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1 Introduction

CQUAL is a type-based analysis tool for finding bugs in C programs. CQUAL extends the type system of
C with extra user-defined type qualifiers. The programmer annotates their program in a few places, and
CQuaL performs qualifier inference to check whether the annotations are correct. CQUAL presents the
analysis results either on the command line or in an interactive EMACS buffer.

Earlier versions of CQUAL written in SML/NJ have been used to perform const-inference [FFA99] and
to find Y2K bugs [EFA99]. The current version of CQUAL has been used to detect potential format-string
vulnerabilities [STFWO01] and to find locking bugs in the Linux kernel [FTA02]. The latest version of CQUAL
adds support for polymorphic recursive qualifier inference and gated qualifier edges, which are used for
structural qualifier constraints. This release also includes direct support for checking for user/kernel pointer
errors.

1.1 cqual and PAM Installation

The latest version of CQUAL can be found at
http://cqual.sourceforge.net
To unpack CQUAL, execute the following commands:

gunzip cqual-0.991.tar.gz
tar xf cqual-0.991.tar

CqQuaL will be unpacked into a directory cqual-0.991, which contains, among other things,

COPYRIGHT The copyright notice

KERNEL-QUICKSTART Guide to using cqual to find user/kernel errors
bin Some utilities

config Sample CQUAL configuration files

doc Documentation (contains this file)

src Source code for CQUAL

PAM-3 The latest version of PAM

The latest version of PAM can also be downloaded separately from

http://www.cs.berkeley.edu/"chrishtr/pam

To build CQUAL and PAM, simply cd into the directory, run configure and then run make:

cd cqual-0.991
./configure
make

If all goes well, the makefile will build two executables in the src directory: cqual, the type qualifier inference
system, and iquals, a small tool for experimenting with qualifier constraints. The makefile will also build
PAM and append some commands to your .emacs file so that you can run CQUAL using PAM.

While you don’t need to run CQUAL in PAM mode, the analysis results are much easier to understand
if you do. If you wish to run CQUAL solely from the command line, you will be able to see some but not
all of the information you could in PAM mode. In particular, rather than being able to browse through the
program on qualifier paths, you will be presented with paths corresponding to just the errors.

1.2 A Small Example

In this section we present a small example showing how to use CQUAL to find a potential format-string
vulnerability in a C program. Consider the following program, which is included in the distribution as
examples/taint0.c:



char *getenv(const char *name);
int printf(const char *fmt, ...);

int main(void)
{
char *s, x*t;
s = getenv("LD_LIBRARY _PATH");
t = s;
printf(t);

}

This program reads the value of LD_LIBRARY_PATH from the environment and passes it to printf as a format
string. If an untrusted user can control the environment in which this program is run, then this program
may have a format-string vulnerability. For example, if the user sets LD_LIBRARY_PATH to a long sequence of
%s’s, the program will likely seg fault.

By default CQUAL assumes nothing about the behavior of your program.! In order to start checking for
bugs, we need to annotate the program with extra type qualifiers. For this example we will use two qualifiers.
We will annotate untrusted strings as $tainted, and we will require that printf take $untainted data:

$tainted char *getenv(const char *name);
int printf($untainted const char *fmt, ...);

int main(void)
{
char *s, *t;
s = getenv("LD_LIBRARY PATH");
t = 8;
printf (t);

}

In CQuAL all user-defined qualifiers, which we will refer to constant qualifiers or partial order elements, begin
with dollar signs. Notice that we only need to annotate getenv and printf with type qualifiers. For this
example CQUAL will infer that s and t must also be $tainted, and hence will signal a type error: $tainted
data is being passed to printf, which requires $untainted data. The presence of a type error indicates a
potential format-string vulnerability.

1.3 Running cqual

Assuming that CQUAL is already installed as described above, you can run CQUAL on this example pro-
gram to see what happens. From within EMACS type M-x cqual and press return. Enter the file name
examples/taintl.c (assuming you are in the top-level cqual directory) and press return.

CQUAL analyzes the file and brings up a window listing the input files and the analysis results. In this
case, CQUAL complains

/home/rtjohnso/projects/cquals/fields2/cqual/examples/taintl.c:7
incompatible types in assignment

The user interface used to display the analysis results is Program Analysis Mode (PAM), a generic interface
for marking up programs in emacs [PAM]. Middle-clicking on a hyperlink with the mouse or moving the
cursor over a hyperlink and pressing C-c C-1 will follow that link. Error messages are linked to the position
in the file where the error was generated.

If you middle-click on the error message link you will see a marked-up display of taintl.c. Identifiers
are colored according to their inferred qualifiers. In the default configuration file, $tainted identifiers are

LCQUAL comes with some default configuration files for checking for format-string vulnerabilities and user/kernel errors;
more on this below.



colored red, $untainted identifiers are colored green, and identifiers that may contribute to a type error are
colored purple.

Each marked-up identifier is also a hyperlink. Middle-clicking on an identifier will show you the type of
the identifier, fully annotated with qualifiers. For example, middle-clicking on t should bring up a window
showing

t: &t ptr (t ptr (*t char))

The name of the identifier is shown to the left of the colon, and its inferred type is are shown to the right of
the colon.

Here t has the type pointer to pointer to character. (We will explain the extra level of ptr in Section 1.6.)
Notice that CQUAL writes types from left-to-right using ptr as a type constructor.

The three hyperlinked names in the type are qualifier variables (see Section 2). In this case the qualifier
variable *t (throughout this document we italicize qualifier variables) is colored purple because it has been
inferred to be both $tainted and $untainted, an error.

Middle-clicking on a qualifier variable will show you the inferred value of the qualifier variable and the
shortest path on which it was inferred to have its value. For example, if you click on *t, you should see the
following result:

*t: $tainted $untainted

$tainted <= *getenv_ret

<= *g

<= *xt

<= *xprintf_argl
<= $untainted

The first line tells us that =t is both $tainted and $untainted, an error. The remaining lines show us an
erroneous path. We see that xt was tainted from s, which was tainted from the return type of getenv. We
also see that the error arises because %t taints the parameter to printf, which must be untainted.

Middle-clicking on a <= will jump to the source location where that constraint was generated. Middle-
clicking an a qualifier we compute the shortest path by which that qualifier was inferred to have its value.
And shift-middle-clicking on a qualifier will jump to the source location where the identifier corresponding
to that qualifier was defined.

You can also run CQUAL on the command line. If you do so with the appropriate configuration arguments
then CQUAL will generate the same error messages, but you will be unable to interactively explore the analysis
results:

bash-2.05a$ src/cqual -config config/lattice examples/taintl.c
Analyzing examples/taintl.c

examples/taintl.c:1 ‘‘getenv’’ used but not defined
examples/taintl.c:2 ‘‘printf’’ used but not defined
examples/taintl.c:7 incompatible types in assignment

*s: $tainted $untainted

examples/taintl.c:1 $tainted <= *getenv_ret
examples/taintl.c:7 <= *g
examples/taintl.c:8 <= ¥t
examples/taintl.c:9 <= xprintf_argl
examples/taintl.c:2 <= $untainted

Cqual also lists the globals that are used but not defined; see Section 3.2.1.

CQUAL comes with a standard prelude file that contains declarations of standard-library functions that
have been annotated with $tainted and $untainted. See Section 3.4 for a discussion of prelude files, and
Section 4.2 for instructions on how to invoke CQUAL in PAM mode with the standard prelude file.



1.4 Another Example: Structural Qualifiers

In the previous example, we saw how format-string vulnerabilities can occur when a program uses untrusted
data in certain positions, namely as format strings. Strings are particularly simple, because they’re flat
sequences of characters. In programs that have trusted and untrusted data structures and pointers, the
rules are more complicated, and we need to extend our type qualifiers with additional structural constraints.
As an example of such a system, consider the Linux operating system kernel, which copies data structures
between user space (which we will annotate with $user and consider untrusted) and kernel space (which we
will annotate with $kernel and consider trusted).

