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Chapter 4:
Programming PARI in Library Mode

The User’s Guide to Pari/GP gives in three chapters a general presentation of the system, of the
gp calculator, and detailed explanation of high level PARI routines available through the calculator.
The present manual assumes general familiarity with the contents of these chapters and the basics of
ANSI C programming, and focuses on the usage of the PARI library. In this chapter, we introduce
the general concepts of PARI programming and describe useful general purpose functions; the
following chapters describes all public low or high-level functions, underlying or extending the GP
functions seen in Chapter 3 of the User’s guide.

4.1 Introduction: initializations, universal objects.

To use PARI in library mode, you must write a C program and link it to the PARI library. See the
installation guide or the Appendix to the User’s Guide to Pari/GP on how to create and install
the library and include files. A sample Makefile is presented in Appendix A, and a more elaborate
one in examples/Makefile. The best way to understand how programming is done is to work
through a complete example. We will write such a program in Section 4.10. Before doing this, a
few explanations are in order.

First, one must explain to the outside world what kind of objects and routines we are going to
use. This is done* with the directive

#include <pari/pari.h>

In particular, this defines the fundamental type for all PARI objects: the type GEN, which is
simply a pointer to long.

Before any PARI routine is called, one must initialize the system, and in particular the PARI
stack which is both a scratchboard and a repository for computed objects. This is done with a call
to the function

void pari_init(size_t size, ulong maxprime)

The first argument is the number of bytes given to PARI to work with, and the second is the upper
limit on a precomputed prime number table; size should not reasonably be taken below 500000
but you may set maxprime = 0, although the system still needs to precompute all primes up to
about 2'6. For lower-level variants allowing finer control, e.g. preventing PARI from installing its
own error or signal handlers, see Section 5.1.2.

We have now at our disposal:

e a PARI stack containing nothing. This is a big connected chunk of size bytes of memory,
where all computations take place. In large computations, intermediate results quickly clutter up
memory so some kind of garbage collecting is needed. Most systems do garbage collecting when the
memory is getting scarce, and this slows down the performance. PARI takes a different approach,

* This assumes that PARI headers are installed in a directory which belongs to your compiler’s
search path for header files. You might need to add flags like =I/usr/local/include or modify
C_INCLUDE_PATH.
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admittedly more demanding on the programmer: you must do your own cleaning up when the
intermediate results are not needed anymore. We will see later how (and when) this is done.

e the following universal objects (by definition, objects which do not belong to the stack): the
integers 0, 1, —1, 2 and —2 (respectively called gen_0, gen_1, gen_ml, gen_2 and gen_m2), the
fraction 3 (ghalf). All of these are of type GEN.

e a heap which is just a linked list of permanent universal objects. For now, it contains
exactly the ones listed above. You will probably very rarely use the heap yourself; and if so, only
as a collection of copies of objects taken from the stack (called clones in the sequel). Thus you
need not bother with its internal structure, which may change as PARI evolves. Some complex
PARI functions create clones for special garbage collecting purposes, usually destroying them when
returning.

e a table of primes (in fact of differences between consecutive primes), called diffptr, of type
byteptr (pointer to unsigned char). Its use is described in Section 5.4 later. Using it directly
is deprecated, high-level iterators provide a cleaner and more flexible interface, see Section 4.8.2
(such iterators use the private prime table, but extend it dynamically).

e access to all the built-in functions of the PARI library. These are declared to the outside
world when you include pari.h, but need the above things to function properly. So if you forget
the call to pari_init, you will get a fatal error when running your program.

4.2 Important technical notes.

4.2.1 Backward compatibility. The PARI function names evolved over time, and deprecated
functions are eventually deleted. The file pariold.h contains macros implementing a weak form
of backward compatibility. In particular, whenever the name of a documented function changes, a
#define is added to this file so that the old name expands to the new one (provided the prototype
didn’t change also).

This file is included by pari.h, but a large section is commented out by default. Define
PARI_OLD_NAMES before including pari.h to pollute your namespace with lots of obsolete names
like un*: that might enable you to compile old programs without having to modify them. The
preferred way to do that is to add -DPARI_OLD_NAMES to your compiler CFLAGS, so that you don’t
need to modify the program files themselves.

Of course, it’s better to fix the program if you can!

4.2.2 Types.

Although PARI objects all have the C type GEN, we will freely use the word type to refer to PARI
dynamic subtypes: t_INT, t_REAL, etc. The declaration

GEN x;

declares a C variable of type GEN, but its “value” will be said to have type t_INT, t_REAL, etc. The
meaning should always be clear from the context.

* For (long)gen_1. Since 2004 and version 2.2.9, typecasts are completely unnecessary in PARI
programs.
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4.2.3 Type recursivity.

Conceptually, most PARI types are recursive. But the GEN type is a pointer to long, not to GEN.
So special macros must be used to access GEN’s components. The simplest one is gel(V, i), where
el stands for element, to access component number ¢ of the GEN V. This is a valid 1value (may be
put on the left side of an assignment), and the following two constructions are exceedingly frequent

gel(V, i) = x;
x = gel(V, i);

where x and V are GENs. This macro accesses and modifies directly the components of V' and do
not create a copy of the coefficient, contrary to all the library functions.

More generally, to retrieve the values of elements of lists of ... of lists of vectors we have the
gmael macros (for multidimensional array element). The syntax is gmaeln(V,aq,...,a,), where
V is a GEN, the a; are indexes, and n is an integer between 1 and 5. This stands for z[a][as]. .. [an],
and returns a GEN. The macros gel (resp. gmael) are synonyms for gmaell (resp. gmael2).

Finally, the macro gcoeff(M,i,j) has exactly the meaning of M[i,j] in GP when M is a
matrix. Note that due to the implementation of t_MATs as horizontal lists of vertical vectors,
gcoeff (x,y) is actually equivalent to gmael(y,x). One should use gcoeff in matrix context, and
gmael otherwise.

4.2.4 Variations on basic functions. In the library syntax descriptions in Chapter 3, we have
only given the basic names of the functions. For example gadd(z,y) assumes that x and y are GENs,
and creates the result x4y on the PARI stack. For most of the basic operators and functions, many
other variants are available. We give some examples for gadd, but the same is true for all the basic
operators, as well as for some simple common functions (a complete list is given in Chapter 6):

GEN gaddgs(GEN x, long y)
GEN gaddsg(long x, GEN y)

In the following one, z is a preexisting GEN and the result of the corresponding operation is put
into z. The size of the PARI stack does not change:

void gaddz(GEN x, GEN y, GEN z)

(This last form is inefficient in general and deprecated outside of PARI kernel programming.) Low
level kernel functions implement these operators for specialized arguments and are also available:
Level 0 deals with operations at the word level (longs and ulongs), Level 1 with t_INT and t_REAL
and Level 2 with the rest (modular arithmetic, polynomial arithmetic and linear algebra). Here
are some examples of Level 1 functions:

GEN addii(GEN x, GEN y): here x and y are GENs of type t_INT (this is not checked).
GEN addrr(GEN x, GEN y): here x and y are GENs of type t_REAL (this is not checked).

There also exist functions addir, addri, mpadd (whose two arguments can be of type t_INT or
t_REAL), addis (to add a t_INT and a long) and so on.

The Level 1 names are self-explanatory once you know that i stands for a t_INT, r for a t _REAL,
mp for i or r, s for a signed C long integer, u for an unsigned C long integer; finally the suffix z
means that the result is not created on the PARI stack but assigned to a preexisting GEN object
passed as an extra argument. Chapter 6 gives a description of these low-level functions.
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Level 2 names are more complicated, see Section 7.1 for all the gory details, and we content
ourselves with a simple example used to implement t_INTMOD arithmetic:

GEN Fp_add(GEN x, GEN y, GEN m): returns the sum of # and y modulo m. Here z,y, m are
t_INTs (this is not checked). The operation is more efficient if the inputs x, y are reduced modulo
m, but this is not a necessary condition.

Important Note. These specialized functions are of course more efficient than the generic ones,
but note the hidden danger here: the types of the objects involved (which is not checked) must be
severely controlled, e.g. using addii on a t_FRAC argument will cause disasters. Type mismatches
may corrupt the PARI stack, though in most cases they will just immediately overflow the stack.
Because of this, the PARI philosophy of giving a result which is as exact as possible, enforced for
generic functions like gadd or gmul, is dropped in kernel routines of Level 1, where it is replaced by
the much simpler rule: the result is a t_INT if and only if all arguments are integer types (t_INT
but also C long and ulong) and a t_REAL otherwise. For instance, multiplying a t_REAL by a
t_INT always yields a t_REAL if you use mulir, where gmul returns the t_INT gen O if the integer
is 0.

