A Tutorial
for

PARI / GP

(version 2.15.3)
The PARI Group

Institut de Mathématiques de Bordeaux, UMR 5251 du CNRS.
Université de Bordeaux, 351 Cours de la Libération
F-33405 TALENCE Cedex, FRANCE

e-mail: pari@math.u-bordeaux.fr

Home Page:
http://pari.math.u-bordeaux.fr/

Copyright (© 2000-2022 The PARI Group

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions, or translations, of this manual
under the conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

PARI/GP is Copyright © 2000-2022 The PARI Group

PARI/GP is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation. It is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY WHATSOEVER.

Table of Contents

1. Greetings! L 4
2. Warming up o .o e 7
3. The Remaining PARI Types e 9
4. Elementary Arithmetic Functions oL 14
5. Performing Linear Algebra 15
6. Using Transcendental Functions 17
7. Using Numerical Tools 20
8. Polynomialso 22
9. Power Series 25
10. Working with Elliptic Curves o e 25
11. Working in Quadratic Number Fields 30
12. Working in General Number Fields 35
12.1. Elements L oL o Lo 35
12.2. Ideals L Lo e e e s s 39
12.3. Class Groups and Units, bnf L 42
12.4. Class Field Theory, DT s 43
12.5. Galois Theory over Q 44
12.6. Creating and Listing Number Fields .. 000 45
13. Working with Associative Algebras L 46
13.1. Arbitrary Associative Algebras L L L L L0 L0 L L L 47
13.2. Central Simple Algebras over Number Fields 49
14. Plotting o L e 53

15. GP Programmingo e e 60

This booklet is a guided tour and a tutorial to the gp calculator. Many examples will be given,
but each time a new function is used, the reader should look at the appropriate section in the
User’s Manual to PARI/GP for detailed explanations. This chapter can be read independently, for
example to get acquainted with the possibilities of gp without having to read the whole manual.
At this point.

1. Greetings!.

So you are sitting in front of your workstation (or terminal, or PC...), and you type gp to get
the program started (or click on the relevant icon, or select some menu item). It says hello in its
particular manner, and then waits for you after its prompt, initially ? (or something like gp >).

Type
2+ 2

What happens? Maybe not what you expect. First of all, of course, you should tell gp that your
input is finished, and this is done by hitting the Return (or Newline, or Enter) key. If you do
exactly this, you will get the expected answer. However some of you may be used to other systems
like Gap, Macsyma, Magma or Maple. In this case, you will have subconsciously ended the line with
a semicolon “;” before hitting Return, since this is how it is done on those systems. In that case,
you will simply see gp answering you with a smug expression, i.e. a new prompt and no answer!
This is because a semicolon at the end of a line tells gp not to print the result (it is still stored in
the result history). You will certainly want to use this feature if the output is several pages long.

Try
27 * 37

Wow! even multiplication works. Actually, maybe those spaces are not necessary after all. Let’s
try 27*37. Seems to be ok. We will still insert them in this document since it makes things easier
to read, but as gp does not care about them, you don’t have to type them all.

Now this session is getting lengthy, so the second thing one needs to learn is to quit. Each
system has its quit signal. In gp, you can use quit or \q (backslash q), the q being of course for
quit. Try it.

Now you’ve done it! You're out of gp, so how do you want to continue studying this tutorial?
Get back in please.

Let’s get to more serious stuff. I seem to remember that the decimal expansion of 1/7 has
some interesting properties. Let’s see what gp has to say about this. Type

1/7

What? This computer is making fun of me, it just spits back to me my own input, that’s not what
I want!

Now stop complaining, and think a little. Mathematically, 1/7 is an element of the field Q of
rational numbers, so how else but 1/7 can the computer give the answer to you? Well maybe 2/14
or 771, but why complicate matters? Seriously, the basic point here is that PARI, hence gp, will
almost always try to give you a result which is as precise as possible (we will see why “almost”
later). Hence since here the result can be represented exactly, that’s what it gives you.

But I still want the decimal expansion of 1/7. No problem. Type one of the following:

4

N e e

~ O~~~
~N N~ N

+ 0.

Immediately a number of decimals of this fraction appear, 38 on most systems, 28 on the others, and
the repeating pattern is 142857. The reason is that you have included in the operations numbers
like 0., 1. or 7. which are imprecise real numbers, hence gp cannot give you an exact result.

Why 28 / 38 decimals by the way? Well, it is the default initial precision. This has been
chosen so that the computations are very fast, and gives already 12 decimals more accuracy than
conventional double precision floating point operations. The precise value depends on a technical
reason: if your machine supports 64-bit integers (the standard C library can handle integers up to
264) " the default precision is 38 decimals, and 28 otherwise. For definiteness, we will assume the
former henceforth. Of course, you can extend the precision (almost) as much as you like as we will
see in a moment.

I'm getting bored, why don’t we get on with some more exciting stuff? Well, try exp(1).
Presto, comes out the value of e to 38 digits. Try log(exp(1)). Well, we get a floating point
number and not an exact 1, but pretty close! That’s what you lose by working numerically.

What could we try now? Hum, pi? The answer is not that enlightening. Pi? Ah. This
works better. But let’s remember that gp distinguishes between uppercase and lowercase letters.
pi was as meaningless to it as stupid garbage would have been: in both cases gp will just create
a variable with that funny unknown name you just used. Try it! Note that it is actually equivalent
to type stupidgarbage: all spaces are suppressed from the input. In the 27 * 37 example it
was not so conspicuous as we had an operator to separate the two operands. This has important
consequences for the writing of gp scripts. More about this later.

By the way, you can ask gp about any identifier you think it might know about: just type it,
prepending a question mark “?”. Try ?Pi and 7pi for instance. On most systems, an extended
online help should be available: try doubling the question mark to check whether it’s the case on
yours: ?7Pi. In fact the gp header already gave you that information if it was the case, just before
the copyright message. As well, if it says something like “readline enabled” then you should
have a look at the readline introduction in the User’s Manual before you go on: it will be much
easier to type in examples and correct typos after you've done that.

Now try exp(Pi * sqrt(163)). Hmmm, we suspect that the last digit may be wrong, can
this really be an integer? This is the time to change precision. Type \p 50, then try exp(Pi *
sqrt (163)) again. We were right to suspect that the last decimal was incorrect, since we get quite
a few nines in its place, but it is now convincingly clear that this is not an integer. Maybe it’s a
bug in PARI, and the result is really an integer? Type

(Qog(%) / Pi)~2

immediately after the preceding computation; % means the result of the last computed expression.
More generally, the results are numbered %1, %2, ... including the results that you do not want
to see printed by putting a semicolon at the end of the line, and you can evidently use all these
quantities in any further computations. The result seems to be indistinguishable from 163, hence
it does not seem to be a bug.

In fact, it is known that exp(m % \/n) not only is not an integer or a rational number, but is
even a transcendental number when n is a nonzero rational number.

So gp is just a fancy calculator, able to give me more decimals than I will ever need? Not so,
gp is incredibly more powerful than an ordinary calculator, independently of its arbitrary precision
possibilities.

Additional comments. (you are supposed to skip this at first, and come back later)

1) If you are a PARI old timer, say the last version of PARI you used was released around
1996, you have certainly noticed already that many many things changed between the older 1.39.xx
versions and this one. Conspicuously, most function names have been changed. To know how a
specific function was changed, type whatnow (function).

2) It seems that the text implicitly says that as soon as an imprecise number is entered, the
result will be imprecise. Is this always true? There is a unique exception: when you multiply
an imprecise number by the exact number 0, you will get the exact 0. Compare 0 * 1.4 and
0. x 1.4.

3) Not only can the number of decimal places of real numbers be large, but the number of
digits of integers also. Try 1000!. It is never necessary to tell gp in advance the size of the integers
that it will encounter. The same is true for real numbers, although most computations with floating
point assume a default precision and truncate their results to this accuracy; initially 38 decimal
digits, but we may change that with \p of course.

4) Come back to 38 digits of precision (\p 38), and type exp(100). As you can see the result
is printed in exponential format. This is because gp never wants you to believe that a result is
correct when it is not. We are working with 38 digits of precision, but the integer part of exp(100)
has 44 decimal digits. Hence if gp had dutifully printed out 44 digits, the last few digits would
have been wrong. Hence gp wants to print only 38 significant digits, but to do so it has to print in
exponential format.