The following program (available as examples/user0.c) has a user/kernel pointer bug, meaning that
data copied from user space is improperly trusted, and hence a malicious local user could breach security:

unsigned long copy_from_user(void $user * $kernel to, void * $user from, unsigned long n);
$$a _op_deref ($$a *$kernel x);

struct msg {
char xbuf;

};

void dev_ioctl(long arg)
{

struct msg m;

char c;

copy_from_user(&m, (void*)arg, sizeof (m));
¢ = m.buf[0];
}

After the call to copy_from user, the contents of m are under user control. Thus m.buf is under user
control, and hence should be sanity checked before being dereferenced. The statement “c = m.buf [0];”
unsafely dereferences m.buf, and hence is an error. The annotations capture these rules:

e The annotation “void $user * $kernel to” indicates that the first argument to copy_from user
must be a kernel pointer, but that its contents are under user control.

e The annotation “$$a _op_deref ($$a *$kernel x);” declares that only kernel pointers can be deref-
erenced. For more on this annotation, see Section 3.9.

Moreover, once we infer that m has the $user qualifier, we also infer, via structural constraints, that its
m.buf must also be annotated with $user. For $user and $kernel, CQUAL enforces structural rules like,
“If a structure is $user, then so are all of its fields,” and “A $user pointer can only point to $user data.”
For more on structural constraints see Section 2.3.

For more on checking for user/kernel pointer errors in the Linux kernel, see KERNEL-QUICKSTART.

1.5 A Flow-Sensitive Example

The qualifiers $tainted and $untainted are flow-insensitive, meaning that a variable’s taintedness does not
change during program execution. L.e., if x is inferred to be $tainted, then it is $tainted everywhere.

Sometimes this flow-insensitive restriction makes it difficult to apply type qualifiers to certain checking
problems. For example, if we want to use qualifiers to keep track of state changes, then we need flow-
sensitivity, i.e., we need qualifiers that can change as the state changes. For example, consider the following
program, which can be found in examples/lock.c:

typedef int lock_t;

lock_t lock;



int main(void)

{
lock = ($unlocked lock_t) O;
lock;
lock = ($locked lock_t) 1;
lock;
lock = ($unlocked lock_t) O;
lock;

}

In this case, we want to use qualifiers $1ocked and $unlocked to keep track of whether this thread last left
lock in the locked or unlocked state.

In order to analyze this example, we need to tell CQUAL that $locked and $unlocked should be modeled
flow-sensitively. That’s already taken care of in the default configuration files, so to try out this example type
M-x cqual within EMACS, press return, and then enter the file name examples/lock.c and press return
again.

As before, CQUAL analyzes the program. This time there are no type errors. If you click on the file
name, CQUAL will display the source code colored according to the inferred qualifiers. In this case, CQUAL
colors lock green wherever it is unlocked, and red wherever it is locked.

If you click on the various occurrences of lock, you can see its type and its qualifiers. Notice that name
of the qualifier lock points to changes after an assignment. Initially it is lock, then it is lock@0, and so on.

Warning: This version of cqual has been enhanced with support for polymorphic recursion, gated
qualifier edges for structural constraints, and better handling of type casts. These features, however, are not
supported by the flow-sensitive type qualifier inference system, and as a result flow-sensitive CQUAL may
fail on some programs. For the time being, we recommend using version 0.98 of CQUAL for flow-sensitive
analysis.

1.6 [-values and r-values

In C there is an important distinction between [-values, which correspond to memory locations, and r-values,
which are ordinary values like integers. In the C type system, [-values and r-values are given the same type.
For example, consider the following code:

int x;
X = ...
= X;

The first line declares that x is a location containing an integer. On the second line x is used as an [-value:
it appears on the left-hand side of an assignment, meaning that the location corresponding to x should be
updated. On the third line x is used as an r-value. Here when we use x as an r-value we are not referring
to the location x, but to x’s contents. In the C type system, x is given the type int in both places, and the
syntax distinguishes integers that are [-values from integers that are r-values.

CQUAL uses a slightly different approach in which the types distinguish [-values and r-values. In CQUAL,
x is given the type ptr(int), meaning that the name x is a location containing an integer. When x is used
as an [-value its type stays the same—in CQUAL, the left-hand side of an assignment is always a ptr type.
When x is used as an r-value the outermost ptr is removed, i.e., x as an r-value has the type int. CQUAL is
implemented in this way both because it makes the implementation cleaner in a number of ways and because
it makes const easier to understand [FFA99].

In more concrete terms, if you click on an identifier a that can be used as an [-value you will see a’s type
as an [-value, i.e., with an extra ptr at the top-level. For most purposes you can safely ignore this extra
level of indirection.



2 Type Qualifiers

CQUuAL is a type-based analysis tool. As described above, to use CQUAL the programmer annotates their
program with extra type qualifiers. CQUAL type checks the program and warns the programmer about any
inconsistent type qualifier annotations, which indicate potential bugs.

In the rest of this section we discuss what type qualifiers are and how CQUAL checks for inconsistent
qualifier annotations. Section 3 describes how CQUAL applies these ideas to C.

2.1 Qualifiers and Subtyping

CQuaAL extends the type system of C to work over qualified types, which are the combination of some number
of type qualifiers with a standard C type. We allow type qualifiers to appear on every level of a type. Here
are some examples of qualified types:

int Integer

$locked lock_t Acquired lock
ptr($untainted char) Pointer to untainted character
$user ptr(char) User-level pointer to character

In general, the rules for checking that type qualifiers are valid can be arbitrary, and indeed, the source code
of CQUAL can be modified to support qualifiers with arbitrary meanings. The key insight behind CQUAL,
however, is that many kinds of type qualifiers naturally induce a subtyping relationship on qualified types.
The notion of subtyping most commonly appears in object-oriented programming. In Java, for example, if
B is a subclass of A (which we will write B < A), then an object of class B can be used wherever an object
of class A is expected.

For example, consider the following program, which uses the $tainted and $untainted qualifiers intro-
duced above:

void f($tainted int);
$untainted int a;
f(a);

In this program, £, which expects tainted data, is passed untainted data. This program should type check.
Intuitively, if a function can accept tainted data (presumably by doing more checks on its input), then it can
certainly accept untainted data.

Now consider another program:

void g($untainted int);
$tainted int b;
g(b);

In this program, g is declared to take an $untainted int as input. Then g is called with a $tainted int
as a parameter. This program should fail to type check, since tainted data is being passed to a function that
expects untainted data.

Putting these two examples together, we have the following subtyping relation:

$untainted int < $tainted int

As in object-oriented programming, if T3 < Ty (read T} is a subtype of Ty), then T; can be used wherever
T5 is expected, but not vice-versa. We write 77 < Ty if 71 < T and Ty # Ts.

On the other hand, consider $locked and $unlocked. It is an error for a lock to be in both the $locked
and $unlocked state, so these qualifiers are in the discrete partial order: Neither $locked ¢ $unlocked
nor $unlocked ¢ $locked. (Alternately, we could add a third qualifiers T and have $locked < T and
$unlocked < T.)



2.2 Qualified Types

CQUAL needs to know not only how integer types with qualifiers relate but also how qualifiers affect pointer
types, pointer-to-pointer types, function types, and so on. Fortunately, well-known results on subtyping tell
us how to extend the subtyping on integers to other data types.

