher priority than other traffic between the WWW server and the Internet
(such as FTP uploads).
. Traffic between the WWW server and the internal network can use up to the full 200Mbps that the network offers.
. Reserve 500Kbps for the IT Dept network so they can download the latest software updates in atimely manner. They should be able to use more than
500K bps when extra bandwidth is available.
. Givetraffic between the boss's PC and the Internet a higher priority than other traffic to/from the Internet.

Below isthe ruleset that meets this network policy. Note that only the pf . conf directives that apply directly to the above policy are present; nat , r dr , options,
etc., are not shown.

enabl e queueing on the external interface to queue packets going out
to the Internet. use the chqg scheduler so that the bandw dth use of
each queue can be controlled. the max outgoi ng bandwi dth is 1.5Mops.

altq on fxp0 cbg bandwi dth 1.5M queue { std_ext, www_ext, boss_ext }

define the paraneters for the child queues.

std_ext - the standard queue. also the default queue for

outgoing traffic on fxpO.

ww_ext - container queue for WAV server queues. limt to

500Kbps.

www_ext_http - http traffic fromthe WW server; higher priority.
ww _ext_msc - all non-http traffic fromthe WW server.

boss_ext - traffic comng fromthe boss's conputer.

queue std_ext bandwi dt h 500Kb chq(default borrow)

gueue www_ext bandw dt h 500Kb { www_ext_http, ww_ext_m sc }

queue ww_ext _http bandwi dth 50% priority 3 chq(red borrow)
queue www_ext _m sc bandwi dth 50% priority 1 cbhqg(borrow)
gueue boss_ext bandwi dt h 500Kb priority 3 cbqg(borrow)

http://www.openbsd.org/fag/pf/queueing.html (7 of 9) [30/04/2007 10:39:25]

PF: Packet Queueing and Prioritization

enabl e queueing on the internal interface to control traffic com ng
fromthe Internet or the DMZ. use the chg scheduler to control the
bandw dth of each queue. bandwi dth on this interface is set to the
maxi mum traffic coming fromthe DMZ will be able to use all of this
bandwi dth while traffic coming fromthe Internet will be linmted to

1.0Mops (because 0.5Mops (500Kbps) is being allocated to fxpl).
altq on dcO chg bandwi dt h 100% queue { net_int, ww_int }

define the paraneters for the child queues.

net _int - container queue for traffic fromthe Internet. bandw dth
is 1.0Mops.

std_int - the standard queue. also the default queue for outgoing
traffic on dcO.

it_int - traffic to the I T Dept network; reserve them 500Kbps.

boss_int - traffic to the boss's PC, assign a higher priority.

wwv_i nt - traffic fromthe WMWVserver in the DMVZ; full speed.
queue net _int bandwi dth 1.0My { std_int, it_int, boss_int }

queue std_int bandw dth 250Kb cbhq(default borrow)
queue it_int bandwi dt h 500Kb cbqg(borrow)
queue boss_int bandwi dth 250Kb priority 3 chq(borrow)

queue www_i nt bandwi dt h 99Mb cbq(red borrow)

enabl e queueing on the DVZ interface to control traffic destined for

the WAWVserver. chbg will be used on this interface since detail ed

control of bandwi dth is necessary. bandwi dth on this interface is set
to the maximum traffic fromthe internal network will be able to use
all of this bandwi dth while traffic fromthe Internet will be Iimted
to 500Kbps.

altg on fxpl cbqg bandw dth 100% queue { internal _dne, net_dne }

define the paraneters for the child queues.

internal _dnz - traffic fromthe internal network.

net _dne - container queue for traffic fromthe Internet.
net_dnz_http - http traffic; higher priority.

net _dnez_misc - all non-http traffic. this is also the default queue.

queue internal _dne bandw dt h 99Mb cbq(borrow)

gqueue net _dne bandw dt h 500Kb { net _dnez_http, net_dnz_m sc }

queue net_dnez_http bandw dth 50% priority 3 cbg(red borrow)
queue net_dnz_m sc bandwi dth 50% priority 1 chq(default borrow)

... in the filtering section of pf.conf

mai n_net = "192.168. 0. 0/ 24"

it_net = "192.168. 1. 0/ 24"

int_nets = "{ 192.168.0.0/24, 192.168.1.0/24 }"
dnz_net = "10.0.0.0/ 24"

boss = "192.168. 0. 200"

wwser v = "10.0.0. 100"

default deny
bl ock on { fxp0, fxpl, dcO } all

filter rules for fxpO inbound

pass in on fxp0 proto tcp fromany to $wwserv port { 21, \
> 49151 } flags S/ SA keep state queue www_ext _mi sc

pass in on fxp0 proto tcp fromany to $wwserv port 80 \
flags S/ SA keep state queue ww_ext_http

filter rules for fxp0 outbound
pass out on fxp0 from $int_nets to any keep state
pass out on fxpO from $boss to any keep state queue boss_ext

filter rules for dcO inbound

pass in on dcO from $int_nets to any keep state

pass in on dcO from $it_net to any queue it_int

pass in on dcO from $boss to any queue boss_int

pass in on dcO proto tcp from$int_nets to $wwserv port { 21, 80,
> 49151 } flags S/ SA keep state queue www_i nt

filter rules for dcO out bound

http://www.openbsd.org/fag/pf/queueing.html (8 of 9) [30/04/2007 10:39:25]

\

PF: Packet Queueing and Prioritization

pass out on dcO fromdcO to $int_nets

filter rules for fxpl inbound
pass in on fxpl proto { tcp, udp } from $wwserv to any port 53 \
keep state

filter rules for fxpl outbound

pass out on fxpl proto tcp fromany to $wwserv port { 21, \
> 49151 } flags S/ SA keep state queue net_dnz_nmi sc

pass out on fxpl proto tcp fromany to $wwmwserv port 80 \
flags S/ SA keep state queue net_dnz_http

pass out on fxpl proto tcp from$int_nets to $wwserv port { 80, \
21, > 49151 } flags S/ SA keep state queue internal _dnz

[Previous: Anchors] [Contents] [Next: Address Pools and L oad Balancing]

g www @openbsd.org
$OpenBSD: queueing.html,v 1.30 2006/11/01 01:56:01 joel Exp $

http://www.openbsd.org/fag/pf/queueing.html (9 of 9) [30/04/2007 10:39:25]

mailto:www@openbsd.org

PF: Address Pools and Load Balancing
OpenBSD

[Previous: Packet Queueing and Prioritization] [Contents] [Next: Packet Tagging]

PF. Address Pools and Load Balancing

Table of Contents

. Introduction
. NAT Address Pool
. Load Balancing Incoming Connections
. Load Balancing Outgoing Traffic
o Ruleset Example

Introduction

An address pool is a supply of two or more addresses whose use is shared among a group of users. An address pool can be specified as the redirection addressin
r dr rules, asthetrandation addressin nat rules, and asthe target addressinr out e-t o, r epl y-t 0, and dup- t o filter options.

There are four methods for using an address pool:

. bi t mask - graftsthe network portion of the pool address over top of the address that is being modified (source address for nat rules, destination
addressfor r dr rules). Example: if the address pool is 192.0.2.1/24 and the address being modified is 10.0.0.50, then the resulting address will be
192.0.2.50. If the address pool is 192.0.2.1/25 and the address being modified is 10.0.0.130, then the resulting address will be 192.0.2.2.

. random- randomly selects an address from the pool.

. sour ce- hash - uses a hash of the source address to determine which address to use from the pool. This method ensures that a given source addressis
always mapped to the same pool address. The key that is fed to the hashing algorithm can optionally be specified after the sour ce- hash keyword in
hex format or as a string. By default, pfctl(8) will generate arandom key every time the ruleset is loaded.

. round- r obi n - loops through the address pool in sequence. Thisis the default method and also the only method allowed when the address pool is
specified using atable.

Except for ther ound- r obi n method, the address pool must be expressed as a CIDR (Classless Inter-Domain Routing) network block. Ther ound- r obi n
method will accept multiple individual addresses using alist or table.

Thest i cky- addr ess option can be used with ther andomand r ound- r obi n pool typesto ensure that a particular source address is always mapped to the
same redirection address.

NAT Address Pool

An address pool can be used as the tranglation addressin nat _rules. Connections will have their source address translated to an address from the pool based on

the method chosen. This can be useful in situations where PF is performing NAT for avery large network. Since the number of NATed connections per
trandation address is limited, adding additional translation addresses will allow the NAT gateway to scale to serve alarger number of users.

In this example apool of two addressesis being used to translate outgoing packets. For each outgoing connection PF will rotate through the addresses in a round-
robin manner.

nat on $ext_if inet fromany to any -> { 192.0.2.5, 192.0.2.10 }

One drawback with this method is that successive connections from the same internal address will not always be trandated to the same trand ation address. This
can cause interference, for example, when browsing websites that track user logins based on | P address. An alternate approach isto usethe sour ce- hash
method so that each internal addressis always trandlated to the same translation address. To do this, the address pool must be a CIDR network block.

http://www.openbsd.org/fag/pf/pools.html (1 of 3) [30/04/2007 10:39:27]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.0
http://public.pacbell.net/dedicated/cidr.html
http://public.pacbell.net/dedicated/cidr.html

PF: Address Pools and Load Balancing

nat on $ext _if inet fromany to any -> 192.0. 2.4/ 31 source-hash

Thisnat rule uses the address pool 192.0.2.4/31 (192.0.2.4 - 192.0.2.5) as the translation address for outgoing packets. Each internal address will always be
trandated to the same translation address because of the sour ce- hash keyword.

Load Balance Incoming Connections

Address pools can also be used to |oad balance incoming connections. For example, incoming web server connections can be distributed across a web server
farm:

web_servers = "{ 10.0.0.10, 10.0.0.11, 10.0.0.13 }"

rdr on $ext _if proto tcp fromany to any port 80 -> $web_servers \
round-robi n sticky-address

Successive connections will be redirected to the web servers in around-robin manner with connections from the same source being sent to the same web server.
This "sticky connection” will exist aslong as there are states that refer to this connection. Once the states expire, so will the sticky connection. Further
connections from that host will be redirected to the next web server in the round robin.