5) There are two ways to avoid this. One is of course to increase the precision. Let’s try it.
To give it a wide margin, we set the precision to 50 decimals. Then we recall our last result (%
or %n where n is the number of the result). What? We still have an exponential format! Do you
understand why?

Again let’s try to see what’s happening. The number you recalled had been computed only to
38 decimals, and even if you set the precision to 1000 decimals, gp knows that your number has
only 38 digits of accuracy but an integral part with 44 digits. So you haven’t improved things by
increasing the precision. Or have you? What if we retype exp(100) now that we have 50 digits?
Try it. Now we no longer have an exponential format.

6) What if I forget what the current precision is and I don’t feel like counting all the decimals?
Well, you can type \p by itself. You may also learn about gp internal variables (and change them!)
using default. Type default(realprecision), then default(realprecision, 38). Huh? In
fact this last command is strictly equivalent to \p 38! (Admittedly more cumbersome to type.)
There are more “defaults” than just format and realprecision: type default by itself now, they
are all there.

7) Note that the default command reacts differently according to the number of input argu-
ments. This is not an uncommon behavior for gp functions. You can see this from the online help,
or the complete description in Chapter 3: any argument surrounded by braces {} in the function
prototype is optional, which really means that a default argument will be supplied by gp. You can
then check out from the text what effect a given value will have, and in particular the default one.

6

8) Try the following: starting in precision 38, type first default(format, "e0.100"), then
exp(1). Where are my 100 significant digits? Well, default(format,) only changes the output
format, but not the default precision. On the other hand, the \p command changes both the
precision and the output format.

2. Warming up.

Another thing you better get used to pretty fast is error messages. Try typing 1/0. Could not
be clearer. But why has the prompt become funny, turning from ? to break> ? When an error
occurs, we enter a so-called break loop, where you get a chance, e.g to inspect (and save!) values
of variables before the prompt returns and all computations so far are lost. In fact you can run an
arbitrary command at this point, and this mechanism is a tremendous help in debugging. To get
out of the break loop, type break, as instructed in the error message last line.

Comment. You can enter the break loop at any time using Control-C: this freezes the current
computation and gets you a new prompt so that you may e.g., increase debugging level, inspect or
modify variables (again, run arbitrary commands), before letting the program go on.

Now, back to our favorite example, in precision 38, type
floor (exp(100))

floor is the mathematician’s integer part, not to be confused with truncate, which is the computer
scientist’s: floor(-3.4) is equal to —4 whereas truncate(-3.4) is equal to —3. You get a more
cryptic error message, which you would immediately understand if you had read the additional
comments of the preceding section. Since you were told not to read them, here’s the explanation:
gp is unable to compute the integer part of exp(100) given only 38 decimals of accuracy, since it
has 44 digits.

Some error messages are more cryptic and sometimes not so easy to understand. For instance,
try log(x). It simply tells you that gp does not understand what log(x) is, although it does know
the log function, as ?log will readily tell us.

Now let’s try sqrt(-1) to see what error message we get now. Haha! gp even knows about
complex numbers, so impossible to trick it that way. Similarly, try typing log(-2), exp(I*Pi),
I"I... So we have a lot of real and complex analysis at our disposal. There always is a specific
branch of multivalued complex transcendental functions which is taken, specified in the manual.
Again, beware that I and i are not the same thing. Compare I"2 with i~2 for instance.

Just for fun, let’s try 6*zeta(2) / Pi~2. Pretty close, no?

Now gp didn’t seem to know what log(x) was, although it did know how to compute numerical
values of log. This is annoying. Maybe it knows the exponential function? Let’s give it a try. Type
exp(x). What’s this? If you had any experience with other computer algebra systems, the answer
should have simply been exp(x) again. But here the answer is the Taylor expansion of the function
around x = 0, to 17 terms. Note the 0(x~17) which ends the series, and which is trademark of
power series in gp. It is the familiar “big—oh” notation of analysis. Why 17 terms? This is governed
by the seriesprecision, which can be changed by typing \ps n or default(seriesprecision,
n) where n is the number of terms that you want in your power series and is 16 by default.
Converting a polynomial or rational function to a power series will yield 16 significant terms: so x
gets converted to x + O(z'7); this is completely analogous to realprecision when an eact integer

7

or rational number is converted to a floating point real number. Then we take the exponential of
this new object and, since it has positive valuation, we can actually deduce 17 significant terms
from the given 16. This is in keeping with PARI’s philosophy of always returning a result which is
as precise as possible from a given input.

You thus automatically get the Taylor expansion of any function that can be expanded around
0, and incidentally this explains why we weren’t able to do anything with log(x) which is not
defined at 0. (In fact gp knows about Laurent series, but log(x) is not meromorphic either at
0.) If we try log(1+x), then it works, but this time we lose one significant term: the result is
r—1/22% + ...+ 1/152' + O(2!%)). (Do you understand why ?)

But what if we wanted the expansion around a point different from 07 Well, you're able to
change z into = + a, aren’t you? So for instance you can type log(x+2) to have the expansion of
log around x = 2. As exercises you can try

cos (x)

cos(x)"2 + sin(x) "2
exp(cos(x))

gamma(l + x)
exp(exp(x) - 1)

1/ tan(x)

for different values of serieslength (change it using \ps newvalue).

Let’s try something else: type (1 + x)~3. No 0(x) here, since the result is a polynomial.
Haha, but I have learnt that if you do not take exponents which are integers greater or equal to 0,
you obtain a power series with an infinite number of nonzero terms. Let’s try. Type (1 + x)~(-3)
(the parentheses around -3 are not necessary but make things easier to read). Surprise! Contrary
to what we expected, we don’t get a power series but a rational function. Again this is for the same
reason that 1 / 7 just gave you 1/7: the result being exact, PARI doesn’t see any reason to make
it inexact.

But I still want that power series. To obtain it, you can do as in the 1/7 example and force a
conversion using the O(z™) notation:

(1 +x)°(-3) + 0(x"16)
(1 +x)°(-3) *x (1 + 0(x"16))
(1 + x + 0(x~16))"(-3)

(Not on this example, but there is a difference between the first 2 methods. Do you spot it7) Better
yet, use the series constructor which transforms any object into a power series, using the current
seriesprecision, and simply type

Ser((1 + x)~(-3))

Now try (1 + x)~(1/2): we obtain a power series, since the result is an object which PARI
does not know how to represent exactly. (We could teach PARI about algebraic functions, but
then take (1 + x)"Pi as another example.) This gives us still another solution to our preceding
exercise: we can type (1 + x)~(-3.). Since -3. is not an exact quantity, PARI has no means to
know that we are dealing with a rational function, and will instead give you the power series, this
time with real instead of integer coefficients.

To summarize, in this section we have seen that in addition to integers, real numbers and
rational numbers, PARI can handle complex numbers, polynomials, rational functions and power

8

series. A large number of functions exist which handle these types, but in this tutorial we will only
look at a few.

Additional comments. (as before, you are supposed to skip this at first reading)

1) In almost all cases, there is no loss of information in PARI output: what you see is all
that PARI knows about the object, and you can happily copy-paste it into another session. There
are exceptions, though. Typen = 3 + 0*x, then n is not the integer 3 but a constant polynomial
equal to 32°. Check it with type(n).

However, it looks like an integer without being one, and this may cause some confusion in
programs which actually expect integers. Hence if you try to factor(n), you obtain an empty
factorization ! (Because, once considered as a polynomial, n is a unit in Q[z].)

If you try to apply more general arithmetic functions, say the Euler totient function (known
as eulerphi to gp), you get an error message worrying about integer arguments. You would have
guessed yourself, but the message is difficult to understand since 3 looks like a genuine integer!
Please make sure you understand the above, it is a common source of incomprehension.

2) If you want the final expression to be in the simplest form possible (for example before
applying an arithmetic function, or simply because things will go faster afterwards), apply the
function simplify to the result. This is done automatically at the end of a gp command, but not
in intermediate expressions. Hence n above is not an integer, but the final result stored in the
output history is! So if you type type (%) instead of type(n) the answer is t_INT, adding to the
confusion.