The programmer supplies CQUAL with a configuration file describing a partial order of type qualifiers
(see Section 3.3 for the file format). Right now cqual supports any partial order that is a lattice (a lattice
is a partial order where for each pair of elements x and y, the least upper bound and greatest lower bound
of x and y both always exist. For example, the qualifiers $tainted and $untainted with the partial order
$untainted < $tainted form a lattice.) CQUAL also supports the discrete partial orders, and any of the
three-point partial orders. Other partial orders may or may not work correctly.

Given the partial order configuration file, CQUAL extends the partial order on qualifiers to a subtyping
relation on qualified types. We have already seen one of the subtyping rules:

71 < g2
q1 int < g2 int

This is a natural-deduction style inference rule, read as follows: If ¢; < g2 in the partial order (g; and g are
qualifiers), then ¢; int is a subtype of g2 int (note the overloading of <). For our example, it means that
$untainted int < $tainted int. The same kind of rule applies to any primitive type (char, double, etc.).
For pointer types, we need to be a little careful. Naively, we might expect to use the following rule for

pointers:
71 < q2 71 < To

(Wrong)
q1 ptr(m) < g2 ptr(Te)

Here the type g1 ptr(7) is a pointer to type 71, and the pointer is qualified with ¢;. Unfortunately, this
turns out to be unsound, as illustrated by the following code fragment:

tainted char *t;
untainted char *u;

t = u; /* Allowed by (Wrong) */
*t = <tainted data>; /* tainted data written into untainted *u */

According to (Wrong), the first assignment t = u typechecks, because ptr($untainted char) is a subtype
of ptr($tainted char). But then after the assignment *t is an alias of *u, yet they have different types.
Therefore we can store $tainted data into *u by going through *t, even though *u is supposed to be
untainted.

This is a well-known problem, and the standard solution, which is followed by CQUAL, is to use the
following rule:

@1 < 2 TI = T2
q1 ptr(71) < g2 ptr(Ty)

Here we require 71 = 75, which intuitively means that any two objects that may be aliased must be given
exactly the same type. In particular, if 7 and 75 are decorated with qualifiers, the qualifiers must themselves
match exactly, too. This equality, while sound, is sometimes too conservative in practice. Section 3.6
describes how const can be used to weaken the equality to an inequality.
For function types, we use the following standard rule:
qg<¢ m<n - 1,<T, T<7

gfun (11,...,7) — 7<¢ fun (7{,...,7) — T

Here the type ¢ fun (7,...,7,) — 7 is a function, qualified by ¢, with argument types 7; through 7,, and
result type 7.



2.3 Structural Qualifiers

In Section 1.4, we saw how some qualifiers come with well-formedness conditions on the types they decorate.
We write waT to mean that type 7 is well-formed; CQUAL requires that all types in the program be well-
formed. Each qualifier partial order comes with a set of well-formedness conditions. For example, a partial
order may specify that its qualifiers flow from outer to inner pointer constructors or vice-versa. Formally,
CQuaAL enforces the rule

c<qg—c<q ifc’sp.o. flows down pointers

- g<c—q <c ifc’sp.o. flows down pointers
wf ™ c<q —c<q ifc’sp.o. flows up pointers
¢ <c—qg<c ifc’sp.o. flows up pointers

I—wfq ptr(¢ 7)

This rule states that a pointer-to-pointer-to-7 type is well-formed if type 7 is well-formed. Additionally,
for any qualifier ¢ of a partial order whose qualifiers flow “down” pointers, constraints on the outer pointer
type propagate to the inner pointer type, and similarly for the case when qualifiers flow “up” pointers. For
example, the $user qualifier from Section 1.4 flows down pointers.

CQUAL also provides support for two other well-formedness conditions. In a similar manner as above,
the user may specify that qualifiers propagate from pointers-to-aggregates (structures and unions) to the
corresponding pointers-to-fields or vice-versa, and separately, the user may specify that qualifiers propagate
from aggregates (structures and unions) to their fields or vice-versa.

2.4 Qualifier Inference

Given the partial order configuration file, CQUAL extends the qualifier partial order to a subtyping relation
among qualified types as described above. The next problem is to determine whether a program is type
correct or not, i.e., whether the qualifier annotations are valid.

CQUAL checks a program’s correctness by performing qualifier inference. Rather than requiring the
programmer to specify type qualifiers on every type in the program, using CQUAL the programmer can
sprinkle a few qualifier annotations through the program, and CQUAL will infer the remaining qualifiers. It
is this qualifier inference process that makes CQUAL easy to use.

CQUAL begins by adding fresh qualifier variables to every level of every type in the program. A qualifier
variable stands for an unknown qualifier. For any explicit qualifier annotations in the program, CQUAL
generates the appropriate constraint on the corresponding qualifier variable (see Section 3.3). Next CQUAL
walks over the program and generates constraints between qualified types. For example, for an assignment
x =y, CQUAL generates the constraint that the type of y is a subtype of the type of x. For a function call
f(x), CQUAL generates the constraint that the type of x is a subtype of the type of the formal parameter
of £.

Applying the subtyping rules from above, these constraints between types yield constraints between
qualifiers (variables and partial order elements). More formally, we are left with a set of constraints of the
form ¢ < ¢o, where each g; is either a qualifier variable or a partial order element.

2.5 Flow-Sensitive Type Qualifiers

(If you are only interested in flow-insensitive type qualifiers, such as used in the tainted /untainted analysis
or the user/kernel analysis, you may safely skip this section.)

The qualifier system described so far is flow-insensitive. For example, if we declare x to be an integer,
then the contents of x is assigned a single type ¢ int for the whole program execution. For example, in

/* x has type ¢ int */
X= ...
/* x still has type ¢ int */

10



the contents of x (here we are ignoring the I-value/r-value distinction) has the same qualifier ¢ before and
after the assignment. For checking some properties, such as keeping track of the state of locks, we need
flow-sensitive type qualifiers.

CQUAL supports flow-sensitive type qualifier inference, as described in [FTA02]. Each qualifier partial
order may either be flow-insensitive, the default, or it may be flow-sensitive, as declared in the partial order
configuration file (Section 3.3).

The flow-sensitive analysis consists of two separate passes over the source code. In the first pass, CQUAL
performs flow-insensitive alias analysis and effect inference. This pass is done at the same time as flow-
insensitive qualifier inference. In the second pass, CQUAL uses the results of the first pass to help perform
flow-sensitive qualifier inference.

During flow-sensitive analysis, qualifiers on variables may change after an assignment:

/* x has type ¢ int */
X=...;
/* x now has type ¢ int */

2.5.1 Aliasing

Not every assignment in C is a simple variable assignment of the form shown above—updates can also occur
indirectly, through pointers. CQUAL performs a unification-based, flow-insensitive alias analysis to compute
an approximation to the aliasing behavior of the program. The alias analysis computes, for each pointer-
valued expression e in the program, the set of locations (either stack variables or heap memory) to which
e may point. The basic rule of the alias analysis is that given an assignment between pointers x = y, we
unify (equate) the locations to which x and y can point. Formally, if x points to location p, and y points to
location p,, then upon seeing the assignment x = y we require p, = p,.
By using the results of alias analysis, CQUAL can track the effect of indirect updates, e.g.,

y = &x;
/* x has type ¢ int */
*y = 5

/* x now has type ¢ int */

Because the alias analysis is flow-insensitive, sometimes it will produce unexpected results. For example,
the analysis will assume that y points to p,, the location of x, no matter where the assignment y = &x
actually occurs. The alias analysis does not track null pointers, and hence does not check for null pointer
dereference statically.

In the above example, y pointed to exactly one location p,. In this case we say that p, is linear, and the
flow-sensitive analysis allows strong updates on p, (at assignments to p, it is given a new qualifier).

But what if the alias analysis determines that y may point to more than one location, say both x and
z? Then the alias analysis will say that y points to p, where p, = p, (p. is the location of x and p, is the
location of z). In this case, we say that p, is non-linear, because it may represent more than one location.