Load Balance Outgoing Traffic

Address pools can be used in combination with the r out e- t o filter option to load balance two or more Internet connections when a proper multi-path routing
protocol (like BGP4) isunavailable. By using r out e-t o with ar ound- r obi n address pool, outbound connections can be evenly distributed among multiple

outbound paths.

One additional piece of information that's needed to do thisisthe |P address of the adjacent router on each Internet connection. Thisisfedtother out e-t o
option to control the destination of outgoing packets.

The following example balances outgoing traffic across two Internet connections:

| an_net = "192.168. 0.0/ 24"
int_if = "dc0"

ext_ifl = "fxp0"

ext_if2 = "fxpl"

ext _gwl = "68.146.224.1"
ext_gw2 = "142.59.76.1"

pass in on $int_if route-to \
{ ($ext_if1 $ext_gwl), ($ext_if2 $ext_gw2) } round-robin \
from $lan_net to any keep state

Ther out e- t o option is used on traffic coming in on the internal interface to specify the outgoing network interfaces that traffic will be balanced across along
with their respective gateways. Note that the r out e- t 0 option must be present on each filter rule that traffic is to be balanced for. Return packets will be routed
back to the same external interface that they exited (thisis done by the ISPs) and will be routed back to the internal network normally.

To ensure that packets with a source address belonging to $ext _i f 1 are always routed to $ext _gwl (and similarly for $ext _i f 2 and $ext _gw2), the
following two lines should be included in the ruleset:

pass out on $ext_ifl route-to ($ext_if2 $ext_gw2) from $ext_if2 \
to any

pass out on $ext_if2 route-to ($ext_ifl $ext_gwl) from $ext_if1l \
to any

Finally, NAT can also be used on each outgoing interface:

nat on $ext_ifl from$lan_net to any -> ($ext_if1l)
nat on $ext _if2 from$lan_net to any -> ($ext _if2)

A complete example that load balances outgoing traffic might look something like this:

http://www.openbsd.org/fag/pf/pools.html (2 of 3) [30/04/2007 10:39:27]

http://www.rfc-editor.org/rfc/rfc1771.txt

PF: Address Pools and Load Balancing

| an_net = "192.168. 0. 0/ 24"
int_if = "dcO"

ext _ifl = "fxp0O"

ext_if2 = "fxpl"

ext_gwl = "68.146.224. 1"
ext_gw2 = "142.59.76.1"

nat outgoing connections on each internet interface
nat on $ext_ifl from $l an_net to any -> ($ext_if1)
nat on $ext_if2 from $l an_net to any -> ($ext_if2)

default deny
block in fromany to any
bl ock out fromany to any

pass all outgoing packets on internal interface
pass out on $int_if fromany to $l an_net
pass in quick any packets destined for the gateway itself
pass in quick on $int_if from$lan_net to $int_if
| oad bal ance outgoing tcp traffic frominternal network.
pass in on $int_if route-to \
{ ($ext_if1 $ext_gwl), ($ext_if2 $ext_gw2) } round-robin \
proto tcp from$lan_net to any flags S/ SA nodul ate state
| oad bal ance outgoing udp and icnp traffic frominternal network
pass in on $int_if route-to \
{ ($ext_ifl $ext_gwl), ($ext_if2 $ext_gw2) } round-robin \
proto { udp, icnp } from$lan_net to any keep state

general "pass out" rules for external interfaces

pass out on $ext_ifl proto tcp fromany to any flags S/ SA nodul ate state
pass out on $ext _ifl proto { udp, icnp } fromany to any keep state

pass out on $ext_if2 proto tcp fromany to any flags S/ SA nodul ate state
pass out on $ext_if2 proto { udp, icnp } fromany to any keep state

route packets fromany IPs on $ext_ifl to $ext_gwl and the sane for
$ext_if2 and $ext _gw2

pass out on $ext_ifl route-to ($ext_if2 $ext_gw2) from $ext_if2 to any
pass out on $ext _if2 route-to ($ext_ifl $ext_gwl) from $ext_ifl to any

[Previous. Packet Queueing and Prioritization] [Contents] [Next: Packet Tagging]

a www @openbsd.org
$OpenBSD: pools.html,v 1.18 2006/11/01 01:56:01 joel Exp $

http://www.openbsd.org/fag/pf/pools.html (3 of 3) [30/04/2007 10:39:27]

mailto:www@openbsd.org

PF: Packet Tagging (Policy Filtering)
OpenBSD

[Previous: Address Pools and Load Balancing] [Contents] [Next: Logging

PF. Packet Tagging (Policy Filtering)

Table of Contents

. Introduction

. Assigning Tags to Packets
. Checking for Applied Tags
. Padlicy Filtering

. Tagaing Ethernet Frames

Introduction

Packet tagging is away of marking packets with an internal identifier that can later be used in filter and trandation rule criteria. With tagging, it's possible to do
such things as create "trusts" between interfaces and determine if packets have been processed by trandlation rules. It's also possible to move away from rule-

based filtering and to start doing policy-based filtering.

Assigning Tags to Packets

To add atag to a packet, use thet ag keyword:
pass in on $int_if all tag | NTERNAL_NET keep state
Thetag | NTERNAL_NET will be added to any packet which matches the above rule.

A tag can also be assigned using a macro. For instance:

name = "| NTERNAL_NET"
pass in on $int_if all tag $nane keep state

There are a set of predefined macros which can aso be used.

. $i f - Theinterface

. $srcaddr - Source |P address

. $dst addr - Destination IP address

. $srcport - The source port specification

. $dst port - Thedestination port specification
. $pr ot o - The protocol

. $nr - The rule number

These macros are expanded at ruleset load time and NOT at runtime.
Tagging follows these rules:

. Tagsare"sticky". Once atag is applied to a packet by amatching ruleit is never removed. It can, however, be replaced with a different tag.
. Because of atag's"stickiness', a packet can have atag even if the last matching rule doesn't use thet ag keyword.

. A packet isonly ever assigned amaximum of onetag at atime.

. Tagsareinternal identifiers. Tags are not sent out over the wire.

http://www.openbsd.org/fag/pf/tagging.html (1 of 3) [30/04/2007 10:39:29]

http://www.openbsd.org/index.html

PF: Packet Tagging (Policy Filtering)

Take the following ruleset as an example.

(1) pass in on $int_if tag | NT_NET keep state

(2) pass in quick on $int_if proto tcp to port 80 tag \
I NT_NET_HTTP keep state

(3) pass in quick on $int_if from 192.168.1.5 keep state

. Packetscominginon $i nt _i f will beassigned atag of | NT_NET by rule #1.

. TCP packetscominginon $i nt _i f and destined for port 80 will first be assigned atag of | NT_NET by rule #1. That tag will then be replaced with
the | NT_NET_HTTP tag by rule #2.

. Packetscominginon $i nt _i f from 192.168.1.5 will be tagged one of two ways. If the packet is destined for TCP port 80 it will match rule #2 and be
tagged with | NT_NET_HTTP. Otherwise, the packet will match rule #3 but will be tagged with | NT_NET. Because the packet matches rule #1, the
I NT_NET tag is applied and is not removed unless a subsequently matching rule specifies atag (thisis the "stickiness' of atag).

In addition to applying tags with filter rules, thenat , r dr , and bi nat trandation rules can also apply tags to packets by using thet ag keyword.

Checking for Applied Tags

To check for previously applied tags, usethet agged keyword:
pass out on $ext _if tagged | NT_NET keep state

Outgoing packetson $ext _i f must be tagged with the | NT_NET tag in order to match the above rule. Inverse matching can also be done by using the !
operator:

pass out on $ext_if ! tagged WFI_NET keep state

Trandation rules (nat /r dr /bi nat) can also usethet agged keyword to match packets.
Policy Filtering

Policy filtering takes a different approach to writing afilter ruleset. A policy is defined which setsthe rules for what types of traffic is passed and what types are
blocked. Packets are then classified into the policy based on the traditional criteria of source/destination | P address/port, protocol, etc. For example, examine the
following firewall policy:

. Traffic from theinternal LAN to the Internet is permitted (LAN_INET) and must be translated (LAN_INET_NAT)
. Traffic from theinternal LAN to the DMZ is permitted (LAN_DMZ)

. Traffic from the Internet to serversin the DMZ is permitted (INET_DMZ)

. Traffic from the Internet that's being redirected to spamd(8) is permitted (SPAMD)

. All other traffic is blocked
Note how the policy covers all traffic that will be passing through the firewall. The item in parenthesis indicates the tag that will be used for that policy item.
Filter and tranglation rules now need to be written to classify packetsinto the policy.

rdr on $ext_if proto tcp from<spand> to port sntp \
tag SPAMD -> 127.0.0.1 port 8025
nat on $ext_if tag LAN I NET_NAT tagged LAN I NET -> ($ext _if)

bl ock all

pass in on $int_if from®$int_net tag LAN | NET keep state

pass in on $int_if from$int_net to $dnz_net tag LAN DMZ keep state

pass in on $ext_if proto tcp to $ww_server port 80 tag | NET_DVZ keep state

Now the rules that define the policy are set.

pass in quick on $ext_if tagged SPAMD keep state

pass out quick on $ext _if tagged LAN_ | NET_NAT keep state
pass out quick on $dnz_if tagged LAN DVZ keep state

pass out quick on $dnz_if tagged | NET_DWZ keep state

http://www.openbsd.org/fag/pf/tagging.html (2 of 3) [30/04/2007 10:39:29]

http://www.openbsd.org/cgi-bin/man.cgi?query=spamd&sektion=8&manpath=OpenBSD+4.0

PF: Packet Tagging (Policy Filtering)

Now that the whole ruleset is setup, changes are a matter of modifying the classification rules. For example, if a POP3/SMTP server is added to the DMZ, it will
be necessary to add classification rules for POP3 and SMTP traffic, like so:

mai | _server = "192.168.0. 10"

pass in on $ext_if proto tcp to $mail_server port { snmtp, pop3 } \
tag | NET_DVZ keep state

Email traffic will now be passed as part of the INET_DMZ policy entry.