4.2.5 Portability: 32-bit / 64-bit architectures.

PARI supports both 32-bit and 64-bit based machines, but not simultaneously! The library is
compiled assuming a given architecture, and some of the header files you include (through pari.h)
will have been modified to match the library.

Portable macros are defined to bypass most machine dependencies. If you want your programs
to run identically on 32-bit and 64-bit machines, you have to use these, and not the corresponding
numeric values, whenever the precise size of your long integers might matter. Here are the most
important ones:

64-bit 32-bit

BITS_IN_LONG 64 32

LONG_IS_64BIT defined undefined

DEFAULTPREC 3 4 (=~ 19 decimal digits, see formula below)
MEDDEFAULTPREC 4 6 (=~ 38 decimal digits)

BIGDEFAULTPREC 5 8 (~ 57 decimal digits)

For instance, suppose you call a transcendental function, such as
GEN gexp(GEN x, long prec).

The last argument prec is an integer > 3, corresponding to the default floating point precision
required. It is only used if x is an exact object, otherwise the relative precision is determined by
the precision of x. Since the parameter prec sets the size of the inexact result counted in (long)
words (including codewords), the same value of prec will yield different results on 32-bit and 64-bit
machines. Real numbers have two codewords (see Section 4.5), so the formula for computing the
bit accuracy is

bit_accuracy(prec) = (prec — 2) * BITS_IN_LONG

(this is actually the definition of an inline function). The corresponding accuracy expressed in
decimal digits would be
bit_accuracy(prec) * log(2)/log(10).

For example if the value of prec is 5, the corresponding accuracy for 32-bit machines is (5 — 2) x*
log(232)/log(10) ~ 28 decimal digits, while for 64-bit machines it is (5 — 2) * log(2%%)/log(10) ~ 57
decimal digits.
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Thus, you must take care to change the prec parameter you are supplying according to the bit
size, either using the default precisions given by the various DEFAULTPRECs, or by using conditional
constructs of the form:

#ifndef LONG_IS_64BIT

prec = 4;
#else

prec = 6;
#endif

which is in this case equivalent to the statement prec = MEDDEFAULTPREC;.
Note that for parity reasons, half the accuracies available on 32-bit architectures (the odd ones)

have no precise equivalents on 64-bit machines.

4.2.6 Using malloc / free. You should make use of the PARI stack as much as possible, and
avoid allocating objects using the customary functions. If you do, you should use, or at least have
a very close look at, the following wrappers:

void* pari_malloc(size_t size) calls malloc to allocate size bytes and returns a pointer to
the allocated memory. If the request fails, an error is raised. The SIGINT signal is blocked until
malloc returns, to avoid leaving the system stack in an inconsistent state.

void* pari_realloc(void* ptr, size_t size) as pari_malloc but calls realloc instead of
malloc.

void pari_realloc_ip(void** ptr, size_t size) equivalent to *ptr= realloc(*ptr, size),
while blocking SIGINT.

void* pari_calloc(size_t size) as pari_malloc, setting the memory to zero.

void pari_free(void* ptr) calls free to liberate the memory space pointed to by ptr, which
must have been allocated by malloc (pari_malloc) or realloc (pari_realloc). The SIGINT
signal is blocked until free returns.

If you use the standard libc functions instead of our wrappers, then your functions will be
subtly incompatible with the gp calculator: when the user tries to interrupt a computation, the
calculator may crash (if a system call is interrupted at the wrong time).

4.3 Garbage collection.

4.3.1 Why and how.

As we have seen, pari_init allocates a big range of addresses, the stack, that are going to be used
throughout. Recall that all PARI objects are pointers. Except for a few universal objects, they all
point at some part of the stack.

The stack starts at the address bot and ends just before top. This means that the quantity
(top — bot) / sizeof(long)

is (roughly) equal to the size argument of pari_init. The PARI stack also has a “current stack
pointer” called avma, which stands for available memory address. These three variables are global
(declared by pari.h). They are of type pari_sp, which means pari stack pointer.
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The stack is oriented upside-down: the more recent an object, the closer to bot. Accordingly,
initially avma = top, and avma gets decremented as new objects are created. As its name indicates,
avma always points just after the first free address on the stack, and (GEN)avma is always (a
pointer to) the latest created object. When avma reaches bot, the stack overflows, aborting all
computations, and an error message is issued. To avoid this you need to clean up the stack from
time to time, when intermediate objects are not needed anymore. This is called “garbage collecting.”

We are now going to describe briefly how this is done. We will see many concrete examples in
the next subsection.

e First, PARI routines do their own garbage collecting, which means that whenever a documented
function from the library returns, only its result(s) have been added to the stack, possibly up
to a very small overhead (undocumented ones may not do this). In particular, a PARI function
that does not return a GEN does not clutter the stack. Thus, if your computation is small enough
(e.g. you call few PARI routines, or most of them return long integers), then you do not need to
do any garbage collecting. This is probably the case in many of your subroutines. Of course the
objects that were on the stack before the function call are left alone. Except for the ones listed
below, PARI functions only collect their own garbage.

e It may happen that all objects that were created after a certain point can be deleted — for
instance, if the final result you need is not a GEN, or if some search proved futile. Then, it is enough
to record the value of avma just before the first garbage is created, and restore it upon exit:

pari_sp av = avma; /* record initial avma */

garbage ...
set_avma(av); /* restore it */

All objects created in the garbage zone will eventually be overwritten: they should no longer be
accessed after avma has been restored. Think of the set_avma call as a simple avma = av restoring

the avma value.

e If you want to destroy (i.e. give back the memory occupied by) the latest PARI object on the
stack (e.g. the latest one obtained from a function call), you can use the function

void cgiv(GEN z)

where z is the object you want to give back. This is equivalent to the above where the initial av is
computed from z.

e Unfortunately life is not so simple, and sometimes you will want to give back accumulated garbage
during a computation without losing recent data. We shall start with the lowest level function to

get a feel for the underlying mechanisms, we shall describe simpler variants later:

GEN gerepile(pari_sp ltop, pari_sp lbot, GEN q). This function cleans up the stack between
1ltop and 1bot, where 1bot < 1top, and returns the updated object q. This means:

1) we translate (copy) all the objects in the interval [avma, 1bot[, so that its right extremity
abuts the address 1top. Graphically
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bot avma 1lbot 1top top

End of stack |[|------—----—- [++++++[=/=/=/=/=/=/-|++++++++| Start
free memory garbage
becomes:
bot avma ltop top
End of stack |-——————————————————————o [++++++ [++++++++]|  Start

free memory

where ++ denote significant objects, —— the unused part of the stack, and -/- the garbage we
remove.

2) The function then inspects all the PARI objects between avma and lbot (i.e. the ones that
we want to keep and that have been translated) and looks at every component of such an object
which is not a codeword. Each such component is a pointer to an object whose address is either

— between avma and lbot, in which case it is suitably updated,
— larger than or equal to 1top, in which case it does not change, or

— between 1bot and 1ltop in which case gerepile raises an error (“significant pointers lost
in gerepile”).

3) avma is updated (we add 1top — lbot to the old value).

4) We return the (possibly updated) object q: if q initially pointed between avma and 1lbot,
we return the updated address, as in 2). If not, the original address is still valid, and is returned!

As stated above, no component of the remaining objects (in particular q) should belong to the
erased segment [lbot, 1top[, and this is checked within gerepile. But beware as well that the
addresses of the objects in the translated zone change after a call to gerepile, so you must not
access any pointer which previously pointed into the zone below 1top. If you need to recover more
than one object, use the gerepileall function below.

Remark. As a consequence of the preceding explanation, if a PARI object is to be relocated by
gerepile then, apart from universal objects, the chunks of memory used by its components should be
in consecutive memory locations. All GENs created by documented PARI functions are guaranteed
to satisfy this. This is because the gerepile function knows only about two connected zones: the
garbage that is erased (between 1bot and 1top) and the significant pointers that are copied and
updated. If there is garbage interspersed with your objects, disaster occurs when we try to update
them and consider the corresponding “pointers”. In most cases of course the said garbage is in fact
a bunch of other GENs, in which case we simply waste time copying and updating them for nothing.
But be wary when you allow objects to become disconnected.