3) As already stated, power series expansions are always implicitly around x = 0. When
we wante them around x = a, we replace x by z + a in the function we want to expand. For
complicated functions, it may be simpler to use the substitution function subst. For example, if
p=1/ (x"4 + 3*%x"3 + 5*x"2 - 6%x + 7), you may not want to retype this, replacing x by
z + a, S0 you can write subst(p, x, z+a) (look up the exact description of the subst function).

4) The valuation at x = 0 for a power series p is obtained as valuation(p, x).

3. The Remaining PARI Types.

Let’s talk some more about the basic PARI types.

Type p = x * exp(-x). As expected, you get the power series expansion to 17 terms (if
you have not changed the default). Now type pr = serreverse(p). You are asking here for the
reversion of the power series p, in other words the expansion of the inverse function. This is possible
only for power series whose first nonzero coefficient is that of z'. To check the correctness of the
result, you can type subst(p, x, pr) or subst(pr, x, p) and you should get back x + 0(x~
18).

Now the coefficients of pr obey a very simple formula. First, we would like to multiply the
coefficient of x"n by n! (in the case of the exponential function, this would simplify things con-
siderably!). The PARI function serlaplace does just that. So type ps = serlaplace(pr). The
coefficients now become integers, which can be immediately recognized by inspection. The coeffi-
cient of 2" is now equal to n"~!. In other words, we have

n—1

pr = Z nn! Xm.

n>1

9

Do you know how to prove this? (The proof is difficult.)

Of course PARI knows about vectors (rows and columns are distinguished, even though math-
ematically there is no difference) and matrices. Type for example [1,2,3,4]. This gives the row
vector whose coordinates are 1, 2, 3 and 4. If you want a column vector, type [1,2,3,4]~, the
tilde meaning of course transpose. You don’t see much difference in the output, except for the tilde
at the end. However, now type \B: lo and behold, the column vector appears as a proper vertical
thingy now. The \B command is used mainly for this purpose. The length of a vector is given by,
well length of course. The shorthand “cardinality” notation #v for length(v) is also available, for
instance v [#v] is the last element of v.

Typem = [a,b,c; d,e,f]. You have just entered a matrix with 2 rows and 3 columns. Note
that the matrix is entered by rows and the rows are separated by semicolons “;”. The matrix is
printed naturally in a rectangle shape. If you want it printed horizontally just as you typed it, type
\a, or if you want this type of printing to be the permanent default type default (output, 0).

Type default (output, 1) if you want to come back to the original output mode.

Now type m[1,2], m[1,], m[,2]. Are explanations necessary? (In an expression such as
m[j,k], the j always refers to the row number, and the k to the column number, and the first
index is always 1, never 0. This default cannot be changed.)

Even better, type m[1,2] = 5; m. The semicolon also allows us to put several instructions on
the same line; the final result is the output of the last statement on the line. Now type m[1,] =
[15,-17,8]. No problem. Finally type m[,2] = [j,k]. You have an error message since you have
typed a row vector, while m[,2] is a column vector. If you type instead m[,2] = [j,k]~ it works.

Type now h = mathilbert(20). You get the so-called “Hilbert matrix” whose coefficient of
row i and column j is equal to (i +j —1)~!. Incidentally, the matrix h takes too much room. If you
don’t want to see it, simply type a semi-colon “;” at the end of the line (h = mathilbert(20);).
This is an example of a “precomputed” matrix, built into PARI. We will see a more general
construction later.

What is interesting about Hilbert matrices is that first their inverses and determinants can
be computed explicitly (and the inverse has integer coefficients), and second they are numerically
very unstable, which make them a severe test for linear algebra packages in numerical analysis.
Of course with PARI, no such problem can occur: since the coefficients are given as rational
numbers, the computation will be done exactly, so there cannot be any numerical error. Try it.
Type d = matdet(h). The result is a rational number (of course) of numerator equal to 1 and
denominator having 226 digits. How do I know, by the way? Well, type sizedigit(1/d). Or
#Str(1/d). (The length of the character string representing the result.)

Now type hr = 1.* h; (do not forget the semicolon, we don’t want to see the result!), then dr
= matdet (hr). You notice two things. First the computation, is much faster than in the rational
case. (If your computer is too fast for you to notice, try again with h = mathilbert (40), or even
some larger value.) The reason for this is that PARI is handling real numbers with 38 digits of
accuracy, while in the rational case it is handling integers having up to 226 decimal digits.

The second, more important, fact is that the result is terribly wrong. If you compare with
1.xd computed earlier, which is the correct answer, you will see that few decimals agree! (None
agree if you replaced 20 by 40 as suggested above.) This catastrophic instability is as already
mentioned one of the characteristics of Hilbert matrices. In fact, the situation is worse than that.
Type norm12(1/h - 1/hr) (the function norml2 gives the square of the L? norm, i.e. the sum of

10

the squares of the coefficients). The result is larger than 1032, showing that some coefficients of

1/hr are wrong by as much as 10'6. To obtain the correct result after rounding for the inverse, we
have to use a default precision of 57 digits (try it).

Although vectors and matrices can be entered manually, by typing explicitly their elements,
very often the elements satisfy a simple law and one uses a different syntax. For example, as-
sume that you want a vector whose i-th coordinate is equal to 2. No problem, type for example
vector(10,i, i~2) if you want a vector of length 10. Similarly, if you type

matrix (5,5, i,j, 1 / (i+j-1))

you will get the Hilbert matrix of order 5, hence the mathilbert function is in fact redundant. The
i and j represent dummy variables which are used to number the rows and columns respectively
(in the case of a vector only one is present of course). You must not forget, in addition to the
dimensions of the vector or matrix, to indicate explicitly the names of these variables. You may
omit the variables and the final expression to get zero entries, as in matrix(10,20).

Warning. The letter I is reserved for the complex number equal to the square root of —1. Hence
it is forbidden to use it as a variable. Try typing vector (10,I, I~2), the error message that you
get clearly indicates that gp does not consider I as a variable. There are other reserved variable
names: Pi, Euler, Catalan and oo. All function names are forbidden as well. On the other hand
there is nothing special about i, pi, euler or catalan.

When creating vectors or matrices, it is often useful to use Boolean operators and the if ()
statement. Indeed, an if expression has a value, which is of course equal to the evaluated part of
the if. So for example you can type

matrix(8,8, i,j, if ((i-j0%2, 1, 0))

to get a checkerboard matrix of 1 and 0. Note however that a vector or matrix must be created
first before being used. For example, it is possible to write

v = vector(b);
for (i = 1, 5, v[i] = 1/1i)

but this would fail if the vector v had not been created beforehand. Of course, the above example
is better written as

v = vector(5, i, 1/i);

Another useful way to create vectors and matrices is to extract them from larger ones. For
instance, if h is the 20 x 20 Hilbert matrix as above,

h = mathilbert(20);
h(11..20, 11..20]

is its lower right quadrant.
The last PARI types which we have not yet played with are closely linked to number theory.
People not interested in number theory can skip ahead.
The first is the type “integer—-modulo”. Let us see an example. Type
n=10"715 + 3
We want to know whether this number is prime or not. Of course we could make use of the

built-in facilities of PARI, but let us do otherwise. We first trial divide by the built-in table of

11

primes. We slightly cheat here and use a variant of the function factor which does exactly this.
So type factor(n, 200000). The last argument tells factor to trial divide up to the given bound
and stop at this point. Set it to 0 to trial divide by the full set of built-in primes, which goes up to
500000 by default.

As for all factoring functions, the result is a 2 column matrix: the first column gives the primes
and the second their exponents. Here we get a single row, telling us that if primes stopped at 200000
as we made factor believe, n would be prime. (Or is that a contradiction?) More seriously, n is
not divisible by any prime up to 200000.

We could now trial divide further, or cheat and call the PARI function factor without the
optional second argument, but before we do this let us see how to get an answer ourselves.

By Fermat’s little theorem, if n is prime we must have a1 = 1 (mod n) for all a not

divisible by n. Hence we could try this with a = 2 for example. But 2"~! is a number with
approximately 3 - 104 digits, hence impossible to write down, let alone to compute. But instead
typea = Mod(2,n). This creates the number 2 considered now as an element of the ring R = Z/nZ.
The elements of R, called intmods, can always be represented by numbers smaller than n, hence
small. Fermat’s theorem can be rewritten a”~! = Mod(1,n) in the ring R, and this can be computed
very efficiently. Elements of R may be lifted back to Z with either 1ift or centerlift. Type a”
(n-1). The result is definitely not equal to Mod(1,n), thus proving that n is not a prime. If we
had obtained Mod(1,n) on the other hand, it would have given us a hint that n is maybe prime,
but not a proof.