The complete ruleset:

macr os

int_if = "dc0"

dnz_if = "dc1"

ext_if = "ep0"

int_net = "10.0.0. 0/ 24"
dnz_net = "192.168. 0.0/ 24"
ww_server = "192.168.0.5"

mai | _server = "192.168. 0. 10"
tabl e <spand> persist file "/etc/spamrers"

classification -- classify packets based on the defined firewall
policy.
rdr on $ext _if proto tcp from <spand> to port sntp \
tag SPAMD -> 127.0.0.1 port 8025
nat on $ext_if tag LAN_I NET_NAT tagged LAN_ I NET -> ($ext _if)

bl ock al |
pass in on $int_if from$int_net tag LAN | NET keep state
pass in on $int_if from$int_net to $dnz_net tag LAN DVZ keep state
pass in on $ext_if proto tcp to $ww _server port 80 tag | NET_DVZ keep state
pass in on $ext_if proto tcp to $mail_server port { snmtp, pop3 } \
tag | NET_DVZ keep state

policy enforcement -- pass/block based on the defined firewall policy.
pass in quick on $ext_if tagged SPAMD keep state
pass out quick on $ext_if tagged LAN_| NET_NAT keep state

pass out quick on $dnz_if tagged LAN DWZ keep state
pass out quick on $dnmz_if tagged | NET_DWZ keep state

Tagging Ethernet Frames

Tagging can be performed at the Ethernet level if the machine doing the tagging/filtering is also acting as a bridge(4). By creating bridge(4) filter rules that use
thet ag keyword, PF can be made to filter based on the source or destination MAC address. Bridge(4) rules are created using the brconfig(8) command.
Example:

brconfig bridgeO rule pass in on fxp0 src O:de:ad:be:ef:0 \
tag USERL

And thenin pf . conf :
pass in on fxp0 tagged USERL

[Previous: Address Pools and Load Balancing] [Contents] [Next: Loggding]

& www @openbsd.org
$OpenBSD: tagging.html,v 1.15 2006/11/10 17:16:15 joel Exp $

http://www.openbsd.org/fag/pf/tagging.html (3 of 3) [30/04/2007 10:39:29]

http://www.openbsd.org/cgi-bin/man.cgi?query=bridge&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=brconfig&sektion=8&manpath=OpenBSD+4.0
mailto:www@openbsd.org

OpenBSD

[Previous: Packet Tagging] [Contents] [Next: Performance]

PF: Logging

Table of Contents

. Introduction

. Logging Packets

. Readingalog File

. Filtering Log Output

. Packet Logging Through Syslog

Introduction

Packet logging in PF is done by pflogd(8) which listens on the pf | 0g0 interface and writes packets to alog file (normally
Ivar/log/pflog) in tcpdump(8) binary format. Filter rules that specify thel og orl og (al |) keyword are logged in this manner.

Logging Packets

In order to log packets passing through PF, the | og keyword must be used within NAT/rdr and filter rules. Note that PF can only
log packets that it's blocking or passing; you cannot specify arule that only logs packets.

Thel og keyword causes all packets that match the rule to be logged. In the case where the rule is creating state, only the first
packet seen (the one that causes the state to be created) will be logged.

The options that can be given to the | og keyword are:

al |
Causes all matching packets, not just theinitial packet, to be logged. Useful for rules that create state.

user
Causes the UNIX user-id and group-id that owns the socket that the packet is sourced from/destined to (whichever
socket islocal) to be logged along with the standard log information.

Options are given in parenthesis after the | og keyword; multiple options can be separated by a comma or space.

pass in log (all) on $ext _if inet proto tcp to $ext_if port 22 keep state

Log all incoming packets destined to port 22.

http://www.openbsd.org/fag/pf/logging.html (1 of 4) [30/04/2007 10:39:31]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pflogd&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pflog&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=tcpdump&sektion=8&manpath=OpenBSD+4.0

PF: Logging

Reading a Log File
Thelog file written by pflogd isin binary format and cannot be read using atext editor. Tcpdump must be used to view the log.
To view thelog file:

tcpdunmp -n -e -ttt -r /var/log/pflog

Note that using tcpdump(8) to watch the pflog file does not give areal-time display. A real-time display of logged packetsis
achieved by using the pf | 0g0 interface:

tcpdump -n -e -ttt -i pflog0

NOTE: When examining the logs, special care should be taken with tcpdump's verbose protocol decoding (activated viathe - v
command line option). Tcpdump's protocol decoders do not have a perfect security history. At least in theory, a delayed attack
could be possible viathe partial packet payloads recorded by the logging device. It is recommended practice to move the log files
off of the firewall machine before examining them in this way.

Additional care should also be taken to secure access to the logs. By default, pflogd will record 96 bytes of the packet in the log
file. Accessto the logs could provide partia accessto sensitive packet payloads (like telnet(1) or ftp(1) usernames and passwords).

Filtering Log Output

Because pflogd logs in tcpdump binary format, the full range of tcpdump features can be used when reviewing the logs. For
example, to only see packets that match a certain port:

tcpdunmp -n -e -ttt -r /var/log/pflog port 80
This can be further refined by limiting the display of packets to a certain host and port combination:

tcpdunmp -n -e -ttt -r /var/log/pflog port 80 and host 192.168.1.3
The same idea can be applied when reading from the pf | ogO interface:

tcpdunmp -n -e -ttt -i pflog0 host 192.168.4.2

Note that this has no impact on which packets are logged to the pflogd log file; the above commands only display packets as they
are being logged.

In addition to using the standard tcpdump(8) filter rules, the tcpdump filter language has been extended for reading pflogd outpuit:

. i p-addressfamily is|Pv4.

. i p6 - address family is1Pv6.

. on int - packet passed through the interface int.

. ifnane int -sameason int.

. rul eset nane - theruleset/anchor that the packet was matched in.

. rul enum num- thefilter rule that the packet matched was rule number num.

http://www.openbsd.org/fag/pf/logging.html (2 of 4) [30/04/2007 10:39:31]

http://www.openbsd.org/cgi-bin/man.cgi?query=telnet&sektion=1&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=ftp&sektion=1&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=tcpdump&sektion=8&manpath=OpenBSD+4.0

PF: Logging

. action act -theaction taken on the packet. Possible actions are pass and bl ock.

. reason res -thereasonthat act i on wastaken. Possible reasons are mat ch, bad- of f set , f ragnent , short,
normal i ze, menory, bad-ti mest anp, congesti on,i p-opti on, prot o- cksum st at e- mi smat ch,
state-insert,state-limt,src-linit,andsynproxy.

. i nbound - packet was inbound.

. out bound - packet was outbound.

Example:
tcpdump -n -e -ttt -i pflogO0 i nbound and action bl ock and on w 0

This display thelog, in real-time, of inbound packets that were blocked on the wiO interface.

Packet Logging Through Syslog

In many situationsit is desirable to have the firewall logs available in ASCII format and/or to send them to aremote logging
server. All this can be accomplished with a small shell script, some minor changes of the OpenBSD configuration files, and
syslogd(8), the logging daemon. Syslogd logsin ASCII and is also able to log to aremote logging server.

Create the following script:
/etc/pflogrotate

#!/bin/sh

PFLOG=/ var /| og/ pfl og

FI LE=/ var/ | og/ pfl og5ni n. $(dat e " +%r%ia %')

kill -ALRM $(cat /var/run/pflogd. pid)

if [-r $PFLOG] && [$(stat -f % $PFLOG -gt 24]; then
nmv $PFLOG $FI LE

kill -HUP $(cat /var/run/pflogd. pid)
tcpdunp -n -e -ttt -r $FILE | logger -t pf -p local0.info
rm $FI LE

fi

Edit root's cron job:

crontab -u root -e

Add the following two lines:

rotate pf log file every 5 ninutes
0-59/5 * * * * [pbin/sh /etc/pflogrotate

Add thefollowing lineto/ et ¢/ sysl og. conf :

local 0.info [var/| og/ pfl og. txt

If you al'so want to log to aremote log server, add the line;

local 0.info @ysl ogger

http://www.openbsd.org/fag/pf/logging.html (3 of 4) [30/04/2007 10:39:31]

http://www.openbsd.org/cgi-bin/man.cgi?query=syslogd&sektion=8&manpath=OpenBSD+4.0

PF: Logging

Make sure host syslogger has been defined in the hosts(5) file.

Createthefile/ var /| og/ pfl og. t xt toalow syslog to log to that file, and give it the same permissions as the pflog file.

touch /var/l og/pflog.txt
chnmod 600 /var/|1 og/ pfl og.txt

Make syslogd notice the changes by restarting it:

kill -HUP $(cat /var/run/sysl og. pid)

All logged packetsare now sentto/ var /| og/ pfl og. t xt . If the second lineis added they are sent to the remote logging host
syslogger aswell.

Thescript / et ¢/ pf | ogr ot at e now processes and then deletes/ var / | og/ pf | og so rotation of pf | og by newsyslog(8) is

no longer necessary and should be disabled. However, / var / | og/ pf | 0og. t xt replaces/ var /| og/ pf | og and rotation of it
should be activated. Change/ et ¢/ newsysl og. conf asfollows:

#/ var /| og/ pfl og 600 3 250 * ZB /var/run/ pfl ogd. pi d
/var /| og/ pfl og. txt 600 7 * 24

PF will now login ASCII to/ var /| og/ pfl og. t xt . If soconfiguredin/ et c/ sysl og. conf, it will also log to aremote
server. Thelogging is not immediate but it can take up to about 5-6 minutes (the cron job interval) before the logged packets
appear in thefile.

[Previous: Packet Tagging] [Contents] [Next: Performance]

} www @openbsd.org
$OpenBSD: logging.html,v 1.31 2006/11/01 01:56:01 joel Exp $

http://www.openbsd.org/fag/pf/logging.html (4 of 4) [30/04/2007 10:39:31]

http://www.openbsd.org/cgi-bin/man.cgi?query=hosts&sektion=5&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=newsyslog&sektion=8&manpath=OpenBSD+4.0
mailto:www@openbsd.org

OpenBSD

[Previous: Logging] [Contents] [Next: |ssues with FTP]

PF: Performance

"How much bandwidth can PF handle?"
"How much computer do | need to handle my Internet connection?"

There are no easy answers to those questions. For some applications, a 486/66 with a pair of good |SA NICs could filter and NAT
close to 5SMbps, but for other applications a much faster machine with much more efficient PCI NICs might end up being
insufficient. The real question is not the number of bits per second but rather the number of packets per second and the complexity
of theruleset.