Then at the assignment *y = ... we can’t distinguish which location we are updating. Thus the flow-
sensitive inference gives p,, which stands for both x and z, the type ¢” int after the assignment with
constraints ¢ < ¢” and ¢’ < ¢”. Intuitively, this means that the qualifier of location p, is either q or ¢’. This
is called a weak update.

2.5.2 Restrict

Clearly weak updates can cause the analysis to lose precision. CQUAL supports two language constructs to
expose the alias analysis to programmer control. The idea behind both constructs is to introduce a lexical
scope in which a non-linear location can locally be treated as linear.

In an idealized syntax, the restrict construct has the form

restrict x = el in e2

In our C notation, this construct will be written using the ANSI C qualifier restrict [ANS99]:
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{
T *const restrict x = el;
e2;

}

(The const needs to be there so that x is not modified within the scope of the declaration.)

In this construct, el is a pointer to some location p. The name x, which can be used during evaluation
of e2, is initialized to el, but it is given a fresh location p,. At the beginning and end of restrict, p and
p. have the same type.

The key property of restrict is that within e2, the location p, may be accessed, but the location p
may not. Outside of e2 the reverse is true: p may be accessed, but p, may not. This property is enforced
automatically by CQUAL.

Since the accesses within e2 go through location p,, notice that the flow-sensitive qualifier inference may
be able to treat p, as a linear location even if p is non-linear. When the scope of e2 ends the analysis may
need to weakly update p.

For example, suppose we want to lock and then unlock a single array element:

spin_lock(&foo[i].lock);

spin_unlock(&foo[i] .lock);

Then because the alias analysis does not distinguish array elements, both the lock acquire and release will
be weak updates, and the analysis will conclude that foo[i].lock is both locked and unlocked, which is an
error in the supplied partial order configuration file.

But we can use restrict to introduce a new name, and hence a new location, for foo[i].lock:

{
spinlock_t *const restrict 1 = &fool[i].lock;
spin_lock(1l);

spin_unlock(1l);

3

Assuming no other array elements are used within this scope, 1 can be strongly updated to first be locked
and then be unlocked. When the scope ends, the analysis will do a weak update from the final state of 1
(unlocked) to the state of the array.

The name restrict is deliberately chosen to correspond to the ANSI C qualifier; see [FA01] for a
discussion.

2.5.3 Confine

While restrict can be used to locally recover strong updates, sometimes it is inconvenient, as it requires the
programmer to come up with a new name. CQUAL also includes a construct confine that allows expressions
to be restricted without introducing a new name. The syntax is

confine (el) s2

Here el is an expression that occurs within statement s2. As with restrict, the expression el must
evaluate to a pointer to some location p. Within s2, the analysis treats occurrences of el as pointing to
a fresh location p’. As before, location p may only be accessed outside of s2, and location p’ may only be
accessed within s2. At the beginning and end of confine, p and p’ have the same type.

The key to making this sound is that el must not contain any side-effects, and the value of el must not
change during evaluation of s2. As before this is checked automatically by CQUAL.

Going back to the last example in the previous section, with confine we can more conveniently annotate
the program as
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confine (&fool[i].lock) {
spin_lock(&foo[i] .lock) ;

spin_unlock(&foo[i] .lock);
}

In this case CQUAL will check that neither foo nor i changes during the evaluation of the ...’s, and that
none of the other aliases of foo[i].lock is changed in the scope of confine.

For further explanation of restrict and confine, see [FTA02, AFKTO03]. As described in [AFKTO3],
CQuaAL also supports automatic inference for restrict and confine, but only experimentally, and not
currently as part of the regular system.

2.6 Browsing Qualifier Inference Results with PAM

CQUAL represents constraints between qualifiers as a directed graph whose nodes are qualifier variables and
partial order elements. For each constraint g; < gs, there is an edge from ¢; to gs in the graph. After all the
constraints have been generated, CQUAL solves the constraints and, if there is an error, performs a second
pass over the constraint graph to isolate the most useful error messages to display to the user. For example,
if CQUAL ever generates the constraint $tainted < $untainted then it will signal an error.

If you run CQUAL with PAM, then once CQUAL has completed qualifier inference you will be able to
browse the inference results. There are a few important things to know about this browsing interface.

When displaying a source program, CQUAL colors each identifier according to its inferred qualifiers.
Currently, CQUAL colors an identifier x by computing the colors of all partial order elements reachable in
the constraint graph from any of x’s qualifier variables. If there is one such color, CQUAL uses it to color x.
If there is more than one such color, CQUAL colors x purple. CQUAL colors individual qualifiers similarly.
When computing colors, CQUAL does not include the qualifiers on fields of structures and unions, or on
argument or result types of functions.

When you click on a qualifier variable ¢, CQUAL tries to show you how ¢’s color was inferred. If no partial
order elements are reachable from ¢ in the constraint graph, CQUAL prints No qualifiers. Otherwise
CQuaL displays the shortest path from any partial order element to ¢, and from ¢ to any partial order
element.

The shortest path algorithm really works best with lattices, and it should also work with the discrete
partial orders. Your luck with other partial orders may vary.

3 Applying Type Qualifiers to C
3.1 Names

As described in Section 2.4, CQUAL introduces qualifier variables at every position in a type.

Qualifier variables are named after the corresponding program variable. For an identifier x, the outermost
qualifier on x’s type is given the name z. The names of qualifiers on nested ptr types are constructed by
appending ’ to the name of the qualifier from the outer type. For example, given the declaration char *x,
the l-value x is given the type &z ptr(z ptr(*x char)).

The ith argument (starting with one) of function f has associated qualifier variable f-argi, and the return
value of function f has qualifier variable f ret.

When parsing a C program, CQUAL assumes that any identifier beginning with a dollar sign ($) is a
type qualifier (e.g., $tainted, $untainted). Constant qualifiers appearing in a program must be declared in
the partial order configuration file (Section 3.3). Qualifier variables are not normally added to the program
explicitly, except in the case of polymorphism (Section 3.5).

3.2 Source Code Considerations

CQuAL accepts standard pre-processed source code and performs most C type checking. Currently error
messages from the parser and standard C type checker are not displayed in PAM mode. If you wish to view
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the parser error messages in PAM mode, switch to the *pam-results-buf* buffer.

3.2.1 Multiple Files

CQUAL can analyze single files at a time or whole programs at once. Recall that CQUAL assigns fresh qualifier
variables to every level of every type in the program. In particular, if a function f is declared with no explicit
type qualifiers and is not defined anywhere, CQUAL assumes that the body of £ places no constraints on f’s
type qualifiers.

Thus, in general, it is best to run CQUAL on a whole program rather than on individual files, unless you
are careful to fully annotate the types of every declared function. For example, suppose we have two source
files filel.c and file2.c:

filel: char *foo(void); file2: char *foo(void) {
void bar(void) { $tainted char *t;
char *s = foo(); return t;

}

}

Because foo’s type has no explicit qualifiers, we will only discover that s is tainted if we analyze both files
together.

In order to help avoid this problem, CQUAL generates a list of functions that are declared but not defined.
In PAM mode this list is available by clicking on Undefined Globals. If a function is declared in a prelude
file (Section 3.4) then is it not added to the undefined globals list.

To specify multiple input files to CQUAL, simply list them on the command line. When invoking CQUAL
in PAM mode you can only enter one file. In this case CQUAL will expand the input file name using glob,
which allows you to specify a set of input files using wildcards (for example, you can analyze foo/*.c).