To find the factors is another story. In this case, the integer n is small enough to let trial
division run to completion. Type # to turn on the gp timer, then

for (i = 2, ceil(sqrt(m)), if (n%i==0, print(i); break))

This should take less than 5 seconds. In general, one must use less naive techniques than trial
division, or be very patient. Type fa = factor(n) to let the factoring engine find all prime
factors. You may stop the timer by typing # again.

Note that, as is the case with most “prime”-producing functions, the “prime” factors given
by factor are only strong pseudoprimes, and not proven primes. Use isprime(fa[,1]) to
rigorously prove primality of the factors. The latter command applies isprime to all entries in
the first column of fa, i.e to all pseudoprimes, and returns the column vector of results: all equal
to 1, so our pseudoprimes were true primes. All arithmetic functions can be applied in this way
to the entries of a vector or matrix. In fact, it has been checked that the strong pseudoprimes
output by factor (Baillie-Pomerance-Selfridge-Wagstaff pseudoprimes, without small divisors) are
true primes at least up to 264, and no explicit counter-example is known.

The second specifically number-theoretic type is the p-adic numbers. 1 have no room for
definitions, so please skip ahead if you have no use for such beasts. A p-adic number is entered as
a rational or integer valued expression to which is added 0(p~n), or simply 0(p) if n = 1, where p
is the prime and n the p-adic precision. Note that you have to explicitly type in 372 for instance,
9 will not do. Unless you want to cheat gp into believing that 9 is prime, but you had better know
what you are doing in this case: most computations will yield a wrong result.

Apart from the usual arithmetic operations, you can apply a number of transcendental func-
tions. For example, type n = 569 + 0(7°8), then s = sqrt(n), you obtain one of the square
roots of n; to check this, type s”2 - n). Type now s = log(n), then e = exp(s). If you know
about p-adic logarithms, you will not be surprised that e is not equal to n. Type (n/e)"6: e is in
fact equal to n times the (p — 1)-st root of unity teichmuller(n).

12

Incidentally, if you want to get back the integer 569 from the p-adic number n, type 1ift(n)
or truncate(n).

The third number-theoretic type is the type “quadratic number”. This type is specially tailored
so that we can easily work in a quadratic extension of a base field, usually Q. It is a generalization
of the type “complex”. To start, we must specify which quadratic field we want to work in. For
this, we use the function quadgen applied to the discriminant d (as opposed to the radicand) of
the quadratic field. This returns a number equal to (d + a)/2 where a is equal to 0 or 1 according
to whether d is even or odd. The function quadgen takes an extra parameter which is how the
number will be printed. To avoid confusion, this number should be set to a variable of the same
name, i.e. dow = quadgen(d, ’w).

So type w = quadgen(-163,’w), then charpoly(w) which asks for the characteristic polyno-
mial of w. The result shows what w will represent. You may ask for 1.*w to see which root of the
quadratic has been taken, but this is rarely necessary. We can now play in the field Q(v/—163).
Type for example w~10, norm(3 + 4*w), 1 / (4+w). More interesting, type a = Mod(1,23) * w
then b = a~264. This is a generalization of Fermat’s theorem to quadratic fields. If you do not
want to see the modulus 23 all the time, type 1ift(b).

Another example: typep = x"2 + w¥x + 5*w + 7, then norm(p). We thus obtain the quartic
equation over Q corresponding to the relative quadratic extension over Q(w) defined by p.

On the other hand, if you type wr = sqrt(w~2), do not expect to get back w. Instead, you
get the numerical value, the function sqrt being considered as a “transcendental” function, even
though it is algebraic. Type algdep(wr,2): this looks for algebraic relations involving the powers
of w up to degree 2. This is one way to get w back. Similarly, type algdep(sqrt(3*w + 5), 4).
See the user’s manual for the function algdep.

The fourth number-theoretic type is the type “polynomial-modulo”, i.e. polynomial modulo
another polynomial. This type is used to work in general algebraic extensions, for example elements
of number fields (if the base field is Q), or elements of finite fields (if the base field is Z/pZ for a
prime p). In a sense it is a generalization of the type quadratic number. The syntax used is the
same as for intmods. For example, instead of typing w = quadgen(-163,’w), you can type

w = Mod(x, quadpoly(-163))

Then, exactly as in the quadratic case, you can type w”10, norm(3 + 4*w), 1 / (4+w), a =
Mod(1,23)*w, b = a~264, obtaining of course the same results. (Type 1ift(...) if you don’t
want to see the polynomial x°2 - x + 41 repeated all the time.) Of course, you can work in any
degree, not only quadratic. For the latter, the corresponding elementary operations will be slower
than with quadratic numbers. Start the timer, then compare

w = quadgen(-163,°’w); W = Mod(x, quadpoly(-163));
a=2+ w; A=2+W;

b=3+ w; B=3+W;

for (i=1,10"5, a+b)

for (i=1,10"5, A+B)

for (i=1,10"5, a*b)

for (i=1,10"5, AxB)

for (i=1,10"5, a/b)

for (i=1,10"5, A/B)

Don’t retype everything, use the arrow keys!

13

There is however a slight difference in behavior. Keeping our polmod w, type 1.*w. As you
can see, the result is not the same. Type sqrt(w). Here, we obtain a vector with 2 components,
the two components being the principal branch of the square root of all the possible embeddings
of w in C. More generally, if w was of degree n, we would get an n-component vector, and similarly
for all transcendental functions.

We have at our disposal the usual arithmetic functions, plus a few others. Type a = Mod(x,
x"3 - x - 1) defining a cubic extension. We can for example ask for b = a~5. Now assume we
want to express a as a polynomial in b. This is possible since b is also a generator of the same field.
No problem, type modreverse(b). This gives a new defining polynomial for the same field, i.e. the
characteristic polynomial of b, and expresses a in terms of this new polmod, i.e. in terms of a. We
will see this in more detail in the number field section.

An important special case of the above construction allows to work in finite fields, by choosing
an irreducible polynomial T" of degree f over F, and considering F,[t]/(T). As in

T
g

Try a few elementary operations involving g, such as ¢'°?. This special case of t_POLMODs is
in fact so important that we now introduce a final dedicated number theoretical type t_FFELT,
for “finite field element”, to simplify work with finite fields: g = ffgen(57°6, ’t) computes a
suitable polynomial 7" as above and returns the generator t mod 7'(¢). This has major advantages
over the generic t_POLMOD solution: elements are printed in a simplified way (in lifted form), and
functions can assume that 7" is indeed irreducible. A few dedicated functions ffprimroot (analog
of znprimroot), fforder (analog of znorder), fflog (analog of znlog) are available. Rational
expressions in the variable ¢ can be mapped to such a finite field by substituting ¢ by g, for instance

ffinit (5, 6, ’t); \\ degree 6, irreducible over Fs
Mod(t, T)

7?7 g = ffgen(576, ’t);

? g.mod \\ rreducible over F5, defines Fxe
%2 =t"6+t5+t74+t73+t72+1t+1
TR =x"2+ txx + 1

? factor(subst(Q,t,g))

%3 =

[X + (£75 + 3*t74 + t73 + 4xt + 1) 1]

[x + (4%t"5 + 2*t"4 + 4*%xt~3 + 2%t + 4) 1]

factors the polynomial @ € Fys[z], where Fgze = F5]t]/(g.mod).

4. Elementary Arithmetic Functions.

Since PARI is aimed at number theorists, it is not surprising that there exists a large number
of arithmetic functions; see the list by typing 75. We have already seen several, such as factor.
Note that factor handles not only integers, but also univariate polynomials. Type for example

factor(x~200 - 1). You can also ask to factor a polynomial modulo a finite field or a number
field !

Evidently, you have functions for computing GCD’s (gcd), extended GCD’s (bezout), solving
the Chinese remainder theorem (chinese) and so on.