PF performance is determined by several variables:

. Number of packets per second. Almost the same amount of processing needs to be done on a packet with 1500 byte
payload as for a packet with a one byte payload. The number of packets per second determines the number of times the
state table and, in case of no match there, filter rules have to be evaluated every second, determining the effective
demand on the system.

. Performance of your system bus. The ISA bus has a maximum bandwidth of 8MB/sec, and when the processor is
accessing it, it hasto slow itself to the effective speed of a 80286 running at 8MHz, no matter how fast the processor
really is. The PCI bus has a much greater effective bandwidth, and has less impact on the processor.

. Efficiency of your network card. Some network adapters are just more efficient than others. Realtek 8139 (rl(4)) based

cards tend to be relatively poor performers while Intel 21143 (dc(4)) based cards tend to perform very well. For

maximum performance, consider using gigabit Ethernet cards, even if not connecting to gigabit networks, as they have
much more advanced buffering.

. Complexity and design of your ruleset. The more complex your ruleset, the slower it is. The more packets that are
filtered by keep st at e and qui ck rules, the better the performance. The more lines that have to be evaluated for
each packet, the lower the performance.

. Barely worth mentioning: CPU and RAM. As PF is akernel-based process, it will not use swap space. So, if you have
enough RAM, it runs, if not, it panics due to pool(9) exhaustion. Huge amounts of RAM are not needed -- 32MB should
be plenty for close to 30,000 states, which isalot of statesfor asmall office or home application. Most users will find a
"recycled” computer more than enough for a PF system -- a 300MHz system will move a very large number of packets
rapidly, at least if backed up with good NICs and a good ruleset.

People often ask for PF benchmarks. The only benchmark that countsis your system performance in your environment. A
benchmark that doesn't replicate your environment will not properly help you plan your firewall system. The best course of action
isto benchmark PF for yourself under the same, or as close as possible to, network conditions that the actual firewall would
experience running on the same hardware the firewall would use.

PF isused in some very large, high-traffic applications, and the developers are "power users' of PF. Odds are, it will do very well
for you.

[Previous: Logging] [Contents] [Next: Issues with FTP]

http://www.openbsd.org/fag/pf/perf.ntml (1 of 2) [30/04/2007 10:39:34]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=rl&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=dc&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pool&sektion=9&manpath=OpenBSD+4.0

PF: Performance

} www @openbsd.org
$OpenBSD: perf.html,v 1.20 2006/11/01 01:56:01 joel Exp $

http://www.openbsd.org/fag/pf/perf.html (2 of 2) [30/04/2007 10:39:34]

mailto:www@openbsd.org

OpenBSD

[Previous: Performance] [Contents] [Next: Authpf: User Shell for Authenticating Gateways]

PF: Issues with FTP

Table of Contents

. FTP Modes

. FTPClient Behind the Firewall

. PF"Sdf-Protecting” an FTP Server

. FTP Server Protected by an External PF Firewall Running NAT
. MoreInformation on FTP

. Proxying TFTP

FTP Modes

FTPisaprotocol that dates back to when the Internet was a small, friendly collection of computers and everyone knew everyone
else. At that time the need for filtering or tight security wasn't necessary. FTP wasn't designed for filtering, for passing through
firewalls, or for working with NAT.

You can use FTP in one of two ways: passive or active. Generally, the choice of active or passive is made to determine who has
the problem with firewalling. Realistically, you will have to support both to have happy users.

With active FTP, when a user connects to aremote FTP server and requests information or afile, the FTP server makes a new
connection back to the client to transfer the requested data. Thisis called the data connection. To start, the FTP client chooses a
random port to receive the data connection on. The client sends the port number it chose to the FTP server and then listens for an
incoming connection on that port. The FTP server then initiates a connection to the client's address at the chosen port and transfers
the data. Thisis a problem for users attempting to gain access to FTP servers from behind a NAT gateway. Because of how NAT
works, the FTP server initiates the data connection by connecting to the external address of the NAT gateway on the chosen port.
The NAT machine will receive this, but because it has no mapping for the packet in its state table, it will drop the packet and won't
deliver it to the client.

With passive mode FTP (the default mode with OpenBSD's ftp(1) client), the client requests that the server pick arandom port to

listen on for the data connection. The server informs the client of the port it has chosen, and the client connects to this port to
transfer the data. Unfortunately, thisis not always possible or desirable because of the possibility of afirewall in front of the FTP
server blocking the incoming data connection. OpenBSD's ftp(1) uses passive mode by default; to force active mode FTP, use the -
A flag to ftp, or set passive mode to "off" by issuing the command "passi ve of f" atthe"f t p>" prompt.

FTP Client Behind the Firewall

Asindicated earlier, FTP does not go through NAT and firewalls very well.

http://www.openbsd.org/fag/pf/ftp.html (1 of 4) [30/04/2007 10:39:35]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=ftp&sektion=1&manpath=OpenBSD+4.0

PF: Issues with FTP

Packet Filter provides a solution for this situation by redirecting FTP traffic through an FTP proxy server. This process acts to
"guide" your FTP traffic through the NAT gateway/firewall, by actively adding needed rules to PF system and removing them
when done, by means of the PF anchors system. The FTP proxy used by PFin OpenBSD 3.9 and later is ftp-proxy(8). (note:

earlier versions of OpenBSD used a different proxy of the same name, which is documented in OpenBSD 3.8's ftp-proxy(8)v3.8).

To activateit, put something like thisin the NAT section of pf . conf :

nat - anchor "ftp-proxy/*"

rdr-anchor "ftp-proxy/*"

rdr on $int_if proto tcp fromany to any port 21 -> 127.0.0.1 \
port 8021

Thefirst two lines are a couple anchors which are used by ftp-proxy to add rules on-the-fly as needed to manage your FTP traffic.
Thelast line redirects FTP from your clients to the ftp-proxy(8) program, which is listening on your machine to port 8021.

Y ou aso need an anchor in the rules section:
anchor "ftp-proxy/*"

Hopefully it is apparent the proxy server has to be started and running on the OpenBSD box. Thisis done by inserting the
followinglinein/etc/rc. conf. | ocal :

ftpproxy_flags=""
The ftp-proxy program can be started as root to activate it without a reboot.
ftp-proxy listens on port 8021, the same port the abover dr statement is sending FTP traffic to.

To enable active mode connections, you need the '-r' switch on ftp-proxy(8) (for this you had to run the old proxy with "-u root").

PF "Self-Protecting” an FTP Server

In this case, PF is running on the FTP server itself rather than a dedicated firewall computer. When servicing a passive FTP
connection, FTP will use arandomly chosen, high TCP port for incoming data. By default, OpenBSD's native FTP server ftpd(8)

uses the range 49152 to 65535. Obvioudly, these must be passed through the filter rules, along with port 21 (the FTP control port):

pass in on $ext if proto tcp fromany to any port 21 keep state
pass in on $ext _if proto tcp fromany to any port > 49151 \
keep state

Note that if you desire, you can tighten up that range of ports considerably. In the case of the OpenBSD ftpd(8) program, that is
done using the sysctl(8) variablesnet . i net . i p. porthifirst andnet.inet.ip.porthilast.

FTP Server Protected by an External PF Firewall Running NAT

In this case, the firewall must redirect traffic to the FTP server in addition to not blocking the required ports. In order to
accomplish this, we turn again to ftp-proxy(8).

http://www.openbsd.org/fag/pf/ftp.html (2 of 4) [30/04/2007 10:39:35]

http://www.openbsd.org/cgi-bin/man.cgi?query=ftp-proxy&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=ftp-proxy&sektion=8&manpath=OpenBSD+3.8
http://www.openbsd.org/cgi-bin/man.cgi?query=ftpd&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=ftpd&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=8&manpath=OpenBSD+4.0

PF: Issues with FTP

ftp-proxy(8) can be runin amode that causesit to forward all FTP connectionsto a specific FTP server. Basically we'll setup the
proxy to listen on port 21 of the firewall and forward all connections to the back-end server.

Edit/ etc/rc. conf. | ocal andaddthefollowing:

ftpproxy flags="-R 10.10.10.1 -p 21 -b 192.168.0. 1"

Here 10.10.10.1 isthe I P address of the actual FTP server, 21 isthe port we want ftp-proxy(8) to listen on, and 192.168.0.1 is the
address on the firewall that we want the proxy to bind to.

Now for the pf.conf rules:

"192.168.0. 1"
"10.10. 10. 1"

ext_ip
ftp_ip

nat - anchor "ftp-proxy/*"
nat on $ext _if inet from$int_if -> ($ext _if)
rdr-anchor "ftp-proxy/*"

pass in on $ext _if inet proto tcp to $ext_ip port 21 \
flags S/ SA keep state

pass out on $int _if inet proto tcp to $ftp_ip port 21\
user proxy flags S/ SA keep state

anchor "ftp-proxy/*"

Here we allow the connection inbound to port 21 on the external interface as well as the corresponding outbound connection to the
FTP server. The "user proxy" addition to the outbound rule ensures that only connections initiated by ftp-proxy(8) are permitted.

Note that if you want to run ftp-proxy(8) to protect an FTP server aswell as allow clientsto FTP out from behind the firewall that
two instances of ftp-proxy will be required.

More Information on FTP

More information on filtering FTP and how FTP works in general can be found in this whitepaper:

. FTPReviewed

Proxying TFTP

Trivia File Transfer Protocol (TFTP) suffers from some of the same limitations as FTP does when it comes to passing through a
firewall. Luckily, PF has a helper proxy for TFTP called tftp-proxy(8).

tftp-proxy(8) is setup in much the same way as ftp-proxy(8) was in the FTP Client Behind the Firewall section above.

nat on $ext_if from$int_if -> ($ext_if)

rdr-anchor "tftp-proxy/*"

rdr on $int_if proto udp from$int_if to port tftp ->\
127.0.0.1 port 6969

anchor "tftp-proxy/*"

http://www.openbsd.org/fag/pf/ftp.html (3 of 4) [30/04/2007 10:39:35]

http://www.pintday.org/whitepapers/ftp-review.shtml
http://www.openbsd.org/cgi-bin/man.cgi?query=tftp-proxy&sektion=8&manpath=OpenBSD+4.0

PF: Issues with FTP

The rules above allow TFTP outbound from the internal network to TFTP servers on the external network.

Thelast step isto enable tftp-proxy in inetd.conf(5) so that it listens on the same port that the r dr rule specified above, in this case
6969.