In practice this is achieved by the following programming idiom:

ltop = avma; garbage(); lbot = avma; q = anything();
return gerepile(ltop, lbot, q); /* returns the updated q */

or directly

ltop = avma; garbage(); lbot = avma;
return gerepile(ltop, lbot, anything());

Beware that
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ltop = avma; garbage();
return gerepile(ltop, avma, anything())

might work, but should be frowned upon. We cannot predict whether avma is evaluated after or
before the call to anything(): it depends on the compiler. If we are out of luck, it is after the
call, so the result belongs to the garbage zone and the gerepile statement becomes equivalent to
set_avma(ltop). Thus we return a pointer to random garbage.

4.3.2 Variants.

GEN gerepileupto(pari_sp ltop, GEN q). Cleans the stack between 1top and the connected
object q and returns q updated. For this to work, q must have been created before all its compo-
nents, otherwise they would belong to the garbage zone! Unless mentioned otherwise, documented
PARI functions guarantee this.

GEN gerepilecopy(pari_sp ltop, GEN x). Functionally equivalent to, but more efficient than
gerepileupto(ltop, gcopy(x))

In this case, the GEN parameter x need not satisfy any property before the garbage collection: it
may be disconnected, components created before the root, and so on. Of course, this is about twice
slower than either gerepileupto or gerepile, because x has to be copied to a clean stack zone
first. This function is a special case of gerepileall below, where n = 1.

void gerepileall(pari_sp ltop, int n, ...). To cope with complicated cases where many
objects have to be preserved. The routine expects n further arguments, which are the addresses of
the GENs you want to preserve:

pari_sp ltop = avma;
R T . G
gerepileall(ltop, 2, &x, &y);

It cleans up the most recent part of the stack (between ltop and avma), updating all the GENs
added to the argument list. A copy is done just before the cleaning to preserve them, so they
do not need to be connected before the call. With gerepilecopy, this is the most robust of the
gerepile functions (the less prone to user error), hence the slowest.

void gerepileallsp(pari_sp ltop, pari_sp lbot, int n, ...). More efficient, but trickier
than gerepileall. Cleans the stack between lbot and ltop and updates the GENs pointed at
by the elements of gptr without any further copying. This is subject to the same restrictions as
gerepile, the only difference being that more than one address gets updated.

4.3.3 Examples.

4.3.3.1 gerepile.

Let x and y be two preexisting PARI objects and suppose that we want to compute x2 + y2.
This is done using the following program:

GEN x2 = gsqr(x);
GEN y2 = gsqr(y), z = gadd(x2,y2);

The GEN z indeed points at the desired quantity. However, consider the stack: it contains as
unnecessary garbage x2 and y2. More precisely it contains (in this order) z, y2, x2. (Recall that,
since the stack grows downward from the top, the most recent object comes first.)
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It is not possible to get rid of x2, y2 before z is computed, since they are used in the final
operation. We cannot record avma before x2 is computed and restore it later, since this would
destroy z as well. It is not possible either to use the function cgiv since x2 and y2 are not at the
bottom of the stack and we do not want to give back z.

But using gerepile, we can give back the memory locations corresponding to x2, y2, and
move the object z upwards so that no space is lost. Specifically:

pari_sp ltop = avma; /* remember the current top of the stack */
GEN x2 = gsqr(x);

GEN y2 = gsqr(y);

pari_sp lbot = avma; /* the bottom of the garbage pile */

GEN z = gadd(x2, y2); /* zis now the last object on the stack */
z = gerepile(ltop, lbot, z);

Of course, the last two instructions could also have been written more simply:
z = gerepile(ltop, lbot, gadd(x2,y2));

In fact gerepileupto is even simpler to use, because the result of gadd is the last object on the
stack and gadd is guaranteed to return an object suitable for gerepileupto:

ltop = avma;
z = gerepileupto(ltop, gadd(gsqr(x), gsqr(y)));

Make sure you understand exactly what has happened before you go on!

Remark on assignments and gerepile. When the tree structure and the size of the PARI
objects which will appear in a computation are under control, one may allocate sufficiently large
objects at the beginning, use assignment statements, then simply restore avma. Coming back to
the above example, note that if we know that x and y are of type real fitting into DEFAULTPREC
words, we can program without using gerepile at all:

z = cgetr (DEFAULTPREC); ltop = avma;
gaffect(gadd(gsqr(x), gsqr(y)), z);
set_avma(ltop);

This is often slower than a craftily used gerepile though, and certainly more cumbersome to use.
As a rule, assignment statements should generally be avoided.

Variations on a theme. it is often necessary to do several gerepiles during a computation.
However, the fewer the better. The only condition for gerepile to work is that the garbage be
connected. If the computation can be arranged so that there is a minimal number of connected
pieces of garbage, then it should be done that way.

For example suppose we want to write a function of two GEN variables x and y which creates
the vector [X2 +v,y% + x]. Without garbage collecting, one would write:

pl = gsqr(x); p2 = gadd(pl, y);
p3 = gsqr(y); pd = gadd(p3, x);
z = mkvec2(p2, p4); /* not suitable for gerepileupto! */

This leaves a dirty stack containing (in this order) z, p4, p3, p2, p1. The garbage here consists of
pl and p3, which are separated by p2. But if we compute p3 before p2 then the garbage becomes
connected, and we get the following program with garbage collecting;:
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ltop = avma; pl = gsqr(x); p3 = gsqr(y);

lbot = avma; z = cgetg(3, t_VEC);

gel(z, 1) = gadd(pl,y);

gel(z, 2) = gadd(p3,x); z = gerepile(ltop,lbot,z);

Finishing by z = gerepileupto(ltop, z) would be ok as well. Beware that

ltop = avma; pl = gadd(gsqr(x), y); p3 = gadd(gsqr(y), x);
z = cgetg(3, t_VEC);

gel(z, 1) = pi;

gel(z, 2) = p3; z = gerepileupto(ltop,z); /* WRONG */

is a disaster since pl and p3 are created before z, so the call to gerepileupto overwrites them,
leaving gel(z, 1) and gel(z, 2) pointing at random data! The following does work:

ltop = avma; pl = gsqr(x); p3 = gsqr(y);
lbot = avma; z = mkvec2(gadd(pl,y), gadd(p3,x));
z = gerepile(1ltop,lbot,z);

but is very subtly wrong in the sense that z = gerepileupto(ltop, z) would not work. The
reason being that mkvec2 creates the root z of the vector after its arguments have been evaluated,
creating the components of z too early; gerepile does not care, but the created z is a time bomb
which will explode on any later gerepileupto. On the other hand

ltop = avma; z = cgetg(3, t_VEC);
gel(z, 1) = gadd(gsqr(x), y);
gel(z, 2) = gadd(gsqr(y), x); z = gerepileupto(ltop,z); /* INEFFICIENT x/

leaves the results of gsqr(x) and gsqr(y) on the stack (and lets gerepileupto update them for
naught). Finally, the most elegant and efficient version (with respect to time and memory use) is
as follows

z = cgetg(3, t_VEC);
ltop = avma; gel(z, 1) = gerepileupto(ltop, gadd(gsqr(x), y));
ltop = avma; gel(z, 2) = gerepileupto(ltop, gadd(gsqr(y), x));

which avoids updating the container z and cleans up its components individually, as soon as they
are computed.

One last example. Let us compute the product of two complex numbers x and y, using the 3M
method which requires 3 multiplications instead of the obvious 4. Let z = x*y, and set x = x,.+i*x;
and similarly for y and z. We compute p1 = x, % y,, p2 = z; * y;, p3 = (, + x;) * (y» + v;), and
then we have z. = p; — p2, 2; = p3 — (p1 + p2). The program is as follows:

ltop = avma;

pl = gmul(gel(x,1), gel(y,1));

p2 = gmul(gel(x,2), gel(y,2));

p3 = gmul(gadd(gel(x,1), gel(x,2)), gadd(gel(y,1), gel(y,2)));
p4 = gadd(pl,p2);

lbot = avma; z = cgetg(3, t_COMPLEX);

gel(z, 1) = gsub(pl,p2);

gel(z, 2) gsub(p3,p4); z = gerepile(ltop,lbot,z);
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Exercise. Write a function which multiplies a matrix by a column vector. Hint: start with a
cgetg of the result, and use gerepile whenever a coeflicient of the result vector is computed. You
can look at the answer in src/basemath/RgV.c:RgM RgCmul ().

4.3.3.2 gerepileall.