In addition to the factoring facilities, you have a few functions related to primality testing
such as isprime, ispseudoprime, precprime, and nextprime. As previously mentioned, only

14

strong pseudoprimes are produced by the latter two (they pass the ispseudoprime test); the more
sophisticated primality tests in isprime, being so much slower, are not applied by default.

We also have the usual multiplicative arithmetic functions: the Mobius p function (moebius),
the Euler ¢ function (eulerphi), the w and functions (omega and bigomega), the o), functions
(sigma), which compute sums of k-th powers of the positive divisors of a given integer, etc. ..

You can compute continued fractions. For example, type \p 1000, then contfrac(exp(1)):
you obtain the continued fraction of the base of natural logarithms, which as you can see obeys a
very simple pattern. Can you prove it?

In many cases, one wants to perform some task only when an arithmetic condition is satisfied.
gp gives you the following functions: isprime as mentioned above, issquare, isfundamental to
test whether an integer is a fundamental discriminant (i.e. 1 or the discriminant of a quadratic
field), and the forprime, fordiv and sumdiv loops. Assume for example that we want to compute
the product of all the divisors of a positive integer n. The easiest way is to write

p = 1; fordiv(n,d, p *= d); p

(There is a simple formula for this product in terms of n and the number of its divisors: find and
prove it!) The notation p *= d is just a shorthand for p = p * 4.

If we want to know the list of primes p less than 1000 such that 2 is a primitive root modulo
p, one way would be to write:

forprime (p=3,1000, if (znprimroot(p) == 2, print(p)))

Note that this assumes that znprimroot returns the smallest primitive root, and this is indeed the
case. Had we not known about this, we could have written

forprime (p=3,1000, if (znorder (Mod(2,p)) == p-1, print(p)))

(which is actually faster since we only compute the order of 2 in Z/pZ, instead of looking for
a generator by trying successive elements whose orders have to be computed as well.) Once we
know a primitive root g, we can write any nonzero element of Z/pZ as g* for some unique z in
Z/(p — 1)Z. Computing such a discrete logarithm is a hard problem in general, performed by the
function znlog.

Arithmetic functions related to quadratic fields, binary quadratic forms and general number
fields will be seen in the next sections.

5. Performing Linear Algebra.

The standard linear algebra routines are available: matdet, mateigen (eigenvectors), matker,
matimage, matrank, matsolve (to solve a linear system), charpoly (characteristic polynomial),
to name a few. Bilinear algebra over R is also there: gfgaussred (Gauss reduction), qfsign
(signature). You may also type 77. Can you guess what each of these do?

Let us see how this works. First, a vector space (or module) is given by a generating set
of vectors (often a basis) which are represented as column vectors. This set of vectors is in turn
represented by the columns of a matrix. Quadratic forms are represented by their Gram matrix.
The base field (or ring) can be any ring type PARI supports. However, certain operations are
specifically written for a real or complex base field, while others are written for Z as the base ring.

15

We had some fun with Hilbert matrices and numerical instability a while back, but most of
the linear algebra routines are generic. If as before h = mathilbert(20), we may compute

matdet(h * Mod(1,101))
matdet(h * (1 + 0(101°100)))

in Z/101Z and the p-adic ring Z1¢1 (to 100 words of accuracy) respectively. Let H = 1/h the inverse
of h:

H = 1/h; \\ integral
L = primes([1075, 10°5 + 10001); \\ pick a few primes
v = vector(#L, i, matdet(H * Mod(1,L[i])));

centerlift(chinese(v))

returns the determinant of H. (Assuming it is an integer less than half the product of elements of
L in absolute value, which it is.) In fact, we computed an homomorphic image of the determinant
in a few small finite fields, which admits a single integer representative given the size constraints.
We could also have made a single determinant computation modulo a big prime (or pseudoprime)
number, e.g nextprime(2 * B) if we know that the determinant is less than B in absolute value.
(Why is that 2 necessary?)

By the way, this is how you insert comments in a script: everything following a double back-
slash, up to the first newline character, is ignored. If you want comments which span many lines,
you can brace them between /* ... */ pairs. Everything in between will be ignored as well. For
instance as a header for the script above you could insert the following:

/* Homomorphic imaging scheme to compute the determinant of a classical
* integral matrix.
* TODO: Look up the explicit formula
*/

(I hope you did not waste your time copying this nonsense, did you?)

In addition, linear algebra over Z, i.e. work on lattices, can also be performed. Let us now
consider the lattice A generated by the columns of H in Z2° C R?%. Since the determinant is
nonzero, we have in fact a basis. What is the structure of the finite abelian group Z2°/A? Type
matsnf (H). Wow, 20 cyclic factors.

There is a triangular basis for A (triangular when expressed in the canonical basis), perhaps
it looks better than our initial one? Type mathnf (H). Hum, what if I also want the unimodular
transformation matrix? Simple : z = mathnf (H, 1); z[1] is the triangular HNF basis, and z[2]
is the base change matrix from the canonical basis to the new one, with determinant £1. Try
matdet (z[2]), then H * z[2] == z[1]. Fine, it works. And z[1] indeed looks better than H.

Can we do better? Perhaps, but then we’d better drop the requirement that the basis be
triangular, since the latter is essentially canonical. Type

M=H * gqfl111(H)

Its columns give an LLL-reduced basis for A (qf111(H) itself gives the base change matrix).
The LLL algorithm outputs a nice basis for a lattice given by an arbitrary basis, where nice means
the basis vectors are almost orthogonal and short, with precise guarantees on their relations to the
shortest vectors. Not really spectacular on this example, though.

16

Let us try something else, there should be an integer relation between log 3, log5 and log 15.
How to detect it?

u = [log(15), log(5), log(3)];

m = matid(3); m[3,] = round(u * 10°25);

v = qf111(m) [,1] \\ first vector of the LLL-reduced basis
u* v

Pretty close. In fact, 1indep automates this kind of search for integer relations; try lindep(u).
Let us come back to A above, and our LLL basis in M. Type

G = M~*M \\ Gram matriz
m = gfminim(G, norml2(M[,1]), 100, 2);

This enumerates the vectors in A which are shorter than the first LLL basis vector, at most 100
of them. The final argument 2 instructs the function to use a safe (slower) algorithm, since the
matrix entries are rather large; trying to remove it should produce an error, in this case. There are
m[1] = 6 such vectors, and m[3] gives half of them (-m[3] would complete the lot): they are the
first 3 basis vectors! So these are optimally short, at least with respect to the Euclidean length.
Let us try

m = gfminim(G, norml2(M[,4]), 100, 2);

(The flag 2 instructs qfminim to use a different enumeration strategy, which is much faster when we
expect more short vectors than we want to store. Without the flag, this example requires several
hours. This is an exponential time algorithm, after all!) This time, we find a slew of short vectors;
matrank (m[3]) says the 100 we have are all included in a 2-dimensional space. Let us try

m = qfminim(G, norm12(M[,4]) - 1, 100000, 2);

This time we find 50886 vectors of the requested length, spanning a 4-dimensional space, which is
actually generated by M[,1], M[,2] M[,3] and M[,5].

6. Using Transcendental Functions.

All the elementary transcendental functions and several higher transcendental functions are
provided: T' function, incomplete I'" function, error function, exponential integral, Bessel functions
(H', H?, I, J, K, N), confluent hypergeometric functions, Riemann ¢ function, polylogarithms,
Weber functions, theta functions. More will be written if the need arises.

In this type of functions, the default precision plays an essential role. In almost all cases
transcendental functions work in the following way. If the argument is exact, the result is computed
using the current default precision. If the argument is not exact, the precision of the argument is
used for the computation. A note of warning however: even in this case the printed value is the
current real format, usually the same as the default precision. In the present chapter we assume
that your machine works with 64-bit long integers. If it is not the case, we leave it to you as a good
exercise to make the necessary modifications.

Let’s assume that we have 38 decimals of default precision (this is what we get automatically at
the start of a gp session on 64-bit machines). Type e = exp(1). We get the number e = 2.718. ..
to 38 decimals. Let us check how many correct decimals we really have. Change the precision
to a substantially higher value, for example by typing \p 100. Then type e, then exp(1) once
again. This last value is the correct value of the mathematical constant e to 100 decimals, while

17

the variable e shows the value that was computed to 38 decimals. Clearly they coincide to exactly
38 significant digits.