127.0.0. 1: 6969 dgram udp wait root /usr/libexec/tftp-proxy tftp-proxy
Unlike ftp-proxy(8), tftp-proxy(8) is spawned from inetd.

[Previous: Performance] [Contents] [Next: Authpf: User Shell for Authenticating Gateways]

& www@openbsd.org
$OpenBSD: ftp.html v 1.23 2006/11/01 01:56:01 joel Exp $

http://www.openbsd.org/fag/pf/ftp.html (4 of 4) [30/04/2007 10:39:36]

http://www.openbsd.org/cgi-bin/man.cgi?query=inetd.conf&sektion=5&manpath=OpenBSD+4.0
mailto:www@openbsd.org

PF: Authpf: User Shell for Authenticating Gateways
OpenBSD

[Previous: Issues with FTP] [Contents] [Next: Firewall Redundancy with CARP and pfsync]

PF. Authpf: User Shell for Authenticating Gateways

Table of Contents

. Introduction

. Configuration
o Enabling Authpf
o Linking Authpf into the Main Ruleset

o Configuring L oaded Rules

o Access Control Lists

o Displaying aLogin Message

o Assigning Authpf as a User's Shell
. Creating an authpf Login Class
. Seeing WhoisLogged In
. Example

Introduction

Authpf(8) isauser shell for authenticating gateways. An authenticating gateway is just like aregular network gateway (a.k.a. arouter) except that users must first

authenticate themselves to the gateway before it will allow traffic to pass through it. When auser's shell isset to/ usr / sbi n/ aut hpf (i.e, instead of setting a
user's shell to ksh(1), csh(1), etc) and the user logsin using SSH, authpf will make the necessary changes to the active pf(4) ruleset so that the user's traffic is

passed through the filter and/or translated using Network Address Translation or redirection. Once the user logs out or their session is disconnected, authpf will
remove any rules loaded for the user and kill any stateful connections the user has open. Because of this, the ability of the user to pass traffic through the gateway
only exists while the user keeps their SSH session open.

Authpf loads a user'sfilter/NAT rules into a unique anchor point. The anchor is named by combining the user's UNIX username and the authpf process-id into the

format "user nane(Pl D) ". Each users anchor is stored within the aut hpf anchor which isin turn anchored to the main ruleset. The "fully qualified anchor
path" then becomes:

mai n_r ul eset/ aut hpf/ user name(Pl D)
The rules that authpf loads can be configured on a per-user or global basis.
Example uses of authpf include:

. Requiring users to authenticate before allowing Internet access.

. Granting certain users -- such as administrators -- access to restricted parts of the network.

. Allowing only known users to access the rest of the network or Internet from awireless network segment.

. Allowing workers from home, on the road, etc., access to resources on the company network. Users outside the office can not only open access to the
company network, but can also be redirected to particular resources (e.g., their own desktop) based on the username they authenticate with.

. Inasetting such asalibrary or other place with public Internet terminals, PF may be configured to allow limited Internet access to guest users. Authpf
can then be used to provide registered users with complete access.

Authpf logs the username and | P address of each user who authenticates successfully as well as the start and end times of their login session via syslogd(8). By
using this information, an administrator can determine who was logged in when and al so make users accountable for their network traffic.

Configuration

http://www.openbsd.org/fag/pf/authpf.html (1 of 5) [30/04/2007 10:39:38]

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=authpf&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=ksh&sektion=1&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=csh&sektion=1&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=syslogd&sektion=8&manpath=OpenBSD+4.0

PF: Authpf: User Shell for Authenticating Gateways
The basic steps needed to configure authpf are outlined here. For a complete description of authpf configuration, please refer to the authpf man page.

Enabling Authpf

Authpf will not run if the config file/ et ¢/ aut hpf / aut hpf . conf isnot present. Even if thefileis empty (zero size), it must still be present or authpf will
exit immediately after a user authenticates successfully.

The following configuration directives can be placed in aut hpf . conf :

. anchor =nane - Use the specified anchor name instead of "authpf".
. tabl e=nane - Use the specified table name instead of "authpf_users".

Linking Authpf into the Main Ruleset
Authpf islinked into the main ruleset by using anchor rules:

nat - anchor "aut hpf/*"
rdr-anchor "authpf/*"

bi nat - anchor "aut hpf/*"
anchor "aut hpf/*"

Wherever theanchor rules are placed within the ruleset is where PF will branch off from the main ruleset to evaluate the authpf rules. It's not necessary for all
four anchor rulesto be present; for example, if authpf hasn't been setup to load any nat rules, thenat - anchor rule can be omitted.

Configuring Loaded Rules
Authpf loads its rules from one of two files:

. letc/aut hpf/users/ $USER/ aut hpf . rul es
. letc/aut hpf/authpf.rul es

Thefirst file contains rules that are only loaded when the user $USER (which is replaced with the user's username) logs in. The per-user rule configuration is used
when a specific user -- such as an administrator -- requires a set of rulesthat is different than the default set. The second file contains the default rules which are
loaded for any user that doesn't have their own aut hpf . r ul es file. If the user-specific file exists, it will override the default file. At least one of the files must
exist or authpf will not run.

Filter and translation rules have the same syntax asin any other PF ruleset with one exception: Authpf allows for the use of two predefined macros:

. $user _i p - the P address of thelogged in user
. $user _i d - the username of the logged in user

It's recommended practice to use the $user _i p macro to only permit traffic through the gateway from the authenticated user's computer.

In addition to the $user _i p macro, authpf will make use of theaut hpf _user s table (if it exists) for storing the | P addresses of all authenticated users. Be
sure to define the table before using it:

tabl e <aut hpf _users> persi st
pass in on $ext_if proto tcp from <authpf_users> \
to port sntp flags S/ SA keep state

This table should only be used in rules that are meant to apply to all authenticated users.
Access Control Lists

Users can be prevented from using authpf by creating afileinthe/ et ¢/ aut hpf / banned/ directory and naming it after the username that is to be denied
access. The contents of the file will be displayed to the user before authpf disconnects them. This provides a handy way to notify the user of why they're
disallowed access and who to contact to have their access restored.

Conversdly, it's also possible to alow only specific users access by placing usernamesinthe/ et ¢/ aut hpf / aut hpf . al | owfile. If the

http://www.openbsd.org/fag/pf/authpf.html (2 of 5) [30/04/2007 10:39:38]

http://www.openbsd.org/cgi-bin/man.cgi?query=authpf&sektion=8&manpath=OpenBSD+4.0

PF: Authpf: User Shell for Authenticating Gateways

/ et ¢/ aut hpf/ aut hpf . al | owfile does not exist or "* " is entered into the file, then authpf will permit access to any user who successfully logsin via SSH
aslong as they are not explicitly banned.

If authpf is unable to determine if ausernameis allowed or denied, it will print a brief message and then disconnect the user. An entry in
/ et ¢/ aut hpf/ banned/ awaysoverridesanentry in/ et ¢/ aut hpf/ aut hpf. al | ow.

Displaying a Login Message
Whenever auser successfully authenticates to authpf, a greeting is printed that indicates that the user is authenticated.
Hello charlie. You are authenticated fromhost "64.59.56.140"

This message can be supplemented by putting a custom message in/ et ¢/ aut hpf / aut hpf . message. The contents of thisfile will be displayed after the
default welcome message.

Assigning Authpf as a User's Shell

In order for authpf to work it must be assigned as the user's login shell. When the user successfully authenticates to sshd(8), authpf will be executed as the user's
shell. It will then check if the user is allowed to use authpf, load the rules from the appropriate file, etc.

There are a couple ways of assigning authpf as a user's shell:

1. Manually for each user using chsh(1), vipw(8), useradd(8), usermod(8), etc.
2. By assigning usersto alogin class and changing the classsshel | optionin/ et c/ | ogi n. conf .

Creating an authpf Login Class

When using authpf on a system that has regular user accounts and authpf user accounts, it can be beneficial to create a separate login class for the authpf users.
This alows for certain changes to those accounts to be made on a global basis and also alows different policies to be placed on regular accounts and authpf
accounts. Some examples of what policies can be set:

. shell - Specify auser'slogin shell. This can be used to force auser's shell to aut hpf regardless of the entry in the passwd(5) database.
. welcome - Specify which motd(5) file to display when auser logsin. Thisis useful for displaying messages that are relevant only to authpf users.

Login classes are created in the login.conf(5) file. An example login class for authpf users:

aut hpf:\
:wel come=/ et c/ not d. aut hpf:\
:shel | =/ usr/ sbi n/ aut hpf:\
‘tc=defaul t:

Users are assigned to alogin class by editing the cl ass field of the user's passwd(5) database entry. One way to do thisis with the chsh(1) command.

Seeing Who is Logged In

Once a user has successfully logged in and authpf has adjusted the PF rules, authpf changes its processtitle to indicate the username and | P address of the logged
in user:

ps -ax | grep authpf
23664 p0 Is+ 0:00. 11 -authpf: charlie@92.168.1.3 (authpf)

Heretheuser char | i e islogged in from the machine 192.168.1.3. By sending a SIGTERM signal to the authpf process, the user can be forcefully logged out.
Authpf will also remove any rules loaded for the user and kill any stateful connections the user has open.

kill -TERM 23664

Example

http://www.openbsd.org/fag/pf/authpf.html (3 of 5) [30/04/2007 10:39:38]

http://www.openbsd.org/cgi-bin/man.cgi?query=sshd&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=chsh&sektion=1&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=vipw&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=useradd&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=usermod&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=login.conf&sektion=5&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=passwd&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=motd&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=login.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=chsh&sektion=1

PF: Authpf: User Shell for Authenticating Gateways

Authpf is being used on an OpenBSD gateway to authenticate users on awireless network which is part of alarger campus network. Once a user has
authenticated, assuming they're not on the banned list, they will be permitted to SSH out and to browse the web (including secure web sites) in addition to
accessing either of the campus DNS servers.