3.2.2 Pre-Processed Source

CQuaL is designed to run on pre-processed source code. If you invoke CQUAL from the command line
then you can use standard pre-processed source from gcc -E. The standard output from gcc -E can be
processed by cqual, and the line numbers of error messages will be correct with respect to the original,
non-pre-processed source code. PAM mode currently ignores #line directives in the preprocessed source.
Thus, when using PAM, you will be browsing the pre-processed source and the line numbers of errors will,
of course, be the line numbers of the pre-processed code. In practice this is rarely a problem.

The wrapper script, gcqual, makes cqual behave more like a regular compiler: it accepts non-pre-
processed source files, preprocesses them, and calls cqual. It is the preferred interface to cqual. For more
info, see Section 5.3. The program remblanks, provided in the bin directory, strips out all #1line directives.
The perl script remquals, also provided in the bin directory, strips out all identifiers beginning with a dollar
sign, i.e., anything that might be a type qualifier.

3.2.3 Flow-Sensitivity

In CQUAL, a set of qualifiers forming a partial order can be declared to be flow-sensitive in the partial
order configuration file (Section 3.3). Flow-sensitive analysis is an additional step, so to enable flow-sensitive
analysis you also need to run CQUAL with the -fflow-sensitive option. If you do not need flow-sensitivity,
you should probably not use -fflow-sensitive and you should probably comment restrict out of your
partial order configuration file, because having either of these will cause CQUAL to consume more resources.

CQUAL’s alias analysis is based on the C types, hence casts can introduce unsoundness into the alias
analysis. E.g., given an assignment x = (void *) y, we do not assume that x and y point to the same
location. As with qualifiers, the locations of structure fields are shared across instances of the same struct
(Section 3.2.5). Thus if you cast a pointer to a structure to void * and then back to its original type, the
locations of the fields, and their qualifiers, will be preserved.

CQuAL adds two extra forms to C to make flow-sensitive type annotations a bit easier:
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e change type(e, T); is a statement that updates the type of [-value e to have type T. This statement
is equivalent to the assignment e = (something-of-type-T);, except that you don’t need to come up
with an expression for the right-hand side, only the type.

e assert_type(e, T); is a statement that checks whether the r-value of e has type T. Alternately,
instead of using assert_type you can declare a variable x to have type T and try to initialize it to e.

The flow-sensitive analysis is monomorphic, hence any polymorphic qualifier declarations are ignored
during flow-sensitive analysis. The -fcasts-preserve flag also is not implemented for flow-sensitive analysis.

3.2.4 Type Casts

By default CQUAL tries to keep track of qualifiers even in the presence of type casts. For example, consider
the following program:

$tainted char *x*s;
void *t;

t = (void *) s;

When s is used as an r-value at the cast, it is used with the type s ptr (s ptr( +«s char)). The r-value of
t has the type t ptr(*t void). Because of the typecast, normally CQUAL will generate the constraint s < ¢
but it will generate no constraints between deeper qualifiers of s and t.

In some cases, however, qualifiers should propagate through type casts. Each qualifier partial order can
optionally be marked as being preserved through casts. (Note: This option is unavailable with flow-sensitive
qualifiers.) If CQUAL analyzes the above program with $tainted’s partial order Q marked as cast-preserved,
then CQUAL will generate the constraints xsNQ = xsNQ = *xt N Q. In other words, the $tainted qualifier
and all other qualifiers in @ will flow from *xs to *s and to xt. CQUAL does not preserve qualifiers on
structure fields, function arguments, or function result types at casts even with a cast-preserved qualifier,
because this introduces too much imprecision.

Currently each structure or union with a distinct tag that is cast to a void or other primitive type is
associated separately. (Primitive types interact with pointers just like they had type void *.) In other
words, if both struct foo *a and struct bar *b are stored in void *c, then no constraints between a
and b’s fields are generated, even if the two structures are related in some way.

In order to provide an escape mechanism from this behavior, if you cast to a type containing a qualifier
¢, then other qualifiers in ¢’s partial order will not propagate through that cast even if the partial order is
cast-preserved. It is highly recommended that you do not enable casts-preserve for const, since many C
programs will fail to type check if const propagates through casts.

Warning. Preserving qualifiers across casts still does not guarantee soundness. For example, consider the
following code:

char *x, *y;

int a, b;
a = (int) x; 1
b = a; (2)

y = (char *) b; (3)

For line (1), CQUAL generates the constraints *x = & = a. For line (2), CQUAL generates the constraint
a < b. And for line (3), CQUAL generates the constraints b = *y = y. Notice that we have xx < xy but we
do not have xy < xz.

Finally, CQUAL handles casts on aggregate types in another manner. Consider the following program:
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struct foo *s, *u;
void *t;

t = (void *) s;
u (struct foo *) t;

Now s has type s ptr( *s struct foo), where struct foo itself has fields. In CQUAL, every void type
has an associated set of aggregates it represents. Upon analyzing the first assignment statement, CQUAL
generates the constraint s < ¢ as before, and it also adds struct foo to t’s set of aggregates. Then at the
second assignment statement the constraint ¢ < u is generated as usual, and additionally t’s struct foo
information is extracted and the appropriate constraints are generated with u’s fields.

3.2.5 Structures

In CQuUAL each aggregate (i.e. struct or union) is modeled as having its own collection of fields with their
own type qualifiers. Thus, for example, the following code type-checks:

struct buf
{
char *data;
int len;
};
void main (void)
{
struct buf a, b;
a.data = ($tainted char *)O0;
b.data = ($utainted char *)0;
}

For efficiency reasons, CQUAL unifies the fields of aggregates that interact (e.g. by assignments between
structs or pointers-to-structs). Thus there is no subtyping or polymorphism when dealing with fields of
aggregates.

When analyzing multiple files, CQUAL will match up structure types from different files field-by-field,
and it will complain if a structure is declared differently in different files.

Finally, structure initializers are not always handled correctly. CQUAL requires that the shape on the
right-hand side of an initializer match the shape of the type being initialized. For example, CQUAL won'’t
understand the following code

struct foo { char *s; int x; } f[] {"abc", 3, "def", 4};

unless it is rewritten as

struct foo { char *s; int x; } f[] {{"abc", 3}, {"def", 4}};

3.2.6 Restrict

As described in Section 2.5.2, CQUAL uses the restrict qualifier to help improve the precision of flow-
sensitive qualifier inference. Moreover, occurrences of restrict are checked by CQUAL. This means that
if you analyze a program that already contains restrict (for example, newer versions of the standard C
library headers), CQUAL will attempt to check its uses of restrict. Often these uses of restrict will fail to
typecheck, usually because they are not annotated with const and because the alias analysis is not precise
enough. Warnings about restrict qualifiers in code you did not write may be ignored.

If you want to disable restrict checking, simply remove restrict from your partial order configuration
file. Doing so will improve the resource usage of CQUAL if you also run without -fflow-sensitive.
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3.3 Partial Order Configuration File
The qualifier partial order configuration file is specified with a command-line option of the form
-config (po-file)

All qualifiers except the three standard C qualifiers const, volatile, and restrict must begin with a dollar
sign.

The partial order configuration file contains a series of partial order declarations. For now these partial
orders should be lattices, the discrete partial order, or any three-point partial order. For other partial orders
the implementation may or may not generate correct results.

Each partial order is assumed to be orthogonal to any other partial orders specified in the file. For
example, if g1 and g9 are two qualifiers from different partial orders, then the constraints ¢; < gs and g < ¢
are always satisfiable. More formally, the qualifier partial order is the product of each of the partial orders
specified in the configuration file [FFA99).

The full grammar for partial order configuration files is given in Section 5.4. Here we show how to specify
partial orders by example. As one example, consider the two point lattice:

partial order {

$a < $b
}

This partial order declaration declares two qualifiers, $a and $b, where $a < $b. But now what should
happen when we declare, say $a int x? Recall that x is given the type &z ptr(z int). Where should the
$a qualifier go?