So 38 digits are printed, but how many significant digits are actually contained in the variable
e? Type #e which indicates we have exactly 2 mantissa words. Since 21n(2°4)/In(10) ~ 38.5 we
see that we have 38 or 39 significant digits (on 64-bit machines).

Come back to 38 decimals (\p 38). If we type exp(1.) you can check that we also obtain
38 decimals. However, type £ = exp(1 + 1E-40). Although the default precision is still 38, you
can check using the method above that we have in fact 96 significant digits! The reason is that 1
+ 1E-40 is computed according to the PARI philosophy, i.e. to the best possible precision. Since
1E-40 has 39 significant digits and 1 has “infinite” precision, the number 1 + 1E-40 will have at
least 79 = 39 + 40 significant digits, hence £ also.

Now type cos(1E-19). The result is printed as 1.0000. .., but is of course not exactly equal
to 1. Using #J,, we see that the result has 4 mantissa words, giving us the possibility of having 77
correct significant digits. PARI gives you as much as it can, and since 3 mantissa words would have
given you only 57 digits, it uses 4. But why does it give so precise a result? Well, it is the same
reason as before. When z is close to 1, cos(z) is close to 1 —2%/2, hence the precision is going to be
approximately the same as when computing this quantity, here 1 — 0.5 % 1073® where 0.5 * 10738 is
considered with 38 significant digit accuracy. Hence the result will have approximately 38+ 38 = 76
significant digits.

This philosophy cannot go too far. For example, when you type cos(0), gp should give you
exactly 1. Since it is reasonable for a program to assume that a transcendental function never gives
you an exact result, gp gives you 1.000... with as many mantissa word as the current precision.

Let’s see some more transcendental functions at work. Type gamma(10). No problem (type
9! to check). Type gamma(100). The number is now written in exponential format because the
default accuracy is too small to give the correct result. To get all digits, the most natural solution
is to increase the precision; since gamma (100) has 156 decimal digits, type \p 170 to be on the safe
side, then gamma (100) once again. Another one is to compute 99! directly.

Try gamma(1/2 + 10%*I). No problem, we have the complex I" function. Now type

t = 1000;
z = gamma(1l + I*t) * t7(-1/2) * exp(Pi/2*t) / sqrt(2xPi)
norm(z)

The latter is very close to 1, in accordance with the complex Stirling formula.

Let’s play now with the Riemann zeta function. First turn on the timer (type #). Type
zeta(2), then Pi~2/6. This seems correct. Type zeta(3). All this takes essentially no time at all.
However, type zeta(3.1). You will notice that the time is substantially larger; if your machine is
too fast to see the difference, increase the precision to \p1000. This is because PARI uses special
formulas to compute zeta(n) when n is an integer.

Type zeta(l + I). This also works. Now for fun, let us compute in a naive way the first
complex zero of zeta. We know that it is of the form 1/2 + i x t with ¢ between 14 and 15. Thus,
we can use the following series of instructions. But instead of typing them directly, write them into
a file, say zeta.gp, then type \r zeta.gp under gp to read it in:

{
tl = 1/2 + 14%T;

18

t2 = 1/2 + 15%I; eps = 1E-50;
z1 zeta(tl);
until (norm(z2) < eps,
z2 = zeta(t2);
if (norm(z2) < norm(zl),
t3 = tl; t1 = t2; t2 = t3; zl1 = z2

);
t2 = (£1+t2) / 2.;
print(tl ": " z1)

)
+

Don’t forget the braces: they tell gp that a sequence of instructions is going to span many lines.
We thus obtain the first zero to 25 significant digits.

By the way, you don’t need to type in the suffix .gp in the \r command: it is supplied by
gp if you forget it. The suffix is not mandatory either, but it is convenient to have all GP scripts
labeled in the same distinctive way. Also, some text editors, e.g. Emacs or Vim, will recognize GP
scripts as such by their suffix and load special colourful modes.

As mentioned at the beginning of this tutorial, some transcendental functions can also be
applied to p-adic numbers. This is as good a time as any to familiarize yourself with them. Type

a = exp(7 + 0(7710))
log(a)

All seems in order.

b = log(5 + 0(7°10))
exp(b)

Is something wrong? We don’t recover the number we started with? This is normal: type
exp(b) * teichmuller(5 + 0(7°10))

and we indeed recover our initial number. The Teichmiiller character teichmuller(x) on Z; is the
unique (p — 1)-st root of unity which is congruent to x modulo p, assuming that x is a p-adic unit.

Let us come back to real numbers for the moment. Type agm(1,sqrt(2)). This gives the
arithmetic-geometric mean of 1 and /2, and is the basic method for computing complete elliptic
integrals. In fact, type

Pi/2 / intnum(t=0,Pi/2, 1 / sqrt(l + sin(t)~2)),

and the result is the same. The elementary transformation x = sin(t) gives the mathematical
equality
s

Lde
/0 VI—z% 2AGM(1,v2) ’

which was one of Gauss’s remarkable discoveries in his youth.

Now type 2 * agm(1,I) / (1+I). As you see, the complex AGM also works, although one
must be careful with its definition. The result found is almost identical to the previous one. Do
you see why?

19

Finally, type agm(1, 1 + 7 + 0(7710)). So we also have p-adic AGM. Note however that
since the square root of a p-adic number is not in general an element of the same p-adic field, only
certain p-adic AGMs can be computed. In addition, when p = 2, the congruence restriction is that
agm(a,b) can be computed only when a/b is congruent to 1 modulo 16, and not 8 as could be
expected.

Now type 78. This gives you the list of all transcendental functions. Instead of continuing with
more examples, we suggest that you experiment yourself with this list. Try integer, real, complex
and p-adic arguments. You will notice that some have not been implemented (or do not have a
reasonable definition).

7. Using Numerical Tools.

Although not written to be a numerical analysis package, PARI can nonetheless perform some
numerical computations. Since linear algebra and polynomial computations are treated somewhere
else, this section focuses on solving equations and various methods of summation.

You of course know the formula 7 = 4(1 — % + é — % + ---) which is deduced from the power
series expansion of atan(x). You also know that m cannot be computed from this formula, since
the convergence is so slow. Right? Wrong! Type

\p 100
4 * sumalt(k=0, (-1)"k/(2xk + 1))

In a split second, we get 7 to 100 significant digits (type Pi to check).
Similarly, try
sumpos (k=1, k™-2)

Although once again the convergence is slow, the summation is rather fast; compare with the exact
result Pi~2/6. This is less impressive because a bit slower than for alternating sums, but still
useful.

Even better, sumalt can be used to sum divergent series! Type
zet(s) = sumalt(k=1, (-1)"(k-1) / k"s) / (1 - 27(1-8))

Then for positive values of s different from 1, zet (s) is equal to zeta(s) and the series converges,
albeit slowly; sumalt doesn’t care however. For negative s, the series diverges, but zet(s) still
gives the correct result! (Namely, the value of a suitable analytic continuation.) Try zet(-1),
zet (-2), zet(-1.5), and compare with the corresponding values of zeta. You should not push
the game too far: zet (-100), for example, gives a completely wrong answer.

Try zet (I), and compare with zeta(I). Even (some) complex values work, although the sum
is not alternating any more! Similarly, try

sumalt(n=1, (-1)"n / (n+I))
More traditional functions are the numerical integration functions. Try intnum(t=1,2, 1/t)

and presto! you get 100 decimals of log(2). Look at Chapter 3 to see the available integration
functions.

With PARI, however, you can go further since complex types are allowed. For example, assume
that we want to know the location of the zeros of the function h(z) = e* — z. We use Cauchy’s

20

theorem, which tells us that the number of zeros in a disk of radius r centered around the origin is
equal to

1 B (z2)

um C, h(Z)

dz ,

where C, is the circle of radius r centered at the origin. The function we want to integrate is
fun(z) = my(u = exp(z)); (u-1) / (u-z)

(Here u is a local variable to the function £: whenever a function is called, gp fills its argument list
with the actual arguments given, and initializes the other declared parameters and local variables
to 0. It will then restore their former values upon exit. If we had not declared u in the function
prototype, it would be considered as a global variable, whose value would be permanently changed.
It is not mandatory to declare in this way all parameters, but beware of side effects!)