The/ et c/ aut hpf/ aut hpf. r ul es file contains the following rules:

wifi if = "wio"

pass in quick on $wifi_if proto tcp from$user_ip to port { ssh, http, \
https } flags S/ SA keep state

The administrative user char | i e needs to be able to access the campus SMTP and POP3 serversin addition to surfing the web and using SSH. The following
rulesaresetupin/ et ¢/ aut hpf/ users/ charl i e/ aut hpf. rul es:

wifi_if ="wO0"
snt p_server = "10.0.1.50"
pop3_server = "10.0.1.51"

pass in quick on $wifi_if proto tcp from $user_ip to $sntp_server \
port smp flags S/ SA keep state

pass in quick on $wifi _if proto tcp from $user_ip to $pop3_server \
port pop3 flags S/ SA keep state

pass in quick on $wifi _if proto tcp from $user_ip to port { ssh, http, \
https } flags S/ SA keep state

The main ruleset -- located in/ et ¢/ pf . conf -- issetup asfollows:

macr os
wifi_if ="wo0"
ext_if = "fxp0"

dns_servers = "{ 10.0.1.56, 10.0.2.56 }"
t abl e <aut hpf __users> persi st
scrub in all

filter
bl ock drop all

pass out quick on $ext_if inet proto tcp from\
{ $wifi _if:network, $ext if } flags S/ SA nodul ate state
pass out quick on $ext_if inet proto { udp, icnp } from\
{ $wifi_if:network, $ext_if } keep state

pass in quick on $wifi _if inet proto tcp from$wifi_if:network to $wifi _if \
port ssh flags S/ SA keep state

pass in quick on $wifi _if inet proto { tcp, udp } from <authpf_users> \
to $dns_servers port dommin keep state
anchor "authpf/*" in on $wfi _if

The ruleset is very simple and does the following:

. Block everything (default deny).

. Passoutgoing TCP, UDP, and ICMP traffic on the external interface from the wireless network and from the gateway itself.

. Passincoming SSH traffic from the wireless network destined for the gateway itself. Thisruleis necessary to permit usersto log in.
. Passincoming DNS requests from all authenticated authpf users to the campus DNS servers.

. Create the anchor point "authpf" for incoming traffic on the wireless interface.

http://www.openbsd.org/fag/pf/authpf.html (4 of 5) [30/04/2007 10:39:38]

PF: Authpf: User Shell for Authenticating Gateways

The idea behind the main ruleset isto block everything and allow the least amount of traffic through as possible. Traffic is free to flow out on the external
interface but is blocked from entering the wirel ess interface by the default deny policy. Once a user authenticates, their traffic is permitted to passin on the
wirelessinterface and to then flow through the gateway into the rest of the network. The qui ck keyword is used throughout so that PF doesn't have to evaluate
each named ruleset when anew connection passes through the gateway.

[Previous:. Issues with FTP] [Contents] [Next: Firewall Redundancy with CARP and pfsync]

& www @openbsd.org
$0penBSD: authpf.html,v 1.19 2006/11/01 01:56:01 joel Exp $

http://www.openbsd.org/fag/pf/authpf.html (5 of 5) [30/04/2007 10:39:38]

mailto:www@openbsd.org

PF: Firewall Redundancy with CARP and pfsync

OpenBSD

[Previous: Authpf: User Shell for Authenticating Gateways] [Contents] [Next: Firewall for Home or Small Office]

PF: Firewall Redundancy with CARP and pfsync

Table of Contents

. Introduction to CARP

. CARP Operation

. Configuring CARP

. CARP Example

. Introduction to pfsync

. pfsync Operation

. Configuring pfsync

. pfsync Example

. Combining CARP and pfsync for Failover and Redundancy

. Operational Issues
o Configuring CARP and pfsync During Boot
o Forcing Failover of the Master

o Ruleset Tips
. Other References

Introduction to CARP

CARP isthe Common Address Redundancy Protocol. Its primary purpose is to allow multiple hosts on the same network segment to share an | P address. CARP
isasecure, free alternative to the Virtual Router Redundancy Protocol (VRRP) and the Hot Standby Router Protocol (HSRP).

CARP works by allowing a group of hosts on the same network segment to share an IP address. This group of hostsis referred to as a "redundancy group". The
redundancy group is assigned an IP address that is shared amongst the group members. Within the group, one host is designated the "master" and the rest as
"backups'. The master host is the one that currently "holds" the shared IP; it responds to any traffic or ARP requests directed towards it. Each host may belong to
more than one redundancy group at atime.

One common use for CARP isto create a group of redundant firewalls. The virtual |P that is assigned to the redundancy group is configured on client machines as
the default gateway. In the event that the master firewall suffersafailure or is taken offline, the IP will move to one of the backup firewalls and service will
continue unaffected.

CARP supports IPv4 and IPv6.

CARP Operation

The master host in the group sends regular advertisements to the local network so that the backup hosts know it's still alive. If the backup hosts don't hear an
advertisement from the master for a set period of time, then one of them will take over the duties of master (whichever backup host has the lowest configured
advbase and advskewvalues).

It's possible for multiple CARP groups to exist on the same network segment. CARP advertisements contain the Virtual Host ID which allows group members to
identify which redundancy group the advertisement belongs to.

In order to prevent amalicious user on the network segment from spoofing CARP advertisements, each group can be configured with a password. Each CARP
packet sent to the group is then protected by an SHA1 HMAC.

Since CARP isits own protocol it should have an explicit passrulein filter rulesets:

http://www.openbsd.org/fag/pf/carp.html (1 of 7) [30/04/2007 10:39:40]

http://www.openbsd.org/index.html
http://www.ietf.org/rfc/rfc3768.txt
http://www.ietf.org/rfc/rfc2281.txt

PF: Firewall Redundancy with CARP and pfsync

pass out on $carp_dev proto carp keep state

$car p_dev should be the physical interface that CARP is communicating over.

Configuring CARP
Each redundancy group is represented by a carp(4) virtual network interface. As such, CARP is configured using ifconfig(8).

ifconfig carpN create

i fconfig carpN vhid vhid [pass password] [carpdev carpdev] \
[advbase advbase] [advskew advskew] [state state] ipaddress \
net mask mask

car pN
The name of the carp(4) virtual interface where N is an integer that represents the interface's number (e.g. carpl0).

vhid
The Virtual Host ID. Thisisaunique number that is used to identify the redundancy group to other nodes on the network. Acceptable values are from 1
to 255.

password
The authentication password to use when talking to other CARP-enabled hosts in this redundancy group. This must be the same on all members of the
group.

car pdev
This optional parameter specifies the physical network interface that belongs to this redundancy group. By default, CARP will try to determine which
interface to use by looking for aphysica interface that isin the same subnet as the ipaddress and mask combination given to the carp(4) interface.

advbase
This optional parameter specifies how often, in seconds, to advertise that we're amember of the redundancy group. The default is 1 second. Acceptable
values are from 1 to 255.

advskew
This optional parameter specifies how much to skew the advbase when sending CARP advertisements. By manipulating advskew, the master
CARP host can be chosen. The higher the number, the less preferred the host will be when choosing a master. The default is 0. Acceptable values are
from O to 254.

state
Force acarp(4) interface into a certain state. Valid statesarei ni t , backup, and nast er .

i paddr ess
Thisisthe shared | P address assigned to the redundancy group. This address does not have to be in the same subnet as the | P address on the physical
interface (if present). This address needs to be the same on al hostsin the group, however.

mask
The subnet mask of the shared |P.

Further CARP behavior can be controlled via sysctl (8).

net.inet.carp.allow
Accept incoming CARP packets or not. Default is 1 (yes).

net.inet.carp. preenpt
Allow hosts within a redundancy group that have a better advbase and advskewto preempt the master. In addition, this option also enablesfailing
over dl interfaces in the event that one interface goes down. If one physical CARP-enabled interface goes down, CARP will change advskewto 240
on all other CARP-enabled interfaces, in essence, failing itself over. Thisoption is O (disabled) by default.

net.inet.carp.log
Log bad CARP packets. Default is O (disabled).

net.inet. carp. arpbal ance
Load balance traffic across multiple redundancy group hosts. Default is O (disabled). See carp(4) for more information.

CARP Example

Hereis an example CARP configuration:

sysctl -w net.inet.carp.allow1

ifconfig carpl create

ifconfig carpl vhid 1 pass nekm tasdi goat carpdev enD \
advskew 100 10.0.0.1 netmask 255.255.255.0

This sets up the following:

http://www.openbsd.org/fag/pf/carp.html (2 of 7) [30/04/2007 10:39:40]

http://www.openbsd.org/cgi-bin/man.cgi?query=carp&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=carp&sektion=4&manpath=OpenBSD+4.0

PF: Firewall Redundancy with CARP and pfsync

. Enables receipt of CARP packets (thisis the default setting).

. Createsacarp(4) interface, car p1.

. Configurescar p1 for virtua host #1, enables a password, sets enD as the interface belonging to the group, and makes this host a backup due to the
advskewof 100 (assuming of course that the master is set up with an advskewless than 100). The shared IP assigned to thisgroup is
10.0.0.1/255.255.255.0.

Runningi f confi g oncar pl shows the status of the interface.

ifconfig carpl

carpl: flags=8802<UP, BROADCAST, SI MPLEX, MULTI CAST> ntu 1500
carp: BACKUP carpdev enD vhid 1 advbase 1 advskew 100
groups: carp
inet 10.0.0.1 netnask Oxffffff00 broadcast 10.0.0.255

Introduction to pfsync

The pfsync(4) network interface exposes certain changes made to the pf(4) state table. By monitoring this device using tcpdump(8), state table changes can be

observed in real time. In addition, the pfsync(4) interface can send these state change messages out on the network so that other nodes running PF can merge the
changesinto their own state tables. Likewise, pfsync(4) can aso listen on the network for incoming messages.

pfsync Operation

By default, pfsync(4) does not send or receive state table updates on the network; however, updates can still be monitored using tcpdump(8) or other such tools on
thelocal machine.

When pfsync(4) is set up to send and receive updates on the network, the default behavior is to multicast updates out on the local network. All updates are sent
without authentication. Best common practice is either:

1. Connect the two nodes that will be exchanging updates back-to-back using a crossover cable and use that interface asthe syncdev (see below).
2. Usetheifconfig(8) syncpeer option (see below) so that updates are unicast directly to the peer, then configure ipsec(4) between the hosts to secure
the pfsync(4) traffic.

When updates are being sent and received on the network, pfsync packets should be passed in the filter ruleset:
pass on $sync_if proto pfsync

$sync_i f should be the physical interface that pfsync(4) is communicating over.