Let us now see why we may need the gerepileall variants. Although it is not an infrequent
occurrence, we do not give a specific example but a general one: suppose that we want to do a
computation (usually inside a larger function) producing more than one PARI object as a result,
say two for instance. Then even if we set up the work properly, before cleaning up we have a stack
which has the desired results z1, z2 (say), and then connected garbage from lbot to ltop. If we
write

z1l = gerepile(ltop, lbot, z1);

then the stack is cleaned, the pointers fixed up, but we have lost the address of z2. This is where
we need the gerepileall function:

gerepileall(ltop, 2, &zl, &z2)

copies z1 and z2 to new locations, cleans the stack from ltop to the old avma, and updates
the pointers z1 and z2. Here we do not assume anything about the stack: the garbage can be
disconnected and z1, z2 need not be at the bottom of the stack. If all of these assumptions are
in fact satisfied, then we can call gerepilemanysp instead, which is usually faster since we do not
need the initial copy (on the other hand, it is less cache friendly).

A most important usage is “random” garbage collection during loops whose size requirements
we cannot (or do not bother to) control in advance:

pari_sp av = avma;
GEN x, y;
while (...)
{
garbage(); x = anything();
garbage(); y = anything(); garbage();
if (gc_needed(av,1)) /* memory is running low (half spent since entry) */
gerepileall(av, 2, &x, &y);
}

Here we assume that only x and y are needed from one iteration to the next. As it would be costly
to call gerepile once for each iteration, we only do it when it seems to have become necessary.

More precisely, the macro stack_lim(av,n) denotes an address where 2"~1/(2"~1 +1) of the
remaining stack space since reference point av is exhausted (1/2 for n = 1, 2/3 for n = 2). The
test gc_needed(av,n) becomes true whenever avma drops below that address.
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4.3.4 Comments.

First, gerepile has turned out to be a flexible and fast garbage collector for number-theoretic
computations, which compares favorably with more sophisticated methods used in other systems.
Our benchmarks indicate that the price paid for using gerepile and gerepile-related copies, when
properly used, is usually less than 1% of the total running time, which is quite acceptable!

Second, it is of course harder on the programmer, and quite error-prone if you do not stick to
a consistent PARI programming style. If all seems lost, just use gerepilecopy (or gerepileall)
to fix up the stack for you. You can always optimize later when you have sorted out exactly which
routines are crucial and what objects need to be preserved and their usual sizes.

If you followed us this far, congratulations, and rejoice: the rest is much easier.

4.4 Creation of PARI objects, assignments, conversions.

4.4.1 Creation of PARI objects. The basic function which creates a PARI object is

GEN cgetg(long 1, long t) [ specifies the number of longwords to be allocated to the object,
and ¢ is the type of the object, in symbolic form (see Section 4.5 for the list of these). The precise
effect of this function is as follows: it first creates on the PARI stack a chunk of memory of size
length longwords, and saves the address of the chunk which it will in the end return. If the
stack has been used up, a message to the effect that “the PARI stack overflows” is printed, and
an error raised. Otherwise, it sets the type and length of the PARI object. In effect, it fills its
first codeword (z[0]). Many PARI objects also have a second codeword (types t_INT, t_REAL,
t_PADIC, t_POL, and t_SER). In case you want to produce one of those from scratch, which should
be exceedingly rare, it is your responsibility to fill this second codeword, either explicitly (using the
macros described in Section 4.5), or implicitly using an assignment statement (using gaffect).

Note that the length argument [ is predetermined for a number of types: 3 for types t_INTMOD,
t_FRAC, t_COMPLEX, t_POLMOD, t_RFRAC, 4 for type t_QUAD, and 5 for type t_PADIC and t_QFB.
However for the sake of efficiency, cgetg does not check this: disasters will occur if you give an
incorrect length for those types.

Notes. 1) The main use of this function is create efficiently a constant object, or to prepare for
later assignments (see Section 4.4.3). Most of the time you will use GEN objects as they are created
and returned by PARI functions. In this case you do not need to use cgetg to create space to hold
them.

2) For the creation of leaves, i.e. t_INT or t_REAL,
GEN cgeti(long length)
GEN cgetr(long length)

should be used instead of cgetg(length, t_INT) and cgetg(length, t _REAL) respectively. Fi-
nally

GEN cgetc(long prec)

creates a t_COMPLEX whose real and imaginary part are t_REALs allocated by cgetr (prec).
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Examples. 1) Both z = cgeti(DEFAULTPREC) and cgetg(DEFAULTPREC, t_INT) create a t_INT
whose “precision” is bit_accuracy(DEFAULTPREC) = 64. This means z can hold rational integers
of absolute value less than 264, Note that in both cases, the second codeword is not filled. Of
course we could use numerical values, e.g. cgeti(4), but this would have different meanings on
different machines as bit_accuracy(4) equals 64 on 32-bit machines, but 128 on 64-bit machines.

2) The following creates a complez number whose real and imaginary parts can hold real numbers
of precision bit_accuracy(MEDDEFAULTPREC) = 96 bits:

z = cgetg(3, t_COMPLEX);
gel(z, 1) = cgetr (MEDDEFAULTPREC) ;
gel(z, 2) = cgetr (MEDDEFAULTPREC) ;

or simply z = cgetc (MEDDEFAULTPREC).
3) To create a matrix object for 4 x 3 matrices:

z = cgetg(4, t_MAT);
for(i=1; i<4; i++) gel(z, i) = cgetg(5, t_COL);

or simply z = zeromatcopy(4, 3), which further initializes all entries to gen_0.

These last two examples illustrate the fact that since PARI types are recursive, all the branches
of the tree must be created. The function cgetg creates only the “root”, and other calls to cgetg
must be made to produce the whole tree. For matrices, a common mistake is to think that z =
cgetg(4, tMAT) (for example) creates the root of the matrix: one needs also to create the column
vectors of the matrix (obviously, since we specified only one dimension in the first cgetg!). This
is because a matrix is really just a row vector of column vectors (hence a priori not a basic type),
but it has been given a special type number so that operations with matrices become possible.

Finally, to facilitate input of constant objects when speed is not paramount, there are four
varargs functions:

GEN mkintn(long n, ...) returns the nonnegative t_INT whose development in base 23? is given
by the following n 32bit-words (unsigned int).

mkintn(3, a2, al, a0);
returns a22% + a;23? + ao.

GEN mkpoln(long n, ...) Returns the t_POL whose n coefficients (GEN) follow, in order of
decreasing degree.

mkpoln(3, gen_1, gen_2, gen_0);

returns the polynomial X2 + 2X (in variable 0, use setvarn if you want other variable numbers).
Beware that n is the number of coefficients, hence one more than the degree.

GEN mkvecn(long n, ...) returns the t_VEC whose n coefficients (GEN) follow.

GEN mkcoln(long n, ...) returns the t_COL whose n coefficients (GEN) follow.
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Warning. Contrary to the policy of general PARI functions, the latter three functions do not copy
their arguments, nor do they produce an object a priori suitable for gerepileupto. For instance

/* gerepile-safe: components are universal objects */
z = mkvecn(3, gen_1, gen_0, gen_2);

/* not OK for gerepileupto: stoi(3) creates component before root */
z = mkvecn(3, stoi(3), gen_0, gen_2);

/* NO! First vector component x is destroyed */
x = gclone(gen_1);

z = mkvecn(3, x, gen_0, gen_2);
gunclone (x);

The following function is also available as a special case of mkintn:
GEN uu32toi(ulong a, ulong b)

Returns the GEN equal to 232a + b, assuming that a,b < 232. This does not depend on
sizeof (long): the behavior is as above on both 32 and 64-bit machines.

4.4.2 Sizes.

long gsizeword(GEN x) returns the total number of BITS_IN_LONG-bit words occupied by the tree
representing x.

long gsizebyte(GEN x) returns the total number of bytes occupied by the tree representing x,
i.e. gsizeword(x) multiplied by sizeof (long). This is normally useless since PARI functions use
a number of words as input for lengths and precisions.

4.4.3 Assignments. Firstly, if x and y are both declared as GEN (i.e. pointers to something), the
ordinary C assignment y = x makes perfect sense: we are just moving a pointer around. However,
physically modifying either x or y (for instance, x[1] = 0) also changes the other one, which is
usually not desirable.

Very important note. Using the functions described in this paragraph is inefficient and often
awkward: one of the gerepile functions (see Section 4.3) should be preferred. See the paragraph
end for one exception to this rule.

The general PARI assignment function is the function gaffect with the following syntax:
void gaffect(GEN x, GEN y)

Its effect is to assign the PARI object x into the preezisting object y. Both x and y must be scalar
types. For convenience, vector or matrices of scalar types are also allowed.

This copies the whole structure of x into y so many conditions must be met for the assignment
to be possible. For instance it is allowed to assign a t_INT into a t_REAL, but the converse is
forbidden. For that, you must use the truncation or rounding function of your choice, e.g.mpfloor.