Type now:
zero(r) = r/(2*Pi) * intnum(t=0, 2#Pi, real(fun(r*exp(I*t)) * exp(Ixt)))

The function zero (r) will count the number of zeros of fun whose modulus is less than r: we
simply made the change of variable z = rxexp(i*t), and took the real part to avoid integrating the
imaginary part. Actually, there is a built-in function intcirc to integrate over a circle, yielding
the much simpler:

zero2(r) = intcirc(z=0, r, fun(z))
(This is a little faster than the previous implementation, and no less accurate.)

We may type \p 9 since we know that the result is a small integer (but the computations
should be instantaneous even at \p 100 or so), then zero(1), zero(1.5). The result tells us that
there are no zeros inside the unit disk, but that there are two (necessarily complex conjugate) in the
annulus 1 < |z| < 1.5. For the sake of completeness, let us compute them. Let z = = + iy be such
a zero, with and y real. Then the equation e* — z = 0 implies, after elementary transformations,
that €2 = 22 +y? and that e® cos(y) = z. Hence y = £v/e2* — 2 and hence e” cos(ve2* — x2) = x.
Therefore, type

fun(x) = my(u = exp(x)); u * cos(sqrt(u™2 - x72)) - x
Then fun(0) is positive while fun(1) is negative. Come back to precision 38 and type

x0 = solve(x=0,1, fun(x))
z = x0 + I*sqrt(exp(2*x0) - x072)

which is the required zero. As a check, type exp(z) - z.

Of course you can integrate over contours which are more complicated than circles, but you
must perform yourself the variable changes, as we have done above to reduce the integral to a
number of integrals on line segments.

The example above also shows the use of the solve function. To use solve on functions of a
complex variable, it is necessary to reduce the problem to a real one. For example, to find the first
complex zero of the Riemann zeta function as above, we could try typing

solve(t=14,15, real(zeta(1/2 + I*t))),

but this does not work because the real part is positive for t = 14 and 15. As it happens, the
imaginary part works. Type

21

solve(t=14,15, imag(zeta(1/2 + I*t))),
and this now works. We could also narrow the search interval and type for instance
solve(t=14,14.2, real(zeta(1l/2 + Ixt)))

which would also work.

8. Polynomials.
First a word of warning: it is essential to understand the difference between exact and inexact
objects. Try
gcd(x - Pi, x72 - 6x*zeta(2))

We return a trivial GCD because the notion of GCD for inexact polynomials doesn’t make much
sense. A better quantitative approach is to use

polresultant(x - Pi, x72 - 6xzeta(2))

A result close to zero shows that the GCD is nontrivial for small deformations of the inputs.
Without telling us what it is, of course. This being said, we will mostly use polynomials (and
power series) with exact coefficients in our examples.

The simplest way to input a polynomial, is to simply write it down, or use an explicit formula
for the coefficients and the function sum:

T
T

1+ x72 + 27*xx710;
sum(i = 1, 100, (i+1) * x"i);

but it is in much more efficient to create a vector of coefficients then convert it to a polynomial
using Pol or Polrev (Pol([1,2]) is # + 2, Polrev([1,2]) is 2z + 1) :

T = Polrev(vector(100, i, i));

for (i=1, 1074, Polrev(vector(100, i, i))) \\ time: 60ms
for (i=1, 1074, sum(i = 1, 100, (i+1) * x~i)) \\ time: 1,74ms

The reason for the discrepancy is that the explicit summation (of densely encoded polynomials) is
quadratic in the degree, whereas creating a vector of coefficients then converting it to a polynomial
type is linear.

We also have a few built-in classical polynomial families. Consider the 15-th cyclotomic poly-
nomial,

pol = polcyclo(15)
which is of degree p(15) = 8. Now, type
r = polroots(pol)

We obtain the 8 complex roots of pol, given to 38 significant digits. To see them better, type \B:
they are given as pairs of complex conjugate roots, in some order. In fact, the function polroots
returns the real roots first, in increasing order, then the other roots by increasing absolute value of
their imaginary parts (so that pairs of complex conjugate roots appear together).

The roots of pol are by definition the primitive 15-th roots of unity. To check this, simply
type rc = r~15. Why, we get an error message! Fair enough, vectors cannot be multiplied, even
less raised to a power. However, type

22

rc = r°15.0

without forgetting the ‘.’ at the end. Now it works, because powering to a nonintegral exponent

is a transcendental function and hence is applied termwise. Note that the fact that 15.0 is a real
number which is representable exactly as an integer has nothing to do with the problem.

We see that the components of the result are very close to 1. It is however tedious to look
at all these real and imaginary parts. It would be impossible if we had many more. Let’s do it
automatically. Type

rr = round(rc)
exponent (rc - rr)

We see that rr is indeed all 1’s, and that the sup-norm of rc - rr is around 27!2° reasonable
enough when we work with 128 bits of accuracy! In fact, round itself already provides a built-in
rough approximation of the error:

rr = round(rc, &e)

Again, e contains the number of error bits when rounding rc to rr; in other words the sup norm
of rc — rr is bounded by 27¢.

Now type

pol = x°5 + x74 + 2%x"3 - 2%x72 - 4xx - 3
factor (pol)

factor(poldisc(pol))

fun(p) = factor(pol, 0(p~10));

The polynomial pol factors over Q (or Z) as a product of two factors, and the primes dividing its
discriminant are 11, 23 and 37. We also created a function fun(p) which factors pol over Q, to
p-adic precision 10. Type

fun(5)

fun(11)
fun(23)
fun(37)

to see different splittings. You can use 1ift to convert p-adic numbers to neighbouring rational
numbers.

Similarly, type

1f(p) = lift(factor(pol, p));
1£(2)
1£(11)
1£(23)
1£(37)

which show the different factorizations, this time over F,. In fact, even better: type successively

T = ffgen(373, ’t) \\ we want t to be a free variable
factor(pol, t)

The element T is printed as t but is actually defined modulo the irreducible polynomial t~3 + 2t
+ 2 over F3 (see t.mod): it defines the finite field Fy7. Note that we introduced a new variable ¢
to express elements in this nonprime field. More generally, the generic factor function allows a

23

second argument which describes the domain over which we want to factor, here Fy7 (and, above,
Q, to 10 digits of accuracy and F,). Typing factor(pol) directly would factor it over Q, not
what we wanted.

Similarly, type

pol2 = x74 - 4%x"2 + 16
fn = 1ift(factor(pol2, t°2 + 1))

and we get the factorization of the polynomial pol2 over the number field Q[t]/(t? + 1), i.e. over
Q(7). Without the 1ift, the result would involve number field elements as t_POLMODs of the form
Mod(1+t, t~2+1), which are more explicit but less readable.

To summarize, in addition to being able to factor integers, you can factor polynomials over C
using polroots, over R using factor(,1.0), over finite fields using factor(, p), over Q, using
factor(, 0(p~n)), over Q using factor, and over the number field Q[t]/(T") using factor(, T).
Note however that factor itself will guess intelligently over which ring you want to factor: try

pol = x"2 + 1;

factor(pol)

factor(pol *1.)

factor(pol * (1 + 0%I))

factor(pol * (1 + 0.%I))

factor(pol * Mod(1,2))

factor(pol * Mod(1, Mod(1,3)*(t"2+1)))
pol2 = x72 + y~2;

factor(pol2)

factor(pol2 * Mod(1,5))

In the present version 2.15.3, it is not possible to factor over other base rings than the ones
mentioned above, but multivariate polynomials over those rings are allowed as shown in the last
examples. Other functions related to factoring are padicappr, polrootsmod, polrootspadic,
polsturm. Play with them a little.

Finally, type
polsym(pol2, 20)

where pol2 was defined above. This gives the sum of the k-th powers of the roots of pol2 up
to k = 20, of course computed using Newton’s formula and not using polroots. You notice that
every odd sum is zero (expected, since the polynomial is even), but also that the signs follow a
regular pattern and that the (nonzero) absolute values are powers of 2. This is true: prove it, and
more precisely find an explicit formula for the k-th symmetric power not involving (nonrational)
algebraic numbers.