If not specified, CQUAL assumes that a qualifier annotates r-types, and that it should be less than or
equal to the corresponding qualifier variable. In the case of the declaration of x, CQUAL adds the constraint
$a < x.

As another example, consider the qualifiers used for tainting analysis:

partial order {
$untainted [level = value, color = "pam-color-untainted", sign = neg]
$tainted [level = value, color = "pam-color-tainted", sign = pos]

$untainted < $tainted

}

As in the previous example here we define a two-point lattice with $untainted < $tainted. Further, we
explicitly declare that $untainted and $tainted should annotate r-types with the option level = value
(the default). We also specify that $tainted is a positive qualifier (sign = pos), meaning that it should be
made less than the corresponding qualifier variable when used in a type, the default. $untainted is declared
as a negative qualifier (sign = neg), meaning that it should be made greater than the corresponding qualifier
variable when used in a type. For example, if we declare

$tainted int t;
$untainted int u;

then CQUAL generates the constraints $tainted < ¢ and u < $untainted.

Finally, the color options specify the colors that should be used in PAM mode to mark-up identifiers
that have tainted or untainted types.

As another example, consider

partial order [casts-preserve] {

$user [level=value, color = "pam-color-6", sign = eq,
ptrflow=down, fieldflow=down, fieldptrflow=all]
$kernellevel=value, color = "pam-color-4", sign=eq,

fieldptrflow=all]
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Here $user and $kernel are in a discrete partial order: neither $user < $kernel nor $kernel < $user.
The partial order is declared as casts-preserving, which means these qualifiers are preserved across casts
between types with different shapes (see Section 3.2.4). The qualifiers are declared to be non-variant (sign
= eq), meaning that when they occur in the source code they should be may equal to the corresponding
qualifier variables. The ptrflow=down option on $user means that $user flows from outer to inner pointer
levels, and fieldflow=down means that $user also flows from structures to fields of structures, and finally
fieldptrflow=all means that $user flows both to and from pointers to structures and the pointers to their
fields. (See Section 2.3.)
As another example, consider ANSI C’s const:

partial order {
const [level = ref, sign = pos]
$nonconst [level = ref, sign = neg]

$nonconst < const

Here the level = ref options mean that const and nonconst annotate I[-types instead of r-types. For
example, given the declaration const int x, CQUAL will generate the constraint const < &z (not const < z
like it would if const qualified r-types).

If const is not declared in the partial order file, const annotations will be ignored during type qualifier
inference. This is the recommended usage, since the const inference described in [FFA99] is not fully
implemented in this system.

As another example, consider qualifiers for checking locking:

partial order [flow-sensitive] {
$locked [level = value, color = "pam-color-locked", sign = eq]
$unlocked [level = value, color = "pam-color-unlocked", sign = eq]

}

Here the flow-sensitive modifier means that $locked and $unlocked should be propagated flow-sensitively.
Finally, consider

partial order [nonprop]l {
volatile [sign = eq, level = ref, color = "pam-color-4"]
}

This entry declares that volatile is a non-propagating qualifier, i.e., it does not flow through the qualifier
constraint graph. In other words, if b is volatile as we assign a = b, that does not mean that a is volatile.

3.4 Prelude Files

One way to add annotations to your program, especially annotations for library functions, is to use prelude
files. One or more prelude files can be passed as arguments to CQUAL with the syntax

-prelude (file)

If you specify one or more prelude files with this flag, then these files will be analyzed before any other files
(and in order from left to right). Additionally, CQUAL assumes that any file called prelude.cq is a prelude
file, whether or not it is preceded by -prelude. Thus a convenient way to maintain per-project prelude files
is to include a local prelude.cq in the source directory.

The declarations in prelude files override declarations in non-prelude files. Therefore if there is some
library function you want to give a polymorphic type (see below), you can give it a type in the prelude file
and not worry about how it’s actually declared in the source files.

CQUAL comes with some default prelude files:

e config/prelude.cq can be used to find format-string bugs in C programs.

e config/proto-noderef.cq and config/linux-syscalls.cq can be used to find user/kernel bugs in
the Linux kernel.
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3.5 Qualifier Polymorphism

One of the important techniques for improving the accuracy of CQUAL is to add polymorphism to qualified
type annotations. Consider the following simple example code:

char id(char x) { return x; }

tainted char t;
untainted char u;

char a, b;
a = id(t); /* 1 *x/
b = id(); /*x 2 */

Because of call 1, we infer that x is a $tainted char, and therefore we also infer that a is $tainted. Then
call 2 type checks (because $untainted char < $tainted char), but we infer that b must also be $tainted.

While this is a sound inference, it is clearly overly conservative. Even though this simple example looks
unrealistic, this problem occurs in practice, most notably with library functions such as strcpy. The problem
arises because we are summarizing multiple stack frames for distinct calls to id with a single function type—x
has to either be untainted everywhere or tainted everywhere. The solution to this problem is to introduce
polymorphism, which is a form of context-sensitivity.

A function is said to be polymorphic if it has more than one type. Notice that id behaves the same way
no matter what qualifier is on its argument x: it always returns exactly x. Thus we can give id the signature

forall q . idfun (q char) — ¢ char

meaning that id, applied to a char qualified by any qualifier ¢, returns a char qualified by that same qualifier
g. (id is the qualifier on the function id—think of id as qualifying the arrow.)

Operationally, when we call a polymorphic function, we instantiate its type—we make a copy of its
type, replacing all the generic qualifier variables o with fresh qualifier variables. Intuitively, this corresponds
exactly to inlining the function, except that instead of making a fresh copy of the function’s code, we make
a fresh copy of the function’s type. In this case we say that id has a polymorphic type, which we constructed
by generalizing the type variable q.

In CQuAL, if the -fpoly flag is specified on the command line, then CQUAL will perform polymorphic
type qualifier inference; for the above example, id will be inferred to have the polymorphic type as specified.
As you might expect, polymorphic qualifier inference requires more resources (time and space) than ordinary
monomorphic qualifier inference.

CQUAL also allows the user to explicitly specify that certain functions are polymorphic in their qualifiers.
This is useful when you don’t have the code for a function but want to assign it the correct type (e.g.,
for library functions). Inside of a type, if you use qualifiers beginning with $_, they are interpreted as
named qualifier variables. Names are sequences of integers separated by _ (examples below). Function types
containing explicitly named qualifier variables are generalized. For example, the declaration

$.1 int foo($_1 int);
gives foo the type
forall foo_ret . foo fun (foo_ret int) -> foo_ret int
Whenever foo is used, the generalized variables in its type will be instantiated with fresh qualifier variables:

Program Type of foo
foo(a); foo fun (foo_ret@0 int) -> foo_ret@0 int

foo(b); foo fun (foo_ret@l int) -> foo_ret@! int

In this way the qualifiers from distinct calls to foo are kept distinct. It is important to note that on any
place on a type where an explicit qualifier variable is not mentioned, the qualifier in that position will not
be generalized. For example, in
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$_1 int foo($_1 int, float);

, all instances of foo share the same qualifier on the float, whereas they get separate instances of the
qualifier on the int and return type.

CQUAL ignores the definition of any function given a polymorphic type, i.e., CQUAL assumes that all
polymorphic function declarations are correct. The intention is to give polymorphic types to library functions,
e.g., strcpy.

You can write down types containing more complicated constraints between the qualifiers using special
notation. The declaration

$_1.2 int foo($_1 int);
assign foo the type
forall foo_arg0 foo_ret . foo fun (foo_arg0 int) -> foo_ret int

where foo_arg0 < foo_ret. In general, explicit qualifier names are interpreted as sets (not sequences) of
integers, and if the set derived from one qualifier name ¢; is a subset of the set derived from another qualifier
name ¢, then the constraint ¢; < ¢ is added. So, for example,

$.1.2 int foo($_2 int);

is an alternate declaration that assigns foo the same polymorphic type.