Configuring pfsync
Since pfsync(4) isavirtual network interface, it is configured using ifconfig(8).
i fconfig pfsyncN syncdev syncdev [syncpeer syncpeer]

pfsyncN
The name of the pfsync(4) interface. pf syncO exists by default when using the GENERI Ckernel.
syncdev
The name of the physical interface used to send pfsync updates out.
syncpeer
This optional parameter specifies the IP address of a host to exchange pfsync updates with. By default pfsync updates are multicast on the local
network. This option overrides that behavior and instead unicasts the update to the specified syncpeer .

pfsync Example

Here is an example pfsync configuration:

ifconfig pfsyncO syncdev eml

http://www.openbsd.org/fag/pf/carp.html (3 of 7) [30/04/2007 10:39:40]

http://www.openbsd.org/cgi-bin/man.cgi?query=pfsync&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=tcpdump&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=ipsec&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8&manpath=OpenBSD+4.0

PF: Firewall Redundancy with CARP and pfsync

This enables pfsync on the el interface. Outgoing updates will be multicast on the network allowing any other host running pfsync to receive them.

Combining CARP and pfsync For Failover

By combining the features of CARP and pfsync, agroup of two or more firewalls can be used to create a highly-available, fully redundant firewall cluster.

CARP:
Handles the automatic failover of one firewall to another.
pfsync:
Synchronizes the state table amongst al the firewalls. In the event of afailover, traffic can flow uninterrupted through the new master firewall.

An example scenario. Two firewalls, f wl and f w2.

+----] WAN/Internet |----+

I I
eng| | en2
+o-m o + +o-m - +
| fwl |-eml---------- em-| fw2 |
R, + Fom oo - +
enD| | emD

I I
e Shared LAN------- e

The firewalls are connected back-to-back using a crossover cable on emil. Both are connected to the LAN on enD and to a WAN/Internet connection on en®. |IP
addresses are as follows:

. fwlem0: 172.16.0.1

. fwlemil: 10.10.10.1

. fwlem2:192.0.2.1

. fw2em0: 172.16.0.2

. fw2eml: 10.10.10.2

. fw2em2: 192.0.2.2

. LAN shared IP: 172.16.0.100

. WAN/Internet shared |P: 192.0.2.100

The network policy isthat f wl will be the preferred master.

Configure fwl:

enabl e preenption and group interface fail over
sysctl -w net.inet.carp.preenpt=1

-

configure pfsync

ifconfig eml 10.10.10.1 netmask 255.255.255.0
i fconfig pfsyncO syncdev emdl

ifconfig pfsyncO up

R

configure CARP on the LAN side

ifconfig carpl create

ifconfig carpl vhid 1 carpdev enD pass | anpasswd \
172.16. 0. 100 net nask 255. 255. 255.0

H H

I configure CARP on the WAN/ I nternet side

ifconfig carp2 create

ifconfig carp2 vhid 2 carpdev enR pass netpasswd \
192. 0. 2. 100 net mask 255.255.255.0

Configure fw2:

http://www.openbsd.org/fag/pf/carp.html (4 of 7) [30/04/2007 10:39:40]

PF: Firewall Redundancy with CARP and pfsync

enabl e preenption and group interface fail over
sysctl -w net.inet.carp.preenpt=1

-

configure pfsync

ifconfig eml 10. 10. 10. 2 net mask 255. 255. 255. 0
i fconfig pfsyncO syncdev emdl

ifconfig pfsyncO up

H*H HH -

configure CARP on the LAN side

ifconfig carpl create

ifconfig carpl vhid 1 carpdev enD pass | anpasswd \
advskew 128 172.16.0. 100 net mask 255.255. 255. 0

H H#

I configure CARP on the WAN/ I nternet side

ifconfig carp2 create

ifconfig carp2 vhid 2 carpdev enR pass netpasswd \
advskew 128 192. 0. 2. 100 net mask 255. 255. 255. 0

Operational Issues

Some common operational issues encountered with CARP/pfsync.

Configuring CARP and pfsync During Boot

Since carp(4) and pfsync(4) are both types of network interfaces, they can be configured at boot by creating a hostname.if(5) file. The netstart startup script will
take care of creating the interface and configuring it.

Examples:

/etc/hostname.carpl
inet 172.16.0.100 255.255.255.0 172.16.0.255 vhid 1 carpdev em0\
pass lanpasswd

/etc/hostname.pfsyncO
up syncdev eml

Forcing Failover of the Master

There can be times when it's necessary to failover or demote the master node on purpose. Examples include taking the master node down for maintenance or
when troubleshooting a problem. The objective here isto gracefully fail over traffic to one of the backup hosts so that users do not notice any impact.

To failover aparticular CARP group, shut down the carp(4) interface on the master node. Thiswill cause the master to advertise itself with an "infinite"
advbase and advskew. The backup host(s) will see this and immediately take over the role of master.

ifconfig carpl down

An alternative is to increase the advskewto avalue that's higher than the advskew on the backup host(s). Thiswill cause afailover but still allow the master to
participate in the CARP group.

Another method of failover isto tweak the CARP demotion counter. The demotion counter is a measure of how "ready" ahost is to become master of a CARP
group. For example, while ahost isin the middle of booting up it's abad ideafor it to become the CARP master until all interfaces have been configured, all
network daemons have been started, etc. Hosts advertising a high demotion value will be less preferred as the master.

A demotion counter is stored in each interface group that the CARP interface belongs to. By default, all CARP interfaces are members of the "carp" interface
group. The current value of ademotion counter can be viewed using ifconfig(8):

ifconfig -g carp
carp: carp demote count 0O

In this example the counter associated with the "carp" interface group is shown. When a CARP host advertisesitself on the network, it takes the sum of the
demotion counters for each interface group the carp(4) interface belongs to and advertises that value as its demotion value.

http://www.openbsd.org/fag/pf/carp.html (5 of 7) [30/04/2007 10:39:40]

http://www.openbsd.org/cgi-bin/man.cgi?query=hostname.if&sektion=5&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=netstart&sektion=8&manpath=OpenBSD+4.0

PF: Firewall Redundancy with CARP and pfsync

Now assume the following example. Two firewalls running CARP with the following CARP interfaces:

. carpl -- Accounting Department
. carp2 -- Regular Employees

. carp3 -- Internet

. carp4--DMZ

The objectiveisto failover just the carpl and carp2 groups to the secondary firewall.
First, assign each to a new interface group, in this case named "internal":

ifconfig carpl group internal

ifconfig carp2 group internal

ifconfig internal

carpl: flags=8843<UP, BROADCAST, RUNNI NG, SI MPLEX, MULTI CAST> ntu 1500
carp: MASTER carpdev enD vhid 1 advbase 1 advskew 100
groups: carp internal
inet 10.0.0.1 netrmask OxffffffOO broadcast 10.0.0.255

carp2: flags=8843<UP, BROADCAST, RUNNI NG, SI MPLEX, MULTI CAST> ntu 1500
carp: MASTER carpdev enl vhid 2 advbase 1 advskew 100
groups: carp internal
inet 10.0.1.1 netrmask OxffffffOO broadcast 10.0.1.255

Now increase the demotion counter for the "interna" group using ifconfig(8):

ifconfig -g internal

internal: carp denote count 0O

ifconfig -g internal carpdenote 50
ifconfig -g internal

internal: carp denote count 50

The firewall will now gracefully failover on the carpl and carp2 groups to the other firewall in the cluster while still remaining the master on carp3 and carp4. If
the other firewall started advertising itself with a demotion value higher than 50, or if the other firewall stopped advertising altogether, then this firewall would
again take over mastership on carpl and carp2.

To fail back to the primary firewall, reverse the changes:

ifconfig -g internal -carpdenpte 50
ifconfig -g internal
internal: carp denote count 0

Network daemons such as OpenBGPD and sasyncd(8) make use of the demotion counter to ensure that the firewall does not become master until BGP sessions
become established and |Psec SAs are synchronized.

Ruleset Tips

Filter the physical interface. Asfar as PF is concerned, network traffic comes from the physical interface, not the CARP virtua interface (i.e., car p0). So,
write your rule sets accordingly. Don't forget that an interface name in a PF rule can be either the name of a physical interface or an address associated with that
interface. For example, this rule could be correct:

pass in on fxp0 inet proto tcp fromany to carp0 port 22
but replacing the f xp0 with car pO would not work as you desire.
DON'T forget to passprot o carp and prot o pfsync!

Other References

Please see these other sources for more information:

http://www.openbsd.org/fag/pf/carp.html (6 of 7) [30/04/2007 10:39:40]

http://www.openbsd.org/cgi-bin/man.cgi?query=bgpd&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=sasyncd&sektion=8&manpath=OpenBSD+4.0

PF: Firewall Redundancy with CARP and pfsync

. carp(4)

. pfsync(4)

. ifconfig(8)

. hostname.if(5
. pf.conf(5)

. ifstated(8)

. ifstated.conf(5)

[Previous. Authpf: User Shell for Authenticating Gateways] [Contents] [Next: Firewall for Home or Small Office]

& www @openbsd.org
$O0penBSD: carp.html,v 1.16 2007/02/12 20:19:17 joel Exp $

http://www.openbsd.org/fag/pf/carp.html (7 of 7) [30/04/2007 10:39:40]

http://www.openbsd.org/cgi-bin/man.cgi?query=carp&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pfsync&sektion=4&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=hostname.if&sektion=5&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=ifstated&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=ifstated.conf&sektion=5&manpath=OpenBSD+4.0
mailto:www@openbsd.org

PF: Example: Firewall for Home or Small Office

[Previous: Firewall Redundancy with CARP and pfsync] [Contents]

PF. Example: Firewall for Home or Small Office

Table of Contents

. The Scenario
o The Network
o The Objective
o Preparation

. TheRuleset
o Macros
o Options
o Scrub
o Network Address Translation
o Redirection
o Filter Rules

. The Complete Ruleset

The Scenario

In this example, PF is running on an OpenBSD machine acting as afirewall and NAT gateway for a small network in ahome or office. The overall objectiveisto
provide Internet access to the network and to allow limited access to the firewall machine from the Internet, and expose an internal web server to the external
Internet. This document will go through a complete ruleset that does just that.