24

9. Power Series.

Now let’s play with power series as we have done at the beginning. Type

N = 39;
8*x + prod(n=1,N, if(n%4, 1 - x"n, 1), 1 + 0(x~(N+1)))"8

Apparently, only even powers of x appear. This is surprising, but can be proved using the theory
of modular forms. Note that we initialize the product to 1 + 0(x~(N+1)), otherwise the whole
computation would be done with polynomials; this would first have been slightly slower and also
totally useless since the coefficients of x~(N+1) and above are irrelevant anyhow if we stop the
product at n = N.

While we are on the subject of modular forms (which, together with Taylor series expansions
are another great source of power series), type

\ps 122 \\ shortcut for default(seriesprecision, 122)
d = x x eta(x)"24

This gives the first 122 terms of the Fourier series expansion of the modular discriminant function
A of Ramanujan. Its coefficients give by definition the Ramanujan 7 function, which has a number
of marvelous properties (look at any book on modular forms for explanations). We would like to
see its properties modulo 2. Type d%2. Hmm, apparently PARI doesn’t like to reduce coefficients
of power series, or polynomials for that matter, directly. Can we do it without writing a little
program? No problem. Type instead

lift(Mod(1,2) * d)
centerlift(Mod(1,3) * d)

and now this works like a charm. The pattern in the first result is clear; the pattern is less clear in
the second result, but nonetheless there is one. Of course, it now remains to prove it (see Antwerp
III or your resident modular forms guru).

10. Working with Elliptic Curves.

Now we are getting to more complicated objects. Just as with number fields which we will
meet later on, the first thing to do is to initialize them. That’s because a lot of data will be needed
repeatedly, and it’s much more convenient to have it ready once and for all. Here, this is done with
the function ellinit.

So type
e0 = ellinit([6,-3,9,-16,-14])

This computes a number of things about the elliptic curve defined by the affine equation
Y2+ 6xy 4+ 9y = 2® — 32% — 162 — 14 .

It is not that clear what all these funny numbers mean, except that we recognize the first few of
them as the coefficients we just input. To retrieve meaningful information from such complicated
objects (and number fields will be much worse), one uses so-called member functions. Type 7. to
get a complete list. Whenever ell appears in the right hand side, we can apply the corresponding
function to an object output by ellinit. (I'm sure you know how the other init functions will
be called now, don’t you? Oh, by the way, neither clgpinit nor pridinit exist.)

25

Let’s try it. The discriminant e0.disc is equal to 37, hence the conductor of the curve is
37. Of course in general it is not so trivial. In fact, although the equation of the curve is clearly
minimal (since the discriminant is 12th-power-free), it is not in standard reduced form, so type

e = ellminimalmodel (e0)

which gives the ell structure attached to the standard model, exactly as if we had used ellinit
on a reduced equation. For some related data, type

gr = ellglobalred(e0)

The first component gr[1] tells us that the conductor is 37 as we already knew. The second
component is a 4-component vector which allows us to get the minimal equation: in fact e is
ellchangecurve(e0, gr[2]). Type

q0 = [-2,2]

ellisoncurve(e0, q0)

q = ellchangepoint(q0,gr[2])
ellisoncurve(e, q)

The point qO is on the curve, as checked by ellisoncurve, and we transferred it onto the minimal
model e, using ellchangepoint and the change of variable computed above. Note that ellchange-
point () is unusual among the elliptic curve functions in that it does not take an ell structure as
its first argument: in gp, points do not “know” which curve they are on, but to move a point from
one model to another we only need to know the coordinates of the point and the transformation
data here stored in gr[2]. Also, the point at infinity is represented as [0] on all elliptic curves;
this is the identity for the group law.

Here, q=[0,0] obviously lies on e, which has equation 3% +y = 23 — z. Let us now play a little
with points on e. The group law on an elliptic curve is implemented with the functions elladd
for addition, ellsub for subtraction and ellmul for multiplication by an integer. For example,
the negative of q is ellsub(e, [0],q), and the double is obtained either as ellmul(e,q,2) or as
elladd(e,q,q).

Now q may be a torsion point. Type ellheight(e, q), which computes the canonical Neron-
Tate height of q. Note that ellheight does not assume that e is minimal! (Although it is, making
things a little faster.) This is nonzero, hence q is not torsion. To see this even better, type

for(k = 1, 20, print(ellmul(e, q, k)))

and we see the characteristic parabolic explosion of the size of the points. (And another proof that
q is not torsion, assuming Mazur’s bound on the size of the rational torsion.) We could can also
type ellorder (e, q) which returns 0, telling us yet again that q is nontorsion. As a consistency
check, type

ellheight(e, ellmul(e, q,20)) / ellheight(e, q)
We indeed find 400 = 20? as it should be.

Notice how (almost) all those e11-prefixed functions take our elliptic curve as a first argument?
This will be true with number fields as well: whatever object was initialized by an ob—init function
will have to be used as a first argument of all the ob—prefixed functions. Conversely, you won’t be
able to use any such high-level function before you correctly initialize the relevant object.

Ok, let’s try another curve. Type

26

E
q

This corresponds to the equation y? +y = 2% — 22 and an obvious rational point on it. Again from
the discriminant we see that the conductor is equal to 11, and if you type ellminimalmodel (E)
you will see that the equation for E is minimal. This time the height is exactly zero, hence q must
be a torsion point. Indeed, typing

ellinit([0,-1,1,0,0])
[0,0]; ellheight(E, q)

3

for(k=1, 5, print(ellmul(E, q,k)))
ellorder(E, q) \\ simpler

we see in two different ways that q is a point of order 5. Moreover, typing
elltors(E)

shows that q generates all the torsion of E, which is cyclic of order 5.

Let’s try still another curve, ¥ +y = 2% — 72 + 6:

e = ellinit([0,0,1,-7,6])
ellglobalred(e)

As before, this is a minimal equation; now the conductor is 5077. There are some trivial integral
points on this curve, but let’s try to be more systematic. Typing

elltors(e)

shows that the torsion subgroup is trivial, so we don’t have to worry about torsion points. Next,
the function ellratpoints allows us to find rational points of small height

v = ellratpoints(e,1000)

The vector v contains all 130 rational points (z,y) on the curve whose z-coordinate is n/d with
|n| and |d| both less than 1000. Note that ellratpoints(e,1076) takes less than 1 second, and
produces 344 points. Of course, these are grouped by pairs: if (z,y) is on the curve, its opposite is
($7 -y - 1) as

ellneg(e, [’x,’y])

shows. Note that there is no problem with manipulating points with formal coordinates. This is
large for a curve having such a small conductor. So we suspect (if we do not know already, since
this curve is quite famous!) that the rank of this curve must be large. Let’s try and put some order
into this. First, we eliminate one element in each pair of opposite points:

v = vecsort(v, 1, 8)

The argument 1 specifies a comparison function: we sort the points by first coordinate only, in par-
ticular two points with the same x-coordinate compare as equal; the 8 flag eliminates “duplicates”.
The same effect could be obtained in a more verbose way using an inline anonymous function

v = vecsort(v, (P,Q) -> sign(P[1]1-Q[1]), 8)
We now order the points according to their canonical height:

hv = [ellheight(e,P) | P <- v];
v = vecextract(v, vecsort(hv,,1)) \\ indirect sort wrt h, then permute

It seems reasonable to take the numbers with smallest height as possible generators of the Mordell-
Weil group. Let’s try the first four: type

27

m = ellheightmatrix(e, v[1..4]); matdet(m)

Since the curve has no torsion, the determinant being close to zero implies that the first four points
are dependent. To find the dependency, it is enough to find the kernel of the matrix m. So type
matker (m): we indeed get a nontrivial kernel, and the coefficients are close to integers. Typing
elladd(e, v[1],v[3]) does indeed show that it is equal to v[4].

Taking any other four points, we seem to always find a dependency. Let’s find all dependencies.
Type

vp = v[1..3];
m = ellheightmatrix(e,vp);
matdet (m)

This is now clearly nonzero so the first 3 points are linearly independent, showing that the rank of
the curve is at least equal to 3. (In fact, e is the curve of smallest conductor having rank 3.) We
would like to see whether the other points are dependent: if Q is some point which is dependent on
v[1],v[2] and v[3] and

c = [ellheight(e, P, Q) | P <~ vpl~

then m~ (-1) * c will give the coefficients of the dependence relation. If these coefficients are not
close to integers, then there is no dependency, otherwise we can round an