It can also happen that y is not large enough or does not have the proper tree structure to
receive the object x. For instance, let y the zero integer with length equal to 2; then y is too small
to accommodate any nonzero t_INT. In general common sense tells you what is possible, keeping in
mind the PARI philosophy which says that if it makes sense it is valid. For instance, the assignment
of an imprecise object into a precise one does not make sense. However, a change in precision of
imprecise objects is allowed, even if it increases its accuracy: we complement the “mantissa” with
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infinitely many 0 digits in this case. (Mantissa between quotes, because this is not restricted to
t_REALs, it also applies for p-adics for instance.)

(1))

All functions ending in “z” such as gaddz (see Section 4.2.4) implicitly use this function. In
fact what they exactly do is record avma (see Section 4.3), perform the required operation, gaffect
the result to the last operand, then restore the initial avma.

You can assign ordinary C long integers into a PARI object (not necessarily of type t_INT)
using

void gaffsg(long s, GEN y)
Note. Due to the requirements mentioned above, it is usually a bad idea to use gaffect statements.

There is one exception: for simple objects (e.g. leaves) whose size is controlled, they can be easier
to use than gerepile, and about as efficient.

Coercion. It is often useful to coerce an inexact object to a given precision. For instance at the
beginning of a routine where precision can be kept to a minimum; otherwise the precision of the
input is used in all subsequent computations, which is inefficient if the latter is known to thousands
of digits. One may use the gaffect function for this, but it is easier and more efficient to call

GEN gtofp(GEN x, long prec) converts the complex number x (t_INT, t_REAL, t_FRAC, t_QUAD
or t_COMPLEX) to either a t_REAL or t_COMPLEX whose components are t_REAL of length prec.

4.4.4 Copy. It is also very useful to copy a PARI object, not just by moving around a pointer as
in the y = x example, but by creating a copy of the whole tree structure, without pre-allocating
a possibly complicated y to use with gaffect. The function which does this is called gcopy. Its
syntax is:

GEN gcopy(GEN x)
and the effect is to create a new copy of x on the PARI stack.

Sometimes, on the contrary, a quick copy of the skeleton of x is enough, leaving pointers
to the original data in x for the sake of speed instead of making a full recursive copy. Use GEN
shallowcopy (GEN x) for this. Note that the result is not suitable for gerepileupto !

Make sure at this point that you understand the difference between y = x, y = gecopy(x), y
= shallowcopy(x) and gaffect(x,y).

4.4.5 Clones. Sometimes, it is more efficient to create a persistent copy of a PARI object. This is
not created on the stack but on the heap, hence unaffected by gerepile and friends. The function
which does this is called gclone. Its syntax is:

GEN gclone(GEN x)
A clone can be removed from the heap (thus destroyed) using
void gunclone(GEN x)

No PARI object should keep references to a clone which has been destroyed!
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4.4.6 Conversions. The following functions convert C objects to PARI objects (creating them on
the stack as usual):

GEN stoi(long s): C long integer (“small”) to t_INT.

GEN dbltor(double s): C double to t_REAL. The accuracy of the result is 19 decimal digits, i.e. a
type t_REAL of length DEFAULTPREC, although on 32-bit machines only 16 of them are significant.

We also have the converse functions:

long itos(GEN x): x must be of type t_INT,
double rtodbl(GEN x): x must be of type t_REAL,
as well as the more general ones:

long gtolong(GEN x),

double gtodouble(GEN x).

4.5 Implementation of the PARI types.

We now go through each type and explain its implementation. Let z be a GEN, pointing at a PARI
object. In the following paragraphs, we will constantly mix two points of view: on the one hand, z
is treated as the C pointer it is, on the other, as PARI’s handle on some mathematical entity, so we
will shamelessly write z # 0 to indicate that the value thus represented is nonzero (in which case
the pointer z is certainly not NULL). We offer no apologies for this style. In fact, you had better feel
comfortable juggling both views simultaneously in your mind if you want to write correct PARI
programs.

Common to all the types is the first codeword z[0], which we do not have to worry about
since this is taken care of by cgetg. Its precise structure depends on the machine you are using,
but it always contains the following data: the internal type number attached to the symbolic type
name, the length of the root in longwords, and a technical bit which indicates whether the object
is a clone or not (see Section 4.4.5). This last one is used by gp for internal garbage collecting, you
will not have to worry about it.

Some types have a second codeword, different for each type, which we will soon describe as we
will shortly consider each of them in turn.

The first codeword is handled through the following macros:
long typ(GEN z) returns the type number of z.

void settyp(GEN z, long n) sets the type number of z to n (you should not have to use this
function if you use cgetg).

long 1g(GEN z) returns the length (in longwords) of the root of z.

long setlg(GEN z, long 1) sets the length of z to 1; you should not have to use this function if
you use cgetg.

void lg_increase(GEN z) increase the length of z by 1; you should not have to use this function
if you use cgetg.

long isclone(GEN z) is z a clone?
void setisclone(GEN z) sets the clone bit.

void unsetisclone(GEN z) clears the clone bit.
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Important remark. For the sake of efficiency, none of the codeword-handling macros check the
types of their arguments even when there are stringent restrictions on their use. It is trivial to
create invalid objects, or corrupt one of the “universal constants” (e.g. setting the sign of gen_0 to
1), and they usually provide negligible savings. Use higher level functions whenever possible.

Remark. The clone bit is there so that gunclone can check it is deleting an object which was
allocated by gclone. Miscellaneous vector entries are often cloned by gp so that a GP statement
like v[1] = x does not involve copying the whole of v: the component v[1] is deleted if its clone
bit is set, and is replaced by a clone of x. Don’t set/unset yourself the clone bit unless you know
what you are doing: in particular never set the clone bit of a vector component when the said
vector is scheduled to be uncloned. Hackish code may abuse the clone bit to tag objects for reasons
unrelated to the above instead of using proper data structures. Don’t do that.

4.5.1 Type t_INT (integer). this type has a second codeword z[1] which contains the following
information:
the sign of z: coded as 1, 0 or —1 if z > 0, z = 0, z < 0 respectively.

the effective length of z, i.e. the total number of significant longwords. This means the following:
apart from the integer 0, every integer is “normalized”, meaning that the most significant mantissa
longword is nonzero. However, the integer may have been created with a longer length. Hence the
“length” which is in z[0] can be larger than the “effective length” which is in z[1].

This information is handled using the following macros:

long signe(GEN z) returns the sign of z.

void setsigne(GEN z, long s) sets the sign of z to s.

long lgefint(GEN z) returns the effective length of z.

void setlgefint(GEN z, long 1) sets the effective length of z to 1.

The integer 0 can be recognized either by its sign being 0, or by its effective length being equal
to 2. Now assume that z # 0, and let

n
|z| = g 2 B", where z, # 0 and B = 2BITS-IN-LONG
i=0

With these notations, n is 1gefint(z) - 3, and the mantissa of z may be manipulated via the
following interface:

GEN int_MSW(GEN z) returns a pointer to the most significant word of z, z,.
GEN int_LSW(GEN z) returns a pointer to the least significant word of z, z.

GEN int_W(GEN z, long i) returns the i-th significant word of z, z;. Accessing the i-th significant
word for ¢ > n yields unpredictable results.

GEN int_W_1g(GEN z, 1long i, long 1lz) returns the i-th significant word of z, z;, assuming
lgefint(z) is 1z (= n + 3). Accessing the i-th significant word for i > n yields unpredictable
results.

GEN int_precW(GEN z) returns the previous (less significant) word of z, z;_; assuming z points to
Zi.
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GEN int_nextW(GEN z) returns the next (more significant) word of z, z;;; assuming z points to
Zg.

Unnormalized integers, such that z, is possibly 0, are explicitly forbidden. To enforce this,
one may write an arbitrary mantissa then call

void int_normalize(GEN z, long knownO)

normalizes in place a nonnegative integer (such that z, is possibly 0), assuming at least the first
knownO words are zero.

For instance a binary and could be implemented in the following way:

GEN AND(GEN x, GEN y) {
long i, 1x, ly, lout;
long *xp, *yp, *outp; /* mantissa pointers */
GEN out;

if (!signe(x) || !signe(y)) return gen_O;
1x = lgefint(x); xp = int_LSW(x);
ly = 1gefint(y); yp = int_LSW(y); lout = min(1x,ly); /* > 2 */

out = cgeti(lout); out[1l] = evalsigne(1l) | evallgefint(lout);
outp = int_LSW(out) ;
for (i=2; i < lout; i++)

{
*xoutp = (kxp) & (*yp);
outp = int_nextW(outp);
Xp = int_nextW(xp);
yp = int_nextW(yp);

}

if ( '*int_MSW(out) ) out = int_normalize(out, 1);
return out;

}

This low-level interface is mandatory in order to write portable code since PARI can be compiled
using various multiprecision kernels, for instance the native one or GNU MP, with incompatible
internal structures (for one thing, the mantissa is oriented in different directions).

