Safe Haskell | None |
---|---|
Language | Haskell2010 |
Data.Generics.Internal.VL
Synopsis
- type Lens s t a b = forall (f :: Type -> Type). Functor f => (a -> f b) -> s -> f t
- ravel :: (ALens a b i a b -> ALens a b i s t) -> Lens s t a b
- set :: Lens s t a b -> b -> s -> t
- view :: ((a -> Const a a) -> s -> Const a s) -> s -> a
- lens :: (s -> a) -> (s -> b -> t) -> Lens s t a b
- type Lens' s a = Lens s s a a
- (^.) :: s -> ((a -> Const a a) -> s -> Const a s) -> a
- (.~) :: ((a -> Identity b) -> s -> Identity t) -> b -> s -> t
- over :: ((a -> Identity b) -> s -> Identity t) -> (a -> b) -> s -> t
- lens2lensvl :: ALens a b i s t -> Lens s t a b
- type Iso' s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Profunctor p, Functor f) => p a (f a) -> p s (f s)
- type Iso s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Profunctor p, Functor f) => p a (f b) -> p s (f t)
- repIso :: (Generic a, Generic b) => Iso a b (Rep a x) (Rep b x)
- mIso :: forall {k} i (c :: Meta) f1 (p1 :: k) g p2 f2. (Profunctor p2, Functor f2) => p2 (f1 p1) (f2 (g p1)) -> p2 (M1 i c f1 p1) (f2 (M1 i c g p1))
- kIso :: forall {k} r a (p1 :: k) b p2 f. (Profunctor p2, Functor f) => p2 a (f b) -> p2 (K1 r a p1) (f (K1 r b p1))
- recIso :: forall {k} r a (p1 :: k) b p2 f. (Profunctor p2, Functor f) => p2 a (f b) -> p2 (Rec r a p1) (f (Rec r b p1))
- prodIso :: forall {k} a b (x :: k) a' b' p f. (Profunctor p, Functor f) => p (a x, b x) (f (a' x, b' x)) -> p ((a :*: b) x) (f ((a' :*: b') x))
- fromIso :: Iso s t a b -> Iso b a t s
- iso :: (s -> a) -> (b -> t) -> Iso s t a b
- withIso :: Iso s t a b -> ((s -> a) -> (b -> t) -> r) -> r
- data Exchange a b s t = Exchange (s -> a) (b -> t)
- iso2isovl :: Iso s t a b -> Iso s t a b
- repIsoN :: (GenericN a, GenericN b) => Iso a b (RepN a x) (RepN b x)
- paramIso :: forall (n :: Nat) a b p f. (Profunctor p, Functor f) => p a (f b) -> p (Param n a) (f (Param n b))
- build :: Prism s t a b -> b -> t
- match :: Prism s t a b -> s -> Either t a
- type Prism' s a = Prism s s a a
- type Prism s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Choice p, Applicative f) => p a (f b) -> p s (f t)
- prism :: (b -> t) -> (s -> Either t a) -> Prism s t a b
- data Market a b s t = Market (b -> t) (s -> Either t a)
- prism2prismvl :: APrism i s t a b -> Prism s t a b
- type Traversal' s a = forall (f :: Type -> Type). Applicative f => (a -> f a) -> s -> f s
- confusing :: Applicative f => Traversal s t a b -> (a -> f b) -> s -> f t
- liftCurried :: Applicative f => f a -> Curried f a
- liftCurriedYoneda :: Applicative f => f a -> Curried (Yoneda f) a
- liftYoneda :: Functor f => f a -> Yoneda f a
- lowerCurried :: Applicative f => Curried f a -> f a
- lowerYoneda :: Yoneda f a -> f a
- yap :: Applicative f => Yoneda f (a -> b) -> f a -> Yoneda f b
- newtype Curried (f :: Type -> Type) a = Curried {
- runCurried :: forall r. f (a -> r) -> f r
- type Traversal s t a b = forall (f :: Type -> Type). Applicative f => (a -> f b) -> s -> f t
- newtype Yoneda (f :: Type -> Type) a = Yoneda {
- runYoneda :: forall b. (a -> b) -> f b
Documentation
lens2lensvl :: ALens a b i s t -> Lens s t a b #
type Iso' s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Profunctor p, Functor f) => p a (f a) -> p s (f s) #
type Iso s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Profunctor p, Functor f) => p a (f b) -> p s (f t) #
repIso :: (Generic a, Generic b) => Iso a b (Rep a x) (Rep b x) #
A type and its generic representation are isomorphic
mIso :: forall {k} i (c :: Meta) f1 (p1 :: k) g p2 f2. (Profunctor p2, Functor f2) => p2 (f1 p1) (f2 (g p1)) -> p2 (M1 i c f1 p1) (f2 (M1 i c g p1)) #
M1
is just a wrapper around `f p`
kIso :: forall {k} r a (p1 :: k) b p2 f. (Profunctor p2, Functor f) => p2 a (f b) -> p2 (K1 r a p1) (f (K1 r b p1)) #
recIso :: forall {k} r a (p1 :: k) b p2 f. (Profunctor p2, Functor f) => p2 a (f b) -> p2 (Rec r a p1) (f (Rec r b p1)) #
prodIso :: forall {k} a b (x :: k) a' b' p f. (Profunctor p, Functor f) => p (a x, b x) (f (a' x, b' x)) -> p ((a :*: b) x) (f ((a' :*: b') x)) #
withIso :: Iso s t a b -> ((s -> a) -> (b -> t) -> r) -> r #
Extract the two functions, one from s -> a
and
one from b -> t
that characterize an Iso
.