In general we recommend placing declarations of polymorphic functions in prelude files (see Section 3.4).
Since declarations in prelude files override declarations in regular files, adding a function declaration to a
prelude file has the same effect as rewriting functions declarations in all the source files.

Currently polymorphism in the flow-sensitive qualifiers is not supported. If you use functions given
polymorphic signatures in a flow-sensitive analysis, CQUAL will simply ignore your polymorphic declarations
during the flow-sensitive portion of the analysis.

3.6 Deep Subtyping with const

As described in Section 2.2, we use a conservative rule for pointer subtyping. This rule can lead to non-
intuitive backwards flow, which often causes false positives. For example, consider the following code:

f (const char *x);

$tainted char *a;

char *b;

f(a);

f(b); /* b gets tainted */

Here the declaration of a adds the constraint $tainted < xa The first function call to £ adds the constraints
a < z and *a = *x The second function call generates the constraints b < x and *b = *x. Notice that

$tainted < xq = *b

and thus *b is tainted, which is counter-intuitive but necessary if £ writes to *x.
Observe, however, that £’s argument x is of type const char *, so £ cannot taint *x if it is not tainted
in the first place. We can modify the subtyping rule for pointers to take advantage of this fact:

@1 <q const<gqgy T1<T
q1 ptr(m1) < g2 ptr(m)

For example, for an assignment

const char *s;
char *t;

s = t;
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CQUAL generates the constraints ¢ < s and *t < xs. If s were not const, CQUAL would generate the more
conservative xs = *t.

If the flag ~fconst-subtyping is enabled (the default), then CQUAL will use deep-subtyping for pointers
explicitly qualified in the source program with const. I.e., the requirement const < ¢ above means that
g2 must have been explicitly annotated with const. Explicit annotations for const are kept in the qualifier
graph even if const does not appear in the partial order file.

Currently, const annotations are ignored during the flow-sensitive portion of the analysis, so there is no
deep subtyping for flow-sensitive type qualifiers.

3.7 Functions with Variable Numbers of Arguments

C allows functions to be declared to take a variable number of arguments by specifying a “rest” parameter

. in a function declaration. As in C, by default CQUAL does not type check rest arguments (arguments
passed to the rest parameter). For some analyses to be correct, however, we do need to type check rest
arguments.

CQuaL extends the syntax of C to allow functions to have a rest qualifier, which is syntactically specified
as a type qualifier on the ... of a function. If a function f is declared with a rest qualifier and £ is called
with rest argument p, then the qualifiers of p’s types are constrained to be equal to £’s rest qualifier. More
precisely, for each qualifier g of p, CQUAL instantiates a fresh copy of £’s rest qualifier r as r_insti with the
appropriate constraints and add the constraint ¢ = r_insti. If £ has no rest qualifier, then no type constraints
are generated for rest arguments.

For example, in the sample prelude file for tainting analysis config/prelude.cq, the function sprintf
is declared as

int sprintf(char $.1 2 *str, const char $untainted *format, $.1 ...);

This declaration tells CQUAL to generate constraints ¢ < $.1_2 for all qualifiers ¢ on rest arguments to
sprintf.

Be aware that the current implementation of varargs annotations is not completely sound. Specifically,
rest qualifiers may be lost when varargs functions are stored and retrieved through function pointers. Also,
note that due to limitations with CQUAL’s parser, at most two qualifiers or qualifier variables can be specified
on ..., one to the left and one to the right.

3.8 Old-Style Functions

If you declare a function f using the K&R style, then no type checking is done to arguments at a call to f.
This matches the behavior of C, but it can lead to unexpected results. If wish to run CQUAL on a program
written in the K&R style, you can use the GNU package protoize to ANSIfy the function definitions and
declarations. CQUAL will warn about some, but not all, uses of old-style functions.

3.9 Operators

In some type qualifier-based analyses, the user-defined qualifiers interact with C operators. For example,
CARILLON requires strings that are dereferenced to be qualified with $NONYEAR.

CQUAL provides an experimental interface for adding such rules. You can annotate operators with type
qualifiers by declaring special functions (probably in a prelude file). For example, to require that every
dereferenced object be a $NONYEAR, you can declare

$$a _op_deref ($$a *$NONYEAR) ;

This declaration says that _op_deref is a polymorphic function that takes a pointer to type $$a and returns
a value of type $$a, for any type $$a. Further, that pointer must be qualified with $NONYEAR.

Currently you can only add a signature to the dereference operator. The constraints are applied to every
dereference, even implicit ones. For example, the assignment y = x; is interpreted as dereferencing both &y
and &x, even though the dereference operator, *, is never mentioned.
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3.10 iquals

CQuaAL includes the program 1QUALS, which is a simple interface to the qualifier constraint solver. IQUALS
accepts as an option a partial order configuration file, in the same format as CQUAL. IQUALS reads in a file
of qualifier constraints, solves the constraints, and then outputs the results.

IQUALS is intended mainly as a debugging tool for the qualifier constraint solver.

4 PAM Mode

4.1 The Interface

In the default configuration, PAM is invoked by typing M-x cqual in emacs. PAM launches CQUAL as a
sub-process. CQUAL analyzes its input files and sends the results back to PAM. CQUAL then enters an event
loop in which it responds to mouse-click events from PAM.

There are five active bindings when in PAM mode:

middle click Follow hyperlink

shift middle click Jump to qualifier definition

C-c C-1 Follow hyperlink

C-c C-f Run CQUAL on another file

C-c C-r Exit PAM and kill all PAM buffers

4.2 Changing the Analysis

PAM runs the analysis defined by the variable pam-default-analysis, which is a list of strings, the first of
which is the path name of the executable and the rest of which are arguments. PAM will interactively ask for
the target file and append it to the argument list. For example, here is the default analysis in the author’s
personal.el.

(setq pam-default-analysis ’("/home/jfoster/cqual/bin/cqual"
"-fpam-mode"
"-hotspots"
n 10"
"-fflow-sensitive"
"-config"
"/home/jfoster/cqual/config/lattice"))

You can add extra options to PAM mode by inserting them into the list. For example, if you want to use
the default prelude file for tainting analysis (Section 3.4), change the above to

(setq pam-default-analysis ’("/home/jfoster/cqual/bin/cqual"
"-fpam-mode"
"-hotspots"
n 10"
"-fflow-sensitive"
"-prelude"
"/home/jfoster/cqual/config/prelude.cq"
"-config"
"/home/jfoster/cqual/config/lattice"))

Be sure to re-evaluate your personal.el file (M-x eval-buffer) or re-launch EMACS after making a change
to the file.
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4.3 Customizing Colors

You can customize the colors that PAM uses by editing your .emacs file. By default, PAM defines nine type
faces: pam-color-i, where ¢ is between 1 and 8, and pam-color-mouse, the color to use to highlight a link
when the cursor is dragged over it.

If you want to change a color defined by PAM, use custom-set-faces:

(require ’pam-faces)

(custom-set-faces
> (pam-color-1 ((t (:foreground "Yellow" :underline t))) t)
> (pam-color-6 ((t (:foreground "Black" :underline t))) t))

If you want to add a new type face, use pam-add-face:

(require ’pam-faces)
(pam-add-face pam-color-tainted ((t (:foreground "Red" :underline t))))
(pam-add-face pam-color-untainted ((t (:foreground "Green" :underline t))))

5 Reference

5.1 cqual
Synposis
cqual [ options ] source-files ...
Description Invoke the type qualifier inference on source-files. CQUAL accepts all of the standard

GCC options, most of which have no effect on CQUAL’s behavior. CQUAL silently ignores any options it
doesn’t understand.