4.5.2 Type t_REAL (real number). this type has a second codeword z[1] which also encodes
its sign, obtained or set using the same functions as for a t_INT, and a binary exponent. This
exponent is handled using the following macros:

long expo(GEN z) returns the exponent of z. This is defined even when z is equal to zero.
void setexpo(GEN z, long e) sets the exponent of z to e.

Note the functions:

long gexpo(GEN z) which tries to return an exponent for z, even if z is not a real number.

long gsigne(GEN z) which returns a sign for z, even when z is a real number of type t_INT,
t_FRAC or t_REAL, an infinity (t_INFINITY) or a t_QUAD of positive discriminant.

The real zero is characterized by having its sign equal to 0. If z is not equal to 0, then it is
represented as 2°M, where e is the exponent, and M € [1,2[ is the mantissa of z, whose digits are
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stored in z[2], ..., z[1lg(z) — 1]. For historical reasons, the prec parameter attached to floating point
functions is measured in BITS_IN_LONG-bit words and is equal to the length of x: yes, this includes
the two code words and depends on sizeof (long). For clarity we advise to use bit_accuracy,
which computes the true length of the mantissa in bits, and convert between bits and prec using
the prec2nbits and nbits2prec macros. But keep in mind that the accuracy of t_REAL actually
increases by increments of BITS_IN_LONGbits.

More precisely, let m be the integer (z[2],..., z[1g(z)-1]) in base 2"BITS_IN_LONG; here,

z[2] is the most significant longword and is normalized, i.e. its most significant bit is 1. Then we
have M = m/2bit,accuracy(lg(z))—l—expo(z)'

GEN mantissa_real(GEN z, long *e) returns the mantissa m of z, and sets *e to the exponent
bit_accuracy(lg(z)) — 1 — expo(z), so that z = m/2°.

Thus, the real number 3.5 to accuracy bit_accuracy(1lg(z)) is represented as z[0] (encoding
type = t_REAL, 1g(z)), z[1] (encoding sign = 1, expo = 1), z[2] = 0xe0000000, z[3] = ... =
z[1lg(z) — 1] = 0xO0.

4.5.3 Type t_INTMOD. z[1] points to the modulus, and z[2] at the number representing the class
z. Both are separate GEN objects, and both must be t_INTs, satisfying the inequality 0 < z[2] < z[1].

4.5.4 Type t_FRAC (rational number). z[1] points to the numerator n, and z[2] to the
denominator d. Both must be of type t_INT such that n # 0, d > 0 and (n,d) = 1.
4.5.5 Type t_FFELT (finite field element). (Experimental)

Components of this type should normally not be accessed directly. Instead, finite field elements
should be created using ffgen.

The second codeword z[1] determines the storage format of the element, among

e t_FF_FpXQ: A=z[2] and T=z[3] are FpX, p=z[4] is a t_INT, where p is a prime number, T’
is irreducible modulo p, and deg A < degT'. This represents the element A (mod T') in F,[X]/T.

e t_FF_Flxq: A=z[2] and T=z[3] are F1lx, 1=z[4] is a t_INT, where [ is a prime number, T’
is irreducible modulo I, and deg A < deg T This represents the element A (mod T') in F;[X]/T.

e t_FF_F2xq: A=z[2] and T=z[3] are F2x, 1=z[4] is the t_INT 2, T is irreducible modulo 2,
and deg A < degT'. This represents the element A (mod T) in Fy[X]/T.

4.5.6 Type t_COMPLEX (complex number). z[1] points to the real part, and z[2] to the
imaginary part. The components z[1] and z[2] must be of type t_INT, t_REAL or t_FRAC. For
historical reasons t_INTMOD and t_PADIC are also allowed (the latter for p = 2 or congruent to 3
mod 4 only), but one should rather use the more general t_POLMOD construction.
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4.5.7 Type t_PADIC (p-adic numbers). this type has a second codeword z[1] which contains
the following information: the p-adic precision (the exponent of p modulo which the p-adic unit
corresponding to z is defined if z is not 0), i.e. one less than the number of significant p-adic digits,
and the exponent of z. This information can be handled using the following functions:

long precp(GEN z) returns the p-adic precision of z. This is 0 if z = 0.
void setprecp(GEN z, long 1) sets the p-adic precision of z to 1.

long valp(GEN z) returns the p-adic valuation of z (i.e. the exponent). This is defined even if z
is equal to 0.

void setvalp(GEN z, long e) sets the p-adic valuation of z to e.

In addition to this codeword, z[2] points to the prime p, z[3] points to pP**°P(#) and z[4]
points to at_INT representing the p-adic unit attached to z modulo z[3] (and to zero if z is zero).
To summarize, if z # 0, we have the equality:

z = pP®)  (z[4] + O(z[3])), where z[3] = O(pPreP®).

4.5.8 Type t_QUAD (quadratic number). z[1] points to the canonical polynomial P defining
the quadratic field (as output by quadpoly), z[2] to the “real part” and z[3] to the “imaginary
part”. The latter are of type t_INT, t_FRAC, t_INTMOD, or t_PADIC and are to be taken as the
coefficients of z with respect to the canonical basis (1, X') of Q[X]/(P(X)). Exact complex numbers
may be implemented as quadratics, but t_COMPLEX is in general more versatile (t _REAL components
are allowed) and more efficient.

Operations involving a t_QUAD and t_COMPLEX are implemented by converting the t_QUAD
to a t_REAL (or t_COMPLEX with t_REAL components) to the accuracy of the t_COMPLEX. As a
consequence, operations between t_QUAD and exzact t_COMPLEXs are not allowed.

4.5.9 Type t_POLMOD (polmod). as for t_INTMODs, z[1] points to the modulus, and z[2]
to a polynomial representing the class of z. Both must be of type t_POL in the same variable,
satisfying the inequality deg z[2] < degz[1]. However, z[2] is allowed to be a simplification of such
a polynomial, e.g. a scalar. This is tricky considering the hierarchical structure of the variables; in
particular, a polynomial in variable of lesser priority (see Section 4.6) than the modulus variable is
valid, since it is considered as the constant term of a polynomial of degree 0 in the correct variable.
On the other hand a variable of greater priority is not acceptable.

4.5.10 Type t_POL (polynomial). this type has a second codeword. It contains a “sign”: 0 if
the polynomial is equal to 0, and 1 if not (see however the important remark below) and a variable
number (e.g. 0 for z, 1 for y, etc...).

These data can be handled with the following macros: signe and setsigne as for t _INT and t_REAL,
long varn(GEN z) returns the variable number of the object z,
void setvarn(GEN z, long v) sets the variable number of z to v.

The variable numbers encode the relative priorities of variables, we will give more details in
Section 4.6. Note also the function long gvar (GEN z) which tries to return a variable number for
z, even if z is not a polynomial or power series. The variable number of a scalar type is set by
definition equal to NO_VARIABLE, which has lower priority than any other variable number.
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The components z[2], z[3],...z[1g(z)-1] point to the coefficients of the polynomial in
ascending order, with z[2] being the constant term and so on.

For a t_POL of nonzero sign, degpol, leading_coeff, constant_coeff, return its degree, and
a pointer to the leading, resp. constant, coefficient with respect to the main variable. Note that no
copy is made on the PARI stack so the returned value is not safe for a basic gerepile call. Applied
to any other type than t_POL, the result is unspecified. Those three functions are still defined when
the sign is 0, see Section 5.2.7 and Section 10.6.

long degree(GEN x) returns the degree of x with respect to its main variable even when x is not
a polynomial (a rational function for instance). By convention, the degree of a zero polynomial
is —1.

Important remark. The leading coefficient of a t_POL may be equal to zero:

e it is not allowed to be an exact rational 0, such as gen_0;

e an exact nonrational 0, like Mod (0,2), is possible for constant polynomials, i.e. of length 3
and no other coefficient: this carries information about the base ring for the polynomial;

e an inexact 0, like 0.E-38 or 0(375), is always possible. Inexact zeroes do not correspond
to an actual 0, but to a very small coefficient according to some metric; we keep them to give
information on how much cancellation occurred in previous computations.