Constructors
Exchange (s -> a) (b -> t) |
Instances
Profunctor (Exchange a b) # | |
Defined in Data.Generics.Internal.VL.Iso Methods dimap :: (a0 -> b0) -> (c -> d) -> Exchange a b b0 c -> Exchange a b a0 d # lmap :: (a0 -> b0) -> Exchange a b b0 c -> Exchange a b a0 c # rmap :: (b0 -> c) -> Exchange a b a0 b0 -> Exchange a b a0 c # (#.) :: forall a0 b0 c q. Coercible c b0 => q b0 c -> Exchange a b a0 b0 -> Exchange a b a0 c # (.#) :: forall a0 b0 c q. Coercible b0 a0 => Exchange a b b0 c -> q a0 b0 -> Exchange a b a0 c # | |
Functor (Exchange a b s) # | |
paramIso :: forall (n :: Nat) a b p f. (Profunctor p, Functor f) => p a (f b) -> p (Param n a) (f (Param n b)) #
type Prism s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Choice p, Applicative f) => p a (f b) -> p s (f t) #
Type alias for prism
Instances
Choice (Market a b) # | |
Profunctor (Market a b) # | |
Defined in Data.Generics.Internal.VL.Prism Methods dimap :: (a0 -> b0) -> (c -> d) -> Market a b b0 c -> Market a b a0 d # lmap :: (a0 -> b0) -> Market a b b0 c -> Market a b a0 c # rmap :: (b0 -> c) -> Market a b a0 b0 -> Market a b a0 c # (#.) :: forall a0 b0 c q. Coercible c b0 => q b0 c -> Market a b a0 b0 -> Market a b a0 c # (.#) :: forall a0 b0 c q. Coercible b0 a0 => Market a b b0 c -> q a0 b0 -> Market a b a0 c # | |
Functor (Market a b s) # | |
prism2prismvl :: APrism i s t a b -> Prism s t a b #
type Traversal' s a = forall (f :: Type -> Type). Applicative f => (a -> f a) -> s -> f s #
Type alias for traversal
confusing :: Applicative f => Traversal s t a b -> (a -> f b) -> s -> f t #
liftCurried :: Applicative f => f a -> Curried f a #
liftCurriedYoneda :: Applicative f => f a -> Curried (Yoneda f) a #
liftYoneda :: Functor f => f a -> Yoneda f a #
lowerCurried :: Applicative f => Curried f a -> f a #
lowerYoneda :: Yoneda f a -> f a #
yap :: Applicative f => Yoneda f (a -> b) -> f a -> Yoneda f b #
newtype Curried (f :: Type -> Type) a #
Constructors
Curried | |
Fields
|
Instances
Functor f => Applicative (Curried f) | |
Defined in Data.Generics.Internal.VL.Traversal | |
Functor f => Functor (Curried f) | |
type Traversal s t a b = forall (f :: Type -> Type). Applicative f => (a -> f b) -> s -> f t #
newtype Yoneda (f :: Type -> Type) a #
Instances
Applicative f => Applicative (Yoneda f) | |
Functor (Yoneda f) | |