-config (file) Specifies the partial order configuration file to use (Sections 3.3
and 5.4)

-prelude (file) Specifies the prelude file to use (Section 3.4)

-hotspots (num) If specified, generate a list of the top num qualifier variables involved

in error paths. Don’t take this information too seriously.
-program-files (file) Add the files listed one per-line in file to the list of files to be
analyzed.

In addition, there are a number of flags that change cqual’s behavior. If -f(flag-name) appears as an
option, the flag is enabled. If -fno-(flag-name) appears as an option, the flag is disabled.
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pam-mode Enter into PAM mode after analysis is complete. Usually only used
if PAM itself is invoking cqual. Default value is off.

print-quals-graph Generate quals.dot, containing the (non-transitively closed) con-
straints, which is interpretable by dot. Default value is off.

strict-const Assume anything not marked const is non-const. Default value is
off.

print-results Print a summary of the results after the analysis is complete. In-

tended mostly for regression testing. Default value is off.

use-const-subtyping (Section 3.6) Use const qualifiers to increase the precision of the
analysis by using subtyping, rather than equality, under a const
pointer. This flag has no effect on flow-sensitive analysis. Default
value is on.

flow-sensitive (Section 2.5) Perform flow-sensitive qualifier inference after flow-
insensitive qualifier inference. If you enable this flag the analysis
will consume more resources, even if no flow-sensitive qualifiers
appear in the source code. Hence we recommend you disable it if
you do not need the flow-sensitive analysis. Default value is off.

ugly Display memory addresses next to qualifier variable names. This
is mainly useful for big programs that tend to reuse local variable
names—without using this flag it’s hard to tell them apart.

explain-errors For each error message, display a constraint path exhibiting the
error. This is useful when running CQUAL directly from the com-
mand line without using PAM. Default value is off.

poly Enabled polymorphic recursive inference. This requires more time
and memory than purely monomorphic inference, but the result
will be more precise. Default value is off.

5.2 iquals
Synposis

iquals [ -config (file) ] [ -g ] constraint-file
Description Solve the qualifier constraints in constraint-file.

-config [file] Specifies the partial order configuration file to use.

-g Generate quals.dot, containing the (non-transitively closed) con-
straints, which is interpretable by dot.

The constraint file should consist of a list of constraints of the form

ql <= q2 inequality
ql = g2 equality
ql == g2 unification

ql <= g2 ==> g3 <= g4 conditional inequality

Here if gqi begins with $ it is assumed to be a partial order element specified in the partial order file.
Otherwise qi is assumed to be a variable. Variables may contain numbers, upper- and lower-case letters,
and underscores.

5.3 gcqual
Synposis

gcqual [-debug] [-cc <CC>] [-cqual <cqual>] [cqual options] [-- [CC options]] <filel>
<file2> ...
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Description Preprocess the given input files with the C preprocessor, then call cqual on the results. gcqual
doesn’t preprocess input files ending in .1i, and doesn’t preprocess any input files if the -fpreprocessed
flag is given. gcqual always preprocesses prelude files. If no lattice file is specified on the command line,
gcqual looks in the following places, in order, until one is found:

e $CQUAL_CONFIG DIR/lattice
e ./lattice
e /usr/local/share/cqual/lattice

If no lattice or prelude files are specified on the command line, then gcqual also loads all prelude files (*.cq)
in the same directory as the lattice file it finds.

-debug display commands executed by gcqual
-cc <CC> use <CC> instead of gcc

-cqual <cqual> use <cqual> instead of cqual

5.4 Partial Order Configuration File

The partial order configuration file should contain a series of entries defining partial orders. In the current
version of the code these partial orders should be lattices to generate valid inference results. Inference
should also work correctly on any discrete partial order, and on any of the three-point partial orders. A
future version of CQUAL will correct this limitation.

Below is the grammar for partial order configuration files. In this grammar, z* means zero or more
occurrences of x, and [ z 17 means either zero or one occurrences of [ z .

po-defn = partial order [ po-opt* 1° { po-entry* }
po-opt 1= nonprop
| flow-sensitive
|  casts-preserve
po-entry = qual-name [ qual-opt* 17
| qual-name < qual-name
qual-opt ::= color = "color-name"
| level = level
| sign = sign
|  ptrflow = flow-dir
|  fieldflow = flow-dir
|  fieldptrflow = flow-dir
level = ref | value
sign pos | neg | eq
flow-dir = down | up | all

In addition, comments beginning with /* and ending with */ may be added to the configuration file.
Comments may not be nested, following the C convention.

References

[AFKTO03] Alex Aiken, Jeffrey S. Foster, John Kodumal, and Tachio Terauchi. Checking and Inferring Local
Non-Aliasing. In Proceedings of the 2008 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 129-140, San Diego, California, June 2003.

[ANS99]  ANSI. Programming languages — C, 1999. ISO/IEC 9899:1999.

25



[EFA99]

[Fos02]

[FAO1]

[FFA99]

[FTA02]

[GAO1]

[PAM]

[STFWO01]

Martin Elsman, Jeffrey S. Foster, and Alexander Aiken. Carillon—A System to Find Y2K
Problems in C Programs, 1999. http://bane.cs.berkeley.edu/carillon.

Jeffrey Scott Foster. Type Qualifiers: Lightweight Specifications to Improve Software Quality.
PhD thesis, University of California, Berkeley, December 2002.

Jeffrey S. Foster and Alex Aiken. Checking Programmer-Specified Non-Aliasing. Technical Report
UCB//CSD-01-1160, University of California, Berkeley, October 2001.

Jeffrey S. Foster, Manuel Féhndrich, and Alexander Aiken. A Theory of Type Qualifiers. In
Proceedings of the 1999 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, pages 192-203, Atlanta, Georgia, May 1999.

Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-Sensitive Type Qualifiers. In Proceedings
of the 2002 ACM SIGPLAN Conference on Programming Language Design and Implementation,
Berlin, Germany, June 2002. To appear.

David Gay and Alexander Aiken. Language Support for Regions. In Proceedings of the 2001
ACM SIGPLAN Conference on Programming Language Design and Implementation, pages 70—
80, Snowbird, Utah, June 2001.

Christopher Harrelson. Program Analysis Mode. http://www.cs.berkeley.edu/ chrishtr/
pam.

Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting Format String
Vulnerabilities with Type Qualifiers. In Proceedings of the 10th Usenixz Security Symposium,
Washington, D.C., August 2001.

A Limitations and Bugs

e Only some partial orders will work correctly: any lattice, any discrete partial order, and any of the
two- or three-point partial orders. Your mileage will vary with other partial orders.

e The constraint graph traversal in PAM mode really works best if the program is analyzed using only a
single, two-point lattice. It works for other partial orders, but less reliably.

e const inference (described in [FFA99], which used a previous version of this system written in ML) is
not fully implemented. Specifically, the relationship between const fields and const structures is not
handled fully correctly.

e Only the dereference operator can be annotated with qualifiers without hacking the source code.

e If you kill a marked-up buffer in PAM mode, then you need to re-run CQUAL to recover the buffer.

e Structure initializers aren’t always handled correctly.

e The flow-sensitive analysis does not support polymorphism, gated qualifiers, or -fconst-subtyping.

B Copyright

This manual is copyright (C) 2001-2003 The Regents of the University of California.
CQuaAL includes parts of the RC compiler, which is derived from the GNU C Compiler. It is thus

Copyright (C) 1987, 88, 89, 92-7, 1998 Free Software Foundation, Inc.
Copyright (C) 2000-2003 The Regents of the University of California.
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CQUAL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2, or (at your option) any later
version.

CQUAL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with cqual; see the file COPYING.
If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
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