A polynomial disobeying any of these rules is an invalid unnormalized object. We advise not
to use low-level constructions to build a t_POL coefficient by coefficient, such as

GEN T = cgetg(4, t_POL);
T[1] = evalvarn(0);
gel(T, 2) = x;

gel(T, 3) = y;

But if you do and it is not clear whether the result will be normalized, call

GEN normalizepol(GEN x) applied to an unnormalized t_POL x (with all coefficients correctly set
except that leading term(x) might be zero), normalizes x correctly in place and returns x. This
functions sets signe (to 0 or 1) properly.

Caveat. A consequence of the remark above is that zero polynomials are characterized by the
fact that their sign is 0. It is in general incorrect to check whether 1g(x) is 2 or degpol(x) < 0,
although both tests are valid when the coefficient types are under control: for instance, when they
are guaranteed to be t_INTs or t_FRACs. The same remark applies to t_SERs.

4.5.11 Type t_SER (power series). This type also has a second codeword, which encodes a
“sign”, i.e. 0 if the power series is 0, and 1 if not, a variable number as for polynomials, and an
exponent. This information can be handled with the following functions: signe, setsigne, varn,
setvarn as for polynomials, and valp, setvalp for the exponent as for p-adic numbers. Beware:
do not use expo and setexpo on power series.

The coefficients z[2], z[3],...z[1g(z)-1] point to the coefficients of z in ascending order. As
for polynomials (see remark there), the sign of a t_SER is 0 if and only all its coefficients are equal
to 0. (The leading coefficient cannot be an integer 0.) A series whose coefficients are integers equal
to zero is represented as O(z™) (zeroser(vz,n)). A series whose coefficients are exact zeroes, but
not all of them integers (e.g. an t_INTMOD such as Mod(0,2)) is represented as z x z"~! + O(z"),
where z is the 0 of the base ring, as per Rg_get_0.
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Note that the exponent of a power series can be negative, i.e. we are then dealing with a
Laurent series (with a finite number of negative terms).

4.5.12 Type t_RFRAC (rational function). z[1] points to the numerator n, and z[2] on the
denominator d. The denominator must be of type t_POL, with variable of higher priority than the
numerator. The numerator n is not an exact 0 and (n,d) = 1 (see gred_rfac2).

4.5.13 Type t_QFB (binary quadratic form). z[1], z[2], z[3] point to the three coefficients
of the form, and z[4] point to the form discriminant. All four are of type t_INT.

4.5.14 Type t_VEC and t_COL (vector). z[1], z[2],...z[1g(z)-1] point to the components of
the vector.

4.5.15 Type t_MAT (matrix). z[1], z[2],...z[1g(z)-1] point to the column vectors of z,
i.e. they must be of type t_COL and of the same length.

4.5.16 Type t_VECSMALL (vector of small integers). z[1], z[2],...z[1g(z)-1] are ordinary
signed long integers. This type is used instead of a t_VEC of t_INTs for efficiency reasons, for
instance to implement efficiently permutations, polynomial arithmetic and linear algebra over small
finite fields, etc.

4.5.17 Type t_STR (character string).

char * GSTR(z) (= (z+1)) points to the first character of the (NULL-terminated) string.

4.5.18 Type t_ERROR (error context). This type holds error messages, as well as details about
the error, as returned by the exception handling system. The second codeword z[1] contains the

error type (an int, as passed to pari_err). The subsequent words z[2],...z[1g(z)-1] are GENs
containing additional data, depending on the error type.

4.5.19 Type t_CLOSURE (closure). This type holds GP functions and closures, in compiled form.
The internal detail of this type is subject to change each time the GP language evolves. Hence
we do not describe it here and refer to the Developer’s Guide. However functions to create or to
evaluate t_CLOSUREs are documented in Section 12.1.

long closure_arity(GEN C) returns the arity of the t_CLOSURE.

long closure_is_variadic(GEN C) returns 1 if the closure C is variadic, O else.

4.5.20 Type t_INFINITY (infinity).

This type has a single t_INT component, which is either 1 or —1, corresponding to +oo and
—o00 respectively.

GEN mkmoo () returns —oo

GEN mkoo () returns oo

long inf_get_sign(GEN x) returns 1 if x is 400, and —1 if x is —oo.

4.5.21 Type t_LIST (list). this type was introduced for specific gp use and is rather inefficient

compared to a straightforward linked list implementation (it requires more memory, as well as many
unnecessary copies). Hence we do not describe it here and refer to the Developer’s Guide.
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Implementation note. For the types including an exponent (or a valuation), we actually store a
biased nonnegative exponent (bit-ORing the biased exponent to the codeword), obtained by adding
a constant to the true exponent: either HIGHEXPOBIT (for t_REAL) or HIGHVALPBIT (for t_PADIC
and t_SER). Of course, this is encapsulated by the exponent/valuation-handling macros and needs
not concern the library user.

4.6 PARI variables.

4.6.1 Multivariate objects.

We now consider variables and formal computations. As we have seen in Section 4.5, the codewords
for types t_POL and t_SER encode a “variable number”. This is an integer, ranging from 0 to
MAXVARN. Relative priorities may be ascertained using

int varncmp(long v, long w)
which is > 0, = 0, < 0 whenever v has lower, resp. same, resp. higher priority than w.

The way an object is considered in formal computations depends entirely on its “principal
variable number” which is given by the function

long gvar(GEN z)

which returns a variable number for z, even if z is not a polynomial or power series. The variable
number of a scalar type is set by definition equal to NO_VARIABLE which has lower priority than any
valid variable number. The variable number of a recursive type which is not a polynomial or power
series is the variable number with highest priority among its components. But for polynomials and
power series only the “outermost” number counts (we directly access varn(z) in the codewords):
the representation is not symmetrical at all.

Under gp, one needs not worry too much since the interpreter defines the variables as it sees
them* and do the right thing with the polynomials produced.

But in library mode, they are tricky objects if you intend to build polynomials yourself (and
not just let PARI functions produce them, which is less efficient). For instance, it does not make
sense to have a variable number occur in the components of a polynomial whose main variable has
a lower priority, even though PARI cannot prevent you from doing it.

4.6.2 Creating variables. A basic difficulty is to “create” a variable. Some initializations are
needed before you can use a given integer v as a variable number.

Initially, this is done for 0 and 1 (the variables x and y under gp), and 2,...,9 (printed as t2,
...t9), with decreasing priority.

* The first time a given identifier is read by the GP parser a new variable is created, and it is
assigned a strictly lower priority than any variable in use at this point. On startup, before any user
input has taken place, 'x’ is defined in this way and has initially maximal priority (and variable
number 0).
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4.6.2.1 User variables. When the program starts, x (number 0) and y (number 1) are the only
available variables, numbers 2 to 9 (decreasing priority) are reserved for building polynomials with
predictable priorities.

To define further ones, you may use
GEN varhigher(const char *s)
GEN varlower (const char *s)

to recover a monomial of degree 1 in a new variable, which is guaranteed to have higer
(resp. lower) priority than all existing ones at the time of the function call. The variable is printed
as s, but is not part of GP’s interpreter: it is not a symbol bound to a value.

On the other hand

long fetch_user_var(char #*s): inspects the user variable whose name is the string pointed to
by s, creating it if needed, and returns its variable number.

long v
GEN gy

fetch_user_var("y");
pol_x(v);

The function raises an exception if the name is already in use for an installed or built-in function,
or an alias. This function is mostly useless since it returns a variable with unpredictable priority.
Don’t use it to create new variables.

Caveat. You can use gp_read_str (see Section 4.7.1) to execute a GP command and create GP
variables on the fly as needed:

GEN gy = gp_read_str("’y"); /* returns pol_x(v), for some v */
long v = varn(gy);

But please note the quote ’y in the above. Using gp_read_str ("y") might work, but is dangerous,
especially when programming functions to be used under gp. The latter reads the value of y,
as currently known by the gp interpreter, possibly creating it in the process. But if y has been
modified by previous gp commands (e.g. y = 1), then the value of gy is not what you expected it
to be and corresponds instead to the current value of the gp variable (e.g. gen_1).

GEN fetch_var_value(long v) returns a shallow copy of the current value of the variable num-
bered v. Returns NULL if that variable number is unknown to the interpreter, e.g. it is a user
variable. Note that this may not be the same as pol_x(v) if assignments have been performed in
the interpreter.

4.6.2.2 Temporary variables. You can create temporary variables using
long fetch_var() returns a new variable with lower priority than any variable currently in use.

long fetch_var_higher () returns a new variable with higher priority than any variable currently
in use.