The Network
The network is setup like this:

[COWL] [COWP3]

R SRR +o---- AEEE TR xI0 [OpenBSD] fxp0 -------- (I'nternet)

There are anumber of computers on the internal network; the diagram shows three but the actual number isirrelevant. These computers are regular workstations
used for web surfing, email, chatting, etc., except for COMP3 which is also running a small web server. The internal network is using the 192.168.0.0 /
255.255.255.0 network block.

The OpenBSD firewall is a Celeron 300 with two network cards: a 3com 3c905B (x| 0) and an Intel EtherExpress Pro/100 (f xp0). The firewall has a cable
connection to the Internet and is using NAT to share this connection with the internal network. The IP address on the external interface is dynamically assigned
by the Internet Service Provider.

The Objective
The objectives are:

. Provide unrestricted Internet access to each internal computer.
. Usea"default deny" filter ruleset.

http://www.openbsd.org/fag/pf/lexamplel.html (1 of 5) [30/04/2007 10:39:43]

http://www.openbsd.org/index.html

PF: Example: Firewall for Home or Small Office

. Allow the following incoming traffic to the firewall from the Internet:
o SSH (TCP port 22): thiswill be used for external maintenance of the firewall machine.
o Auth/Ident (TCP port 113): used by some services such as SMTP and IRC.
o ICMP Echo Requests: the ICMP packet type used by ping(8).
. Redirect TCP port 80 connection attempts (which are attempts to access a web server) to computer COMP3. Also, permit TCP port 80 traffic destined
for COMP3 through the firewall.
. Logfilter statistics on the external interface.
. By default, reply with a TCP RST or ICMP Unreachable for blocked packets.
. Make the ruleset as simple and easy to maintain as possible.

Preparation

This document assumes that the OpenBSD host has been properly configured to act as a router, including verifying | P networking setup, Internet connectivity,
and setting the sysctl(3) variablesnet . i net . i p. f or war di ng and/or net . i net 6. i p6. f orwar di ng to"1". You must aso have enabled PF using

pfctl(8) or by setting the appropriate variablein/ et ¢/ rc. conf . | ocal .

The Ruleset

The following will step through a ruleset that will accomplish the above goals.

Macros

The following macros are defined to make maintenance and reading of the ruleset easier:
ext _i f="fxp0"
int_if="xl0"

tcp_services="{ 22, 113 }"
i cnmp_t ypes="echor eq"

conp3="192. 168. 0. 3"

Thefirst two lines define the network interfaces that filtering will happen on. By definining them here, if we have to move this system to another machine with
different hardware, we can change only those two lines, and the rest of the rule set will be still usable. The third and fourth lines list the TCP port numbers of the
services that will be opened up to the Internet (SSH and ident/auth) and the ICMP packet types that will be accepted at the firewall machine. Finally, the last line
defines the | P address of COMP3.

Note: If the Internet connection required PPPoE, then filtering and NAT would have to take place on thet unO0 interface and not on f xpO0.

Options
The following two options will set the default response for bl ock filter rules and turn statistics logging "on" for the external interface:

set bl ock-policy return
set loginterface $ext _if

Every Unix system has a"loopback” interface. It's a virtual network interface that is used by applications to talk to each other inside the system. On OpenBSD,
the loopback interfaceis1o(4). It is considered best practice to disable all filtering on loopback interfaces. Using set skip will accomplish this.

set skip on lo

Note that we are skipping the entire interface group | o0, this way, should we later add additional loopback interfaces, we won't have to worry about altering this
portion of our existing rulesfile.

Scrub
Thereis no reason not to use the recommended scrubbing of al incoming traffic, so thisis a simple one-liner:

scrub in

http://www.openbsd.org/fag/pf/lexamplel.html (2 of 5) [30/04/2007 10:39:43]

http://www.openbsd.org/cgi-bin/man.cgi?query=ping&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=3&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=pppoe&sektion=8&manpath=OpenBSD+4.0
http://www.openbsd.org/cgi-bin/man.cgi?query=lo&sektion=4&manpath=OpenBSD+4.0

PF: Example: Firewall for Home or Small Office

Network Address Translation

To perform NAT for the entire internal network the following nat ruleis used:

nat on $ext_if from!($ext_if) to any -> ($ext_if)

The"! ($ext _i f)" could easily bereplaced by a"$i nt _i f " in this case, but if you added multiple internal interfaces, you would have to add additional NAT
rules, whereas with this structure, NAT will be handled on all protected interfaces.

Since the | P address on the external interface is assigned dynamically, parenthesis are placed around the translation interface so that PF will notice when the
address changes.

Aswe will want to have the FTP proxy working, we'll put the NAT anchor in, too:

nat - anchor "ftp-proxy/*"

Redirection

The first redirection rules needed are for ftp-proxy(8) so that FTP clients on the local network can connect to FTP servers on the Internet.

rdr-anchor "ftp-proxy/*"
rdr on $int_if proto tcp fromany to any port 21 -> 127.0.0.1 port 8021

Note that this rule will only catch FTP connections to port 21. If usersregularly connect to FTP servers on other ports, then alist should be used to specify the
destination port, for example: from any to any port { 21, 2121 }.

The last redirection rule catches any attempts by someone on the Internet to connect to TCP port 80 on the firewall. L egitimate attempts to access this port will be
from userstrying to access the network's web server. These connection attempts need to be redirected to COMP3:

rdr on $ext_if proto tcp fromany to any port 80 -> $conp3

Filter Rules

Now the filter rules. Start with the default deny:

bl ock in

At this point all traffic attempting to come into an interface will be blocked, even that from the internal network. Later rules will open up the firewall as per the
objectives above as well as open up any necessary virtual interfaces.

Keep in mind, pf can block traffic coming into or leaving out of an interface. It can simplify your life if you chose to filter traffic in one direction, rather than
trying to keep it straight when filtering some thingsin, and some things out. In our case, we'll opt to filter the inbound traffic, but once the traffic is permitted into
an interface, we won't try to obstruct it leaving, so we will do the following:

pass out keep state

We need to have an anchor for ftp-proxy(8):

anchor "ftp-proxy/*"

It is good to use the spoofed address protection:

anti spoof quick for { lo $int_if }
Now open the ports used by those network services that will be available to the Internet. First, the traffic that is destined to the firewall itself:

pass in on $ext_if inet proto tcp fromany to ($ext_if) \

http://www.openbsd.org/fag/pflexamplel.html (3 of 5) [30/04/2007 10:39:43]

http://www.openbsd.org/cgi-bin/man.cgi?query=ftp-proxy&sektion=8&manpath=OpenBSD+4.0

PF: Example: Firewall for Home or Small Office

port $tcp_services flags S/ SA keep state

Specifying the network portsin the macro $t cp_ser vi ces makesit simple to open additional servicesto the Internet by simply editing the macro and
reloading the ruleset. UDP services can also be opened up by creating a$udp_ser vi ces macro and adding afilter rule, similar to the one above, that specifies
proto udp.

In addition to having an r dr rule which passes the web server traffic to COMP3, we MUST &l so pass this traffic through the firewall:

pass in on $ext_if inet proto tcp fromany to $conp3 port 80 \
flags S/ SA synproxy state

For an added bit of safety, we'll make use of the TCP SY N Proxy to further protect the web server.
ICMP traffic needs to be passed:
pass in inet proto icnp all icnp-type $icnp_types keep state

Similar tothe $t cp_ser vi ces macro, the $i cnp_t ypes macro can easily be edited to change the types of ICMP packets that will be allowed to reach the
firewall. Note that this rule appliesto al network interfaces.

Now traffic must be passed to and from the internal network. WEe'l assume that the users on the internal network know what they are doing and aren't going to be
causing trouble. Thisis not necessarily a valid assumption; a much more restrictive ruleset would be appropriate for many environments.

pass in quick on $int_if

TCP, UDP, and ICMP traffic is permitted to exit the firewall towards the Internet dueto the earlier "pass out keep st at e" line. Stateinformation is kept
so that the returning packets will be passed back in through the firewall.

The Complete Ruleset

macr os
ext _if="fxp0"
int_if="xl0"

tcp_services="{ 22, 113 }"
i cnp_t ypes="echor eq"

conp3="192. 168. 0. 3"

options
set bl ock-policy return
set |loginterface $ext _if

set skip on lo

scrub
scrub in

nat/rdr

nat on $ext _if from!($ext_if) -> ($ext_if:0)
nat - anchor "ftp-proxy/*"

rdr-anchor "ftp-proxy/*"

rdr pass on $int_if proto tcp to port ftp -> 127.0.0.1 port 8021
rdr on $ext_if proto tcp fromany to any port 80 -> $conp3

filter rules
bl ock in

pass out keep state

anchor "ftp-proxy/*"
anti spoof quick for { lo $int_if }

pass in on $ext_if inet proto tcp fromany to ($ext_if) \
port $tcp_services flags S/ SA keep state

http://www.openbsd.org/fag/pf/lexamplel.html (4 of 5) [30/04/2007 10:39:43]

PF: Example: Firewall for Home or Small Office

pass in on $ext_if inet proto tcp fromany to $conmp3 port 80 \
flags S/ SA synproxy state

pass in inet proto icnp all icnp-type $icnp_types keep state

pass quick on $int_if

[Previous: Firewall Redundancy with CARP and pfsync] [Contents]

g www @openbsd.org
$OpenBSD: examplel.html,v 1.31 2006/11/01 01:56:01 joel Exp $

http://www.openbsd.org/fag/pflexamplel.html (5 of 5) [30/04/2007 10:39:43]

mailto:www@openbsd.org

	openbsd.org
	PF: The OpenBSD Packet Filter
	PF: Getting Started
	PF: Lists and Macros
	PF: Tables
	PF: Packet Filtering
	PF: Network Address Translation (NAT)
	PF: Traffic Redirection (Port Forwarding)
	PF: Shortcuts For Creating Rulesets
	PF: Runtime Options
	PF: Scrub (Packet Normalization)
	PF: Anchors
	PF: Packet Queueing and Prioritization
	PF: Address Pools and Load Balancing
	PF: Packet Tagging (Policy Filtering)
	PF: Logging
	PF: Performance
	PF: Issues with FTP
	PF: Authpf: User Shell for Authenticating Gateways
	PF: Firewall Redundancy with CARP and pfsync
	PF: Example: Firewall for Home or Small Office