After the statement v = fetch_var(), you can use pol_1(v) and pol_x(v). The variables created
in this way have no identifier assigned to them though, and are printed as tnumber. You can assign
a name to a temporary variable, after creating it, by calling the function

void name_var(long n, char *s)

after which the output machinery will use the name s to represent the variable number n. The
GP parser will not recognize it by that name, however, and calling this on a variable known to gp
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raises an error. Temporary variables are meant to be used as free variables to build polynomials
and power series, and you should never assign values or functions to them as you would do with
variables under gp. For that, you need a user variable.

All objects created by fetch_var are on the heap and not on the stack, thus they are not
subject to standard garbage collecting (they are not destroyed by a gerepile or set_avma(ltop)
statement). When you do not need a variable number anymore, you can delete it using

long delete_var()

which deletes the latest temporary variable created and returns the variable number of the previous
one (or simply returns 0 if none remain). Of course you should make sure that the deleted variable
does not appear anywhere in the objects you use later on. Here is an example:

long first = fetch_var();
fetch_var();
fetch_var(); /* prepare three variables for internal use */

long ni

long n2

/* delete all variables before leaving */
do { num = delete_var(); } while (num && num <= first);

The (dangerous) statement
while (delete_var()) /* empty */;

removes all temporary variables in use.

4.6.3 Comparing variables.

Let us go back to varncmp. There is an interesting corner case, when one of the compared
variables (from gvar, say) is NO_VARIABLE. In this case, varncmp declares it has lower priority than
any other variable; of course, comparing NO_VARIABLE with itself yields 0 (same priority);

In addition to varncmp we have

long varnmax(long v, long w) given two variable numbers (possibly NO_VARIABLE), returns the
variable with the highest priority. This function always returns a valid variable number unless it is
comparing NO_VARIABLE to itself.

long varnmin(long x, long y) given two variable numbers (possibly NO_VARIABLE), returns the

variable with the lowest priority. Note that when comparing a true variable with NO_VARIABLE, this
function returns NO_VARIABLE, which is not a valid variable number.
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4.7 Input and output.

Two important aspects have not yet been explained which are specific to library mode: input and
output of PARI objects.
4.7.1 Input.

For input, PARI provides several powerful high level functions which enable you to input your
objects as if you were under gp. In fact, it is essentially the GP syntactical parser.

There are two similar functions available to parse a string:
GEN gp_read_str(const char *s)
GEN gp_read_str_multiline(const char *s, char *last)

Both functions read the whole string s. The function gp_read_str ignores newlines: it assumes
that the input is one expression and returns the result of this expression.

The function gp_read_str multiline processes the text in the same way as the GP command
read: newlines are significant and can be used to separate expressions. The return value is that of
the last nonempty expression evaluated.

In gp_read_str multiline, if last is not NULL, then *last receives the last character from
the filtered input: this can be used to check if the last character was a semi-colon (to hide the
output in interactive usage). If (and only if) the input contains no statements, then *last is set
to 0.

For both functions, gp’s metacommands are recognized.
Two variants allow to specify a default precision while evaluating the string:

GEN gp_read_str_prec(const char *s, long prec) As gp_read str, but set the precision to
prec words while evaluating s.

GEN gp_read_str_bitprec(const char *s, long bitprec) As gp_read_str, but set the preci-
sion to bitprec bits while evaluating s.

Note. The obsolete form
GEN readseq(char *t)

still exists for backward compatibility (assumes filtered input, without spaces or comments).
Don’t use it.

To read a GEN from a file, you can use the simpler interface
GEN gp_read_stream(FILE *file)

which reads a character string of arbitrary length from the stream file (up to the first complete
expression sequence), applies gp_read_str to it, and returns the resulting GEN. This way, you do
not have to worry about allocating buffers to hold the string. To interactively input an expression,
use gp-read_stream(stdin). Return NULL when there are no more expressions to read (we reached

EOF).
Finally, you can read in a whole file, as in GP’s read statement

GEN gp_read_file(char *name)
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As usual, the return value is that of the last nonempty expression evaluated. There is one technical
exception: if name is a binary file (from writebin) containing more than one object, a t_VEC
containing them all is returned. This is because binary objects bypass the parser, hence reading
them has no useful side effect.

4.7.2 Output to screen or file, output to string.

General output functions return nothing but print a character string as a side effect. Low level
routines are available to write on PARI output stream pari_outfile (stdout by default):

void pari_putc(char c): write character c to the output stream.
void pari_puts(char *s): write s to the output stream.

void pari_flush(): flush output stream; most streams are buffered by default, this command
makes sure that all characters output so are actually written.

void pari_printf(const char *fmt, ...): the most versatile such function. fmt is a character
string similar to the one printf uses. In there, % characters have a special meaning, and describe
how to print the remaining operands. In addition to the standard format types (see the GP function
printf), you can use the length modifier P (for PARI of course!) to specify that an argument is a
GEN. For instance, the following are valid conversions for a GEN argument

%Ps convert to char* (will print an arbitrary GEN)
%P.10s  convert to char*, truncated to 10 chars

%P .2f convert to floating point format with 2 decimals
%P4d convert to integer, field width at least 4

pari_printf("x[%d] = %Ps is not invertible!\n", i, gel(x,i));

Here i is an int, x a GEN which is not a leaf (presumably a vector, or a polynomial) and this would
insert the value of its i-th GEN component: gel(x,i).

Simple but useful variants to pari_printf are

void output(GEN x) prints x in raw format, followed by a newline and a buffer flush. This is more
or less equivalent to

pari_printf ("/%Ps\n", x);
pari_flush();

void outmat(GEN x) as above except if x is a t_MAT, in which case a multi-line display is used
to display the matrix. This is prettier for small dimensions, but quickly becomes unreadable and
cannot be pasted and reused for input. If all entries of x are small integers, you may use the
recursive features of %Pd and obtain the same (or better) effect with

pari_printf ("/%Pd\n", x);
pari_flush();

A variant like "%5Pd" would improve alignment by imposing 5 chars for each coefficient. Similarly
if all entries are to be converted to floats, a format like "%5.1P£f" could be useful.

These functions write on (PARI’s idea of) standard output, and must be used if you want your
functions to interact nicely with gp. In most programs, this is not a concern and it is more flexible
to write to an explicit FILE#*, or to recover a character string:

void pari_fprintf(FILE *file, const char *fmt, ...) writes the remaining arguments to
stream file according to the format specification fmt.
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char* pari_sprintf (const char *fmt, ...) produces a string from the remaining arguments,
according to the PARI format fmt (see printf). This is the libpari equivalent of strprintf, and
returns a malloc’ed string, which must be freed by the caller. Note that contrary to the analogous
sprintf in the 1libc you do not provide a buffer (leading to all kinds of buffer overflow concerns);
the function provided is actually closer to the GNU extension asprintf, although the latter has a
different interface.

Simple variants of pari_sprintf convert a GEN to a malloc’ed ASCII string, which you must
still free after use:

char* GENtostr(GEN x), using the current default output format (prettymat by default).
char* GENtoTeXstr(GEN x), suitable for inclusion in a TEX file.
Note that we have va_list analogs of the functions of printf type seen so far:
void pari_vprintf(const char *fmt, va_list ap)
void pari_vfprintf(FILE *file, const char *fmt, va_list ap)

char* pari_vsprintf(const char *fmt, va_list ap)

4.7.3 Errors.

If you want your functions to issue error messages, you can use the general error handling routine
pari_err. The basic syntax is

pari_err(e_MISC, "error message");

This prints the corresponding error message and exit the program (in library mode; go back to the
gp prompt otherwise). You can also use it in the more versatile guise

pari_err(e_MISC, format, ...);

where format describes the format to use to write the remaining operands, as in the pari_printf
function. For instance:

pari_err(e_MISC, "x[%d] = %Ps is not invertible!", i, gel(x,i));

The simple syntax seen above is just a special case with a constant format and no remaining
arguments. The general syntax is

void pari_err(numerr, ...)

where numerr is a codeword which specifies the error class and what to do with the remaining
arguments and what message to print. For instance, if x is a GEN with internal type t_STR, say,
pari_err(e_TYPE, "extgcd", x) prints the message:

*%*  incorrect type in extgcd (t_STR),

See Section 11.4 for details. In the libpari code itself, the general-purpose e MISC is used sparingly:
it is so flexible that the corresponding error contexts (t_ERROR) become hard to use reliably. Other
more rigid error types are generally more useful: for instance the error context attached to the
e_TYPE exception above is precisely documented and contains "extgcd" and x (not